
22
nd

 International Conference
on Automated Planning and Scheduling

June 25-29, 2012, Atibaia – Sao Paulo – Brazil

TAMPRA 2012
Proceedings of the Workshop on
Combining Task and Motion Planning
for Real-World Applications

Edited by
Marcello Cirillo, Brian Gerkey,
Federico Pecora, Mike Stilman

Marcello Cirillo
AASS Research Centre, Örebro University
Örebro, Sweden
marcello.cirillo@oru.se

Brian Gerkey
Willow Garage
Menlo Park (CA), USA
gerkey@willowgarage.com

Federico Pecora
AASS Research Centre, Örebro University
Örebro, Sweden
federico.pecora@oru.se

Mike Stilman
Georgia Institute of Technology
Atlanta (GA), USA
mstilman@cc.gatech.edu

TAMPRA’12
Proceedings of the 2012 ICAPS Workshop
on Combining Task and Motion Planning for Real-World Applications
June 26, 2012
Atibaia, São Paulo, Brazil

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil ii

Committee

Organizing Committee:

Marcello Cirillo, AASS, Örebro University
Brian Gerkey, Willow Garage
Federico Pecora, AASS, Örebro University
Mike Stilman, Georgia Institute of Technology

Program Committee:

Bhaskara Marthi Emrah Akın Şişbot
Tsz-Chiu Au Adi Botea
Wolfram Burgard Marc Cavazza
Sachin Chitta Minh Do
Esra Erdem Jean-Loup Farges
Susana Fernández Arregui Alberto Finzi
Julien Guitton Geoffrey Hollinger
Kaijen Hsiao Lars Karlsson
Sven Koenig Carlos Linares López
Héctor Muñoz Ávila Jeff Orkin
Volkan Patoğlu David Pizzi
Erion Plaku Roland Phillipsen
Mihail Pivtoraiko Ananth Ranganathan
Alessandro Saffiotti Sanem Sariel Talay
David Sislak David E. Smith
Kartik Talamadupula

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil iii

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil iv

Foreword

A longstanding aim of research in AI has been to employ discrete task planning capabilities in the
service of mobile robots. Since the early days of Shakey, the planning community has worked to build
algorithms that would allow a robot to reason about its own actions before (or while) carrying them out
physically. Recent advancements in artificial vision, manipulation, motion planning and control have
done a great deal to bring this vision closer to fruition. However, several issues remain open in the
combination of task and motion planning. Research has not yet produced the algorithmic and theoretical
results necessary to integrate techniques for automated decision making at the task and motion planning
levels. Moreover, while autonomous mobile robots have become a commercial reality, existing products
often rely on pre-calculated motions and/or static, pre-computed plans.

This workshop focuses on two important challenges: the complex requirements, such as dynamic en-
vironments and real-time, continuous operation, posed by real-world applications; and the issue of com-
bining the different search and inference procedures underlying the two forms of planning. TAMPRA
follows in the tradition of two previous ICAPS workshops: Combining Action and Motion Planning, at
ICAPS 2010, and Bridging The Gap Between Task And Motion Planning, at ICAPS 2009. The accepted
papers address three areas of interest: combining motion and task planning for high DoF robots, the use
and learning of symbolic knowledge in task/motion planning, and the use of combined task and motion
planning strategies in industrially relevant application scenarios.

Marcello Cirillo
Brian Gerkey
Federico Pecora
Mike Stilman

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil v

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil vi

WORKSHOP PROGRAM

June 26

Session 1: Combining motion and task planning for high DOF robots

1 Ming C. Lin, Jia Pan, Chonhyon Park, Dinesh Manocha
Simulating Human-like Motion in Constrained Dynamic Environments

5 Fabien Lagriffoul, Lars Karlsson, Alessandro Saffiotti
Constraints on Intervals for Reducing the Search Space of Geometric Configurations

13 Lars Karlsson, Julien Bidot, Fabien Lagriffoul, Alessandro Saffiotti, Ulrich Hillenbrand, Flo-
rian Schmidt
Combining Task and Path Planning for a Humanoid Two-arm Robotic System

Session 2: Symbolic knowledge in task and motion planning

21 Erion Plaku
Planning Robot Motions to Satisfy Linear Temporal Logic, Geometric, and Differential
Constraints

29 Nichola Abdo, Henrik Kretzschmar, Cyrill Stachniss
From Low-Level Trajectory Demonstrations to Symbolic Actions for Planning

Session 3: Application scenarios

37 João Paulo da Silva Fonseca, Rodrigo Nogueira Cardoso, William Henrique Pereira Guimarães,
Kauê de Sousa Ribeiro, Alexandre Rodrigues de Sousa, José Jean Paul Zanlucchi de Souza
Tavares
Automated Planning and Real Systems Based on PLC: A Practical Application in a Didactic
Bench of Manufacturing Automation

45 Federico Pecora, Marcello Cirillo
A Constraint-Based Approach for Multiple Non-Holonomic Vehicle Coordination in Indus-
trial Scenarios

53 List of Authors

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil vii

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil viii

Simulating Human-like Motion in Constrained Dynamic Environments

Ming C. Lin Jia Pan Chonhyon Park Dinesh Manocha
University of North Carolina at Chapel Hill

Abstract

In this position paper, we examine the algorithmic and com-
putational challenges in real-time simulation of human-like
motion in highly constrained dynamic environments. We
briefly survey some related work and our recent progress in
generating motions for high-DOF humanoid robots in con-
strained environments with multiple moving obstacles, as
well as real-time replanning techniques. We discuss the
benefits of sample-based planning, data-driven approaches,
optimization-based techniques, and GPU-computing.

1 Introduction
The problem of modeling and simulating human-like mo-
tion arises in different applications, including humanoid
robotics, computer animation, virtual prototyping, and ex-
ploration of sensor-motor basis for neuroscience. This is a
challenging problem due to both combinatorial and behav-
ioral complexities. For example, the entire human body con-
sists of over 600 muscles and over 200 bones and there are
no known accurate and efficient algorithms to simulate their
motion. Even the simplest human-like models that represent
the skeleton as an articulated figure need at least 30 − 40
joints to model different motions such as navigation, sitting,
walking, running, object manipulation, etc. The high dimen-
sionality of the configuration space of the articulated model
makes it difficult to efficiently compute the motion. In addi-
tion to collision-free and kinematic constraints, we also need
to ensure that the resulting trajectory satisfies the posture and
dynamic constraints and looks realistic.

Most of the research in computer animation is based on
motion capture, which tends to generate the most realis-
tic human-like motion. Many techniques have been pro-
posed to edit and modify or retarget the motion capture
(mocap) data. However, it is difficult to capture the mo-
tion in constrained environments with multiple obstacles due
to occlusion problems. Furthermore, it is hard to reuse
or playback the motion in a virtual environment, which is
different from the original environment in which the mo-
tion is captured (Shapiro, Kallmann, and Faloutsos 2007;
Pettre, Kallmann, and Lin 2008; Kallmann et al. 2003;
Kalasiak and van de Panne 2001).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this position paper, we primarily focus on generating
human-like motion in constrained environments with many
obstacles, cluttered areas, or tight spaces. Some of the chal-
lenges we need to address include:

1. Real-time synthesis of high-degree-of-freedom human
motion;

2. Planning and scheduling in constrained environments
with obstacles; and

3. Generating smooth and realistic motion trajectories.

For (1) and (2), we propose a novel approach of combin-
ing motion captured data to exploit the realistic nature of the
recorded motion and hierarchical motion planner. For (3),
we suggest a fast incremental trajectory optimization tech-
nique. The rest of the paper is organized as follows. We
first briefly survey prior work, followed by an overview of
our recent work on planning in constrained environment and
real-time replanning. We conclude by discussing some open
research issues in this area.

2 Related Work
In this section, we give a brief overview of prior work on
motion generation techniques in character animation and
robot motion planning. For the later, we focus on mo-
tion planning in dynamic environments, real-time replan-
ning, optimization-based planning, and parallel algorithms
for motion planning.

Character Animation
There is extensive literature on motion generation in com-
puter animation. At a broad level, prior methods can be
classified into kinematic and dynamic methods. The basic
kinematic methods use operators such as re-sequencing and
interpolation to recombine the example motions into new
motions, as is done in motion blending and motion graphs
(Kovar, Gleicher, and Pighin 2002). Some recent variants
(Safonova and Hodgins 2007) use optimization methods to
satisfy the constraints. These methods can create natural
long clips with a variety of behaviors, but their results are
restricted within the linear space spanned by the example
motions. Moreover, they need to be combined with global
planning or collision avoidance schemes in order to handle

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 1

constrained environments. Shapiro et al. (Shapiro, Kall-
mann, and Faloutsos 2007) described an elegant approach to
combine mocap data with motion planning.

Recently, dynamics-based methods have become popular
in the animation community, e.g. (Abe and Popović 2006).
These approaches use a control strategy (e.g. PD control) to
actuate a dynamics model (e.g. Newton-Euler equation). In
practice, they are primarily used for interactive response and
may not work well for collision-free motion computation in
constrained environments.

Motion Planning
Sample-based approaches have been successfully applied to
human-like robots to plan various tasks and motions. These
include efficient planning algorithms for reaching and ma-
nipulation that combine motion planning and inverse kine-
matics (Diankov et al. 2008; Drumwright and Ng-Thow-
Hing 2006) or computing the whole body motion (Hauser
et al. 2008). Moreover, motion strategies for human-like
robots such as walking, sitting or jumping can also be com-
puted by walking pattern generators (Huang et al. 2001;
Kajita et al. 2003). In order to plan collision-free and
dynamically stable motions, many earlier approaches used
a two-stage decoupled framework (Harada et al. 2007;
Kuffner et al. 2002; Yoshida et al. 2005). Task-based
controllers have also been used to plan and control the
whole-body motion (Gienger, Goerick, and Körner 2008;
Sentis and Khatib 2006).

To generate natural-looking motion, many authors have
proposed a two-stage framework. The planner first com-
putes the motion taking into account a few or partial
DOFs of the human model, e.g., cylindrical lower-body
(Pettré, Laumond, and Siméon 2003), manipulator (Yamane,
Kuffner, and Hodgins 2004), footsteps (Choi, Lee, and Shin
2003), etc. In the second stage, some motion data (e.g.
mocap data) is retargetted by using the planned trajectory
as constraints, e.g., a 2D trajectory (Pettré, Laumond, and
Siméon 2003) or inverse-kinematics (Yamane, Kuffner, and
Hodgins 2004). These methods typically work well in terms
of generating regular motion (e.g. locomotion) in somewhat
open environments without many obstacles.
Planning in Dynamic Environment Most of the ap-
proaches for motion planning in dynamic environment as-
sume the trajectories of moving objects are known a pri-
ori. Some of them model dynamic obstacles as static obsta-
cles with a short horizon of high cost around the beginning
of the trajectory (Likhachev and Ferguson 2009). Another
common approach is to use velocity obstacles which deter-
mine the velocities that avoid collisions with dynamic ob-
stacles (Fiorini and Shiller 1998; Wilkie, van den Berg, and
Manocha 2009). However, these methods cannot give any
guarantees on the optimality of the resulting trajectory.

Some of the planning methods handle the continuous
state space directly, e.g. RRT variants have been proposed
for planning in dynamic environments (Petti and Fraichard
2005). For discrete state spaces, efficient planning algo-
rithms for dynamic environment include variants of A* algo-
rithm, which are based on classic heuristic search (Phillips

and Likhachev 2011b; 2011a) and roadmap based algo-
rithms (van den Berg and Overmars 2005).

Most planning algorithms for dynamic envi-
ronments (van den Berg and Overmars 2005;
Phillips and Likhachev 2011b) assume that the inertial
constraints, such as acceleration and torque limit, are
negligible for the robot. Such assumption implies that the
robot can stop and accelerate instantaneously, which is not
feasible for real robot.

Real-time Replanning Since path planning can be com-
putationally expensive, planning before execution can lead
to long delays during robot’s movement. To handle such
problem, real-time replanning interleaves planning with ex-
ecution so that the robot may decide to compute only partial
or sub-optimal plans in order to avoid delays in the move-
ment. Real-time replanning methods differ in many aspects.
One difference is the underlying planner. Sample-based mo-
tion planning algorithm such as RRT have been applied to
real-time replanning for dynamic continuous systems (Hsu
et al. 2002; Hauser 2011; Petti and Fraichard 2005). These
methods can handle high-dimensional configuration spaces
but usually cannot generate optimal solutions. A* variants
such as D* (Koenig, Tovey, and Smirnov 2003) and anytime
A* (Likhachev et al. 2005) can efficiently perform replan-
ning on discrete state spaces and provide optimal guarantees,
but are mostly limited to low dimensional spaces. Most re-
planning algorithms use fixed time steps, while interleaving
between planning and execution (Petti and Fraichard 2005).
Some recent work (Hauser 2011) computes the interleaving
timing step in an adaptive manner to balance between safety,
responsiveness, and completeness of the overall system.

Optimization-based Planning Algorithms The most
widely-used method of path optimization is the so-called
’shortcut‘ heuristic, which picks pairs of configurations
along a collision-free path and invokes a local planner to
attempt to replace the intervening sub-path with a shorter
one (Chen and Hwang 1998; Pan, Zhang, and Manocha
2011). Another approach used in elastic bands or elas-
tic strips planning involves modeling paths as mass-spring
systems and gradient based methods are used to find a
minimum-energy path (Brock and Khatib 2002; Quinlan
and Khatib 1993). All these methods require a collision-
free path as an initial value to the optimization algorithm.
Some recent approaches, such as (Ratliff et al. 2009;
Kalakrishnan et al. 2011; Dragan, Ratliff, and Srinivasa
2011) directly encode the collision-free constraints and can
work as a motion planner to transform a naive initial guess
into a trajectory suitable for robot execution.

Parallel Planning Algorithms Parallelized planning al-
gorithms can improve the responsiveness, safety and com-
pleteness of the robot system. These include distributed
or multi-core algorithms for sampling-based planner (Am-
ato and Dale 1999; Plaku and Kavraki 2005; Devaurs,
Simeon, and Cortes 2011). Many-core GPUs are also used
for accelerating sampling-based algorithms (Pan, Lauter-
bach, and Manocha 2010) and search-based planning algo-
rithms (Kider et al. 2010).

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 2

A stable and
collision-free pathMocap

Database

Planner
Collision-free constraints
CoM / ZMP constraints

Blender: combine mocap
data with planner’s path

Natural-looking constraints

HMT-I

A more natural
trajectory

Replanner/Postprocess
CoM / ZMP constraints

Collision-free constraints
Smoothness

HMT-II

HMP

(a)

A3: 3 DOF

A2: 3 DOF

A5: 7 DOFA4: 7 DOF

A1: 14 DOF

Lower body

Torso

HeadLArm RArm

A3 A5A4

A2

A1

(b)

Figure 1: (a) An overview of our hybrid approach, which can com-
bine the motion computed by planner and the motion from mocap
databases to generate a collision-free, dynamic and natural human
motion. (b) Our 5-component decomposition scheme for a 38-DOF
human-like model. We compute a trajectory for each component in
an incremental manner.

3 Hybrid Planner and Trajectory
Optimization for Real-time Planning

In this section, we present a brief overview
of our recent approaches. For more detail,
please refer to http://gamma.cs.unc.edu/DHM/ and
http://gamma.cs.unc.edu/ITOMP/.

Hybrid Planner
We present an original hybrid approach that combines mo-
tion planning algorithms for high-DOF articulated figures
with motion capture data to generate collision-free motion
that satisfies both kinematic and dynamic constraints. Our
approach performs whole-body planning by coordinating
the motion of different parts of the body and later refines
the trajectory with mocap data. The two novel components
of our work include:

• Decomposition planner: In order to deal with high-DOF
articulated figures, we use a hierarchical decomposition of
the model and perform constrained coordination to gener-
ate a collision-free trajectory and maintain static/dynamic
balancing constraints. The resulting planner computes the
path for low-DOF components in an incremental manner
and uses path constraints and path perturbation to gener-
ate a trajectory that satisfies kinematic and dynamic con-
straints.

• Trajectory Refinement: In order to overcome the ran-
dom nature of sample-based planners and generate realis-
tic motion, we refine the motion computed by our planner
with mocap data to compute smooth paths. The resulting
motion blending algorithm analyzes the motion and au-
tomatically builds a mapping between the path computed
by the planner and the mocap data. We ensure that the
resulting path still satisfies various constraints.

An overall pipeline of our hybrid planner algorithm is
given in Fig 1(a). We do not make any assumptions about the
environment or the obstacles in the scene. We assume that
a human-like model is represented by an articulated model
with serial and parallel joints and there is no limit on the
number of DOFs.

We demonstrate the results on generating human-like mo-
tion for a 38-DOF articulated model using the CMU mo-

cap database. Our system can handle very cluttered envi-
ronments to generate object grasping, bending, walking and
lifting motions.

Real-time Incremental Trajectory Optimization
Most moving objects motions are not precisely predictable
or can only be approximated over a small or local time in-
terval. Such uncertainty about moving objects also makes it
hard to plan a safe trajectory for the robot over a long hori-
zon. Another challenge in terms of planning in dynamic en-
vironments is that the planning algorithm must be responsive
to unpredictable situations, which requires real-time plan-
ning capability in terms of computing or updating the trajec-
tory. There exist some recent work trying to accelerate high-
DOF planning algorithms, such as GPU parallelism (Pan,
Lauterbach, and Manocha 2010) or distributed systems (De-
vaurs, Simeon, and Cortes 2011). Such a fast planner can
definitely improve the responsiveness, but it may not pro-
vide an adequate solution for all situations. The reason is
that there exist some difficult scenarios, e.g., narrow pas-
sages (LaValle 2006), which are hard for any planner in
terms of real-time computation. In these cases, planning be-
fore the task execution can lead to delays in the movement
and decrease the safety of robot movement. One possible
solution is by interleaving planning with execution, and the
overall algorithm ends up computing partial or sub-optimal
plans (Hauser 2011).

To overcome the above challenges, we introduce a novel
optimization-based algorithm for motion planning in dy-
namic environments. Our approach uses a stochastic tra-
jectory optimization framework to avoid collision and sat-
isfies smoothness and dynamics constraints. Our algorithm
does not require a priori knowledge about global motion or
trajectory of each dynamic obstacle. We compute a con-
servative local bound on the position or trajectory of each
obstacle over a short time and use it to compute a collision-
free trajectory in an incremental manner. In order to balance
between the planning horizon and the responsiveness to dy-
namic obstacles, we interleave planning and execution of the
robot in an adaptive manner. Moreover, we parallelize the
optimization scheme on multi-core processors to improve its
runtime performance, convergence and responsiveness.

4 Discussion and Summary
We have briefly presented an algorithm that combines a
high-DOF motion planning algorithm with mocap data to
generate plausible human motion and satisfy geometric,
kinematic and dynamic constraints, as well as an incremen-
tal trajectory optimization method. Some of the remain-
ing challenges include (a) satisfying all constraints in the
presence of narrow passages in the free space efficiently;
(b) obtaining sufficient motion samples to generate real-
istic motions; (c) developing better searching strategy to
find the best-match mocap clips; (d) incorporating non-
holonomic and other constraints (Pettre, Kallmann, and Lin
2008) in planning and trajectory optimization; (e) designing
high-level, semantic-based planner and scheduler to perform
complex tasks.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 3

References
Abe, Y., and Popović, J. 2006. Interactive animation of dynamic manipulation. In
Symposium on Computer Animation, 195–204.

Amato, N., and Dale, L. 1999. Probabilistic roadmap methods are embarrassingly par-
allel. In Proceedings of IEEE International Conference on Robotics and Automation,
688–694 vol.1.

Brock, O., and Khatib, O. 2002. Elastic strips: A framework for motion generation in
human environments. International Journal of Robotics Research 21(12):1031–1052.

Chen, P., and Hwang, Y. 1998. Sandros: a dynamic graph search algorithm for motion
planning. IEEE Transactions on Robotics and Automation 14(3):390–403.

Choi, M. G.; Lee, J.; and Shin, S. Y. 2003. Planning biped locomotion using motion
capture data and probabilistic roadmaps. ACM Trans. Graph. 22(2):182–203.

Demirel, H., and Duffy, V. 2007. Applications of digital human modeling in indus-
try. In Digital Human Modeling, Lecture Notes in Computer Science, volume 4561.
Springer Berlin / Heidelberg. 824–832.

Devaurs, D.; Simeon, T.; and Cortes, J. 2011. Parallelizing rrt on distributed-memory
architectures. In Proceedings of IEEE International Conference on Robotics and Au-
tomation, 2261 –2266.

Diankov, R.; Ratliff, N.; Ferguson, D.; Srinivasa, S.; and Kuffner, J. 2008. Bispace
planning: Concurrent multi-space exploration. In Robotics: Science and Systems.

Dragan, A.; Ratliff, N.; and Srinivasa, S. 2011. Manipulation planning with goal
sets using constrained trajectory optimization. In Proceedings of IEEE International
Conference on Robotics and Automation, 4582–4588.

Drumwright, E., and Ng-Thow-Hing, V. 2006. Toward interactive reaching in static
environments for humanoid robots. In IEEE/RSJ International Conference On Intelli-
gent Robots and Systems (IROS), 846–851.

Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic environments using
velocity obstacles. International Journal of Robotics Research 17(7):760–772.

Gienger, M.; Goerick, C.; and Körner, E. 2008. Whole body motion planning -
elements for intelligent systems design. Zeitschrift Künstliche Intelligenz 4:10–15.

Harada, K.; Hattori, S.; Hirukawa, H.; Morisawa, M.; Kajita, S.; and Yoshida, E.
2007. Motion planning for walking pattern generation of humanoid. In Proceedings
of International Conference on Robotics and Automation, 4227–4233.

Hauser, K.; Bretl, T.; J.C. Latombe, K. H.; and Wilcox, B. 2008. Motion planning
for legged robots on varied terrain. The International Journal of Robotics Research
27(11-12):1325–1349.

Hauser, K. 2011. On responsiveness, safety, and completeness in real-time motion
planning. Autonomous Robots to appear.

Hsu, D.; Kindel, R.; Latombe, J.-C.; and Rock, S. 2002. Randomized kinodynamic
motion planning with moving obstacles. International Journal of Robotics Research
21(3):233–255.

Huang, Q.; Yokoi, K.; Kajita, S.; Kaneko, K.; Arai, H.; Koyachi, N.; and Tanie, K.
2001. Planning walking patterns for a biped robot. IEEE Transactions on Robotics
and Automation 17:280–289.

Kajita, S.; Kanehiro, F.; Kaneko, K.; Fujiwara, K.; Harada, K.; Yokoi, K.; and
Hirukawa, H. 2003. Biped walking pattern generation by using preview control of
zero-moment point. Proceedings of International Conference on Robotics and Au-
tomation 1620–1626.

Kalakrishnan, M.; Chitta, S.; Theodorou, E.; Pastor, P.; and Schaal, S. 2011. STOMP:
Stochastic trajectory optimization for motion planning. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, 4569–4574.

Kalasiak, M., and van de Panne, M. 2001. A grasp-based motion planning algo-
rithm for character animation. The Journal of Visualization and Computer Animation
12(3):117–129.

Kallmann, M.; Aubel, A.; Abaci, T.; and Thalmann, D. 2003. Planning collision-free
reaching motions for interactive object manipulation and grasping. Computer graphics
Forum (Proceedings of Eurographics’03) 22(3):313–322.

Kider, J.; Henderson, M.; Likhachev, M.; and Safonova, A. 2010. High-dimensional
planning on the gpu. In Proceedings of IEEE International Conference on Robotics
and Automation, 2515–2522.

Koenig, S.; Tovey, C.; and Smirnov, Y. 2003. Performance bounds for planning in
unknown terrain. Artificial Intelligence 147(1-2):253–279.

Kovar, L.; Gleicher, M.; and Pighin, F. 2002. Motion graphs. ACM Trans. Graph.
21(3):473–482.

Kuffner, J.; Kagami, S.; Nishiwaki, K.; Inaba, M.; and Inoue, H. 2002. Dynamically-
stable motion planning for humanoid robots. Autonomous Robots 12(1):105–118.

Laumond, J.-P.; Ferre, E.; Arechavaleta, G.; and Esteves, C. 2005. Mechanical part
assembly planning with virtual mannequins. In International Symposium on Assembly
and Task Planning, 132–137.

LaValle, S. M. 2006. Planning Algorithms. Cambridge University Press.

Likhachev, M., and Ferguson, D. 2009. Planning long dynamically feasible maneuvers
for autonomous vehicles. International Journal of Robotics Research 28(8):933–945.

Likhachev, M.; Ferguson, D.; Gordon, G.; Stentz, A.; and Thrun, S. 2005. Anytime
dynamic A*: An anytime, replanning algorithm. In Proceedings of the International
Conference on Automated Planning and Scheduling.

Pan, J.; Lauterbach, C.; and Manocha, D. 2010. g-Planner: Real-time motion planning
and global navigation using gpus. In Proceedings of AAAI Conference on Artificial
Intelligence.

Pan, J.; Zhang, L.; and Manocha, D. 2011. Collision-free and curvature-continuous
path smoothing in cluttered environments. In Proceedings of Robotics: Science and
Systems.

Petti, S., and Fraichard, T. 2005. Safe motion planning in dynamic environments. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,
2210–2215.

Pettre, J.; Kallmann, M.; and Lin, M. C. 2008. Motion Planning and Autonomy for
Virtual Humans. ACM SIGGRAPH Course Notes.

Pettré, J.; Laumond, J.-P.; and Siméon, T. 2003. A 2-stages locomotion planner for
digital actors. In Symposium on Computer Animation, 258–264.

Phillips, M., and Likhachev, M. 2011a. Planning in domains with cost function
dependent actions. In Proceedings of AAAI Conference on Artificial Intelligence.

Phillips, M., and Likhachev, M. 2011b. SIPP: Safe interval path planning for dynamic
environments. In Proceedings of IEEE International Conference on Robotics and
Automation, 5628–5635.

Plaku, E., and Kavraki, L. 2005. Distributed sampling-based roadmap of trees for
large-scale motion planning. In Proceedings of IEEE International Conference on
Robotics and Automation, 3868–3873.

Quinlan, S., and Khatib, O. 1993. Elastic bands: connecting path planning and control.
In Proceedings of IEEE International Conference on Robotics and Automation, 802–
807 vol.2.

Ratliff, N.; Zucker, M.; Bagnell, J. A. D.; and Srinivasa, S. 2009. CHOMP: Gradient
optimization techniques for efficient motion planning. In Proceedings of International
Conference on Robotics and Automation, 489–494.

Safonova, A., and Hodgins, J. K. 2007. Construction and optimal search of interpo-
lated motion graphs. ACM Trans. Graph. 26(3):106.

Sentis, L., and Khatib, O. 2006. Whole-body control framework for humanoids op-
erating in human environments. Proceedings of International Conference on Robotics
and Automation 2641–2648.

Shapiro, A.; Kallmann, M.; and Faloutsos, P. 2007. Interactive motion correction and
object manipulation. In Symposium on Interactive 3D Graphics, 137–144.

van den Berg, J., and Overmars, M. 2005. Roadmap-based motion planning in dy-
namic environments. IEEE Transactions on Robotics 21(5):885–897.

Wilkie, D.; van den Berg, J. P.; and Manocha, D. 2009. Generalized velocity obsta-
cles. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and
Systems, 5573–5578.

Yamane, K.; Kuffner, J. J.; and Hodgins, J. K. 2004. Synthesizing animations of
human manipulation tasks. ACM Trans. Graph. 23(3):532–539.

Yoshida, E.; Belousov, I.; Esteves, C.; and Laumond, J.-P. 2005. Humanoid motion
planning for dynamic tasks. International Conference on Humanoid Robots 1–6.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 4

Constraints on Intervals for Reducing the Search Space of Geometric
Configurations

Fabien Lagriffoul, Lars Karlsson, Alessandro Saffiotti

Abstract

The combination of task and motion planning presents us
with a new problem that we call geometric backtracking. This
problem arises from the fact a single symbolic state or action
can be geometrically instantiated in infinitely many ways.
When an action cannot be geometrically validated, we may
need to backtrack in the space of geometric configurations,
which greatly increases the complexity of the whole plan-
ning process. In this paper, we address this problem using in-
tervals to represent geometric configurations, and constraint
propagation techniques to shrink these intervals according to
the geometric constraints of the problem. After propagation,
either (i) the intervals are shrunk, thus reducing the search
space in which geometric backtracking may occur, or (ii) the
constraints are inconsistent, indicating the non-feasibility of
the sequence of actions without further effort. We illustrate
our approach on scenarios in which a two-arm robot manip-
ulates a set of objects, and report experiments that show how
the search space is reduced.

Introduction
Both task and motion planning have been studied for
decades (Nau, Ghallab, and Traverso 2004; LaValle 2006),
and efficient algorithms have been developed. However,
combining them together is a challenge, because motion
planning, which is computationally expensive, has to be in-
terleaved with task planning (which is itself a hard problem).
We are interested in combining task and motion planning in
general, but in this paper, we focus on manipulation of ob-
jects by a humanoid robot, Justin (Ott and al. 2006) (Fig. 1).
The tasks considered are simple ones, for instance sorting
objects according to their type, or stacking cups. In this kind
of problems, task planning is not complicated because there
are few causal relations between actions. Motion planning
is not difficult either, because the workspace of the robot is
not very cluttered, and we use predefined grasps to avoid
doing grasp planning. Despite these favourable conditions,
some problems turn out to be intractable because of geomet-
ric backtracking.

During task planning, geometric configurations, which
are the counterparts of symbolic states, are maintained.
When the preconditions of a symbolic action are validated,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: The DLR humanoid two-arm system JUSTIN
(courtesy DLR)

the geometric configuration associated to the current state is
used in order to assess the geometric applicability of the ac-
tion. Now, let us describe in detail the geometric backtrack-
ing problem through an example, and show how it impairs
the whole planning process. We consider a stacking task
(Fig. 2). The task consists in stacking four cups at given
location (the square area on the table). Symbolically, the
domain is simple: four objects, one location, and four possi-
ble actions (pick and place, with left or right arm). Looking
carefully at Fig. 2, one can see that the right arm of the
robot has almost reached full extension. Stacking the first
three cups is possible, but placing the last cup on top of the
pile is not possible because the kinematic constraints of the
robot do not allow for it.

The last action is not feasible because the cup at the bot-
tom of the pile was placed at a wrong position. If the first
cup had been placed closer to the robot, the task could have
been completed. Hence, the symbolic plan is actually fea-
sible, but the geometric instance chosen for the first action
does not allow the planner to complete the sequence. If the
planner aborted the search at this point, it would be incom-
plete, because a solution exists but is not reached. In order
to remain complete (up to some spatial resolution), the plan-
ner must try alternative geometric instances until a solution
is found, or reject this last action after exhaustive search. We

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 5

Figure 2: Stacking the last cup is not possible due to kine-
matic constraints

call this process geometric backtracking.
Geometric backtracking is a problem for two reasons.

First, the size of the space of geometric configurations is
infinite, and remains very large even with a gross discretiza-
tion. Fig. 3 describes a scheme for discretizing the space of
geometric configurations:

• the pick action can be done using one of the 16 precom-
puted grasp positions1;

• the stack action can be performed in 16 different ways
(16 possible orientations for the cup);

• the place action can be achieved in 256 ways (16 locations
×16 orientations).

For the “cup stacking” example (Fig. 2), exhaustive
search is infeasible (16 × 256 × (16 × 16)3 = 6.9 × 1010

possibilities). But even on a short sequence composed of
two actions, such as pick and place, the problem arises. If
a specific final orientation for the object is required, then
the success of the place action highly depends on the grasp
chosen for the pick action. Without a proper strategy, the
planner may have to try several grasps before finding one
which allows it to place the cup with the desired orientation.
And for each candidate grasp tried, we need to try all the
256 possible place actions to be sure that the sequence can
not be executed with this grasp.

This leads us to the second reason for why geometric
backtracking is problematic. Checking for feasibility re-
quires to call the motion planner to ensure that the path is
collision-free, which takes time (on average 100 ms). This
entails that a simple pick and place sequence of actions may
require a dozen seconds to be solved, and more time to be
proved infeasible. This is not acceptable at the task planning
level, when plenty of these sequences of actions need to be
assessed.

In our view, geometric backtracking is one of the main
difficulties in combining task and motion planning. In this
paper, we propose an approach to tackle this problem, by
introducing an intermediate layer between task planning

1In this scenario, only top-grasps are used, but there are no re-
strictions on the number of grasp types in general

Pick cup1

Place cup1 tray

Pick cup2

Stack cup4 cup3

16 possible
grasps16

16 x 16

16

16

Symbolic
plan

geometric
 instances

16 possible
locations

16 possible
orientations

Figure 3: An example of discretization of the space of geo-
metric configurations.

and motion planning: symbolic actions are not directly
instantiated into geometric configurations. Instead, a set
of constraints is extracted from the symbolic actions and
from the geometric model of the robot. These constraints
are used to prune out geometric configurations that can
never be part of a solution, which reduces the amount of
geometric backtracking. More interestingly, when the set
of constraints is inconsistent, we know that the sequence of
actions is infeasible without backtracking at all.

Related work
To our knowledge, aSyMov (Cambon, Alami, and Gravot
2009) was the first planner that combines task and motion
planning. Motion planning is done by composition of
probabilistic roadmaps (PRMs)(Kavraki et al. 1996), while
task planning is based on an A*-like search algorithm. It
uses a hybrid state representation: a classical symbolic state,
together with its geometric counterpart. During search, the
algorithm alternates between finding a plan using the current
roadmaps, or adding nodes to the roadmaps in order to
refine its geometric knowledge of the world. Each state has
a list of candidate geometric configurations, some of which
are validated when they are known to be reachable from the
previous state. The validation procedure tries to back-trace
through valid configurations until the initial configuration
is reached. If this is not possible, the algorithm may have
(in the worst case) to check for all collision-free paths
between all the candidate configurations of each successive
state. The search then becomes exponential in the number
of robots and objects. aSyMov performs well when the
problem is constrained at the task level, but is less efficient
on pure geometric problems (cf. the forklifts and boxes
experiments).
In (Dornhege et al. 2009), an extension of the planning
domain description language (PDDL) is proposed. The
operators are augmented with a condition-checker and an
effect-applicator, which cause calls to external specialized
geometric reasoners during task planning. The grasps
are predefined. They use numerical fluents to represent
transformation matrices, robot configurations, and poses
of objects. It is not clear though how predicates defining

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 6

continuous placements on surfaces are dealt with, e.g, On
cup table, but it seems likely that predefined locations are
used. Backtracking occurs at the task level within a set of
predefined discrete locations, and the question of geometric
backtracking does not arise.
In (L. Pack Kaelbling 2010), a hierarchical task network
(HTN) approach is proposed in which the complexity
of hybrid planning is indirectly tackled by decreasing
the search horizon. The subtasks obtained from the task
decomposition are executed as soon as primitive actions are
reached. This allows them to re-plan in the now: a useful
feature in dynamic or uncertain environments. On the other
hand, this prevents them from projecting the geometric
consequences of actions far into the future. This implies
that geometrically hard problems would require physical
backtracking, which is precisely what we try to avoid.
In (Alili et al. 2010), a HTN task planner is combined
with a three-layer geometric planner which can deal with
different types of constraints. This architecture allows
the geometric planner to discover new constraints during
planning, and use them for intelligent backtracking. For
instance, if after several manipulations of objects, an object
cannot be placed at a location imposed by the task, a con-
straint will be generated for this location. Then, geometric
backtracking is performed, and objects will be assigned
new locations that do not violate this constraint. This is,
to our knowledge, the only approach that considers the
issue of geometric backtracking, but few details are given
about the exact search space they consider for backtracking .

Generating the constraints
Our approach consists in introducing an intermediate step
between task planning and motion planning, in which a set
of constraints is generated. These constraints are generated
from the sequence of symbolic actions currently explored
by the task planner, and from the geometric properties of
the robot. These constraints express what can or cannot
be geometrically achieved. Intuitively, such constraints
capture that “if object2 is picked from its current position
with the right arm and placed on top of object3, the maxi-
mum achievable clockwise rotation is 65 degrees”. These
constraints can drastically reduce search in the space of
geometric configurations, because they will eliminate many
configurations resulting from the discretization process that
cannot be part of a feasible sequence. For clarity in this
paper, we do not describe the whole planning algorithm, but
only how a single sequence of actions (provided by the task
planner described in (Karlsson et al. 2012)) is handled.

A state sj refers to the jth symbolic state of the symbolic
action sequence, which corresponds to the jth stage of op-
eration. A state sj is the result of applying the action Aj
to the state sj−1 (See Fig. 4). Symbolic states can be geo-
metrically instantiated in many ways, in terms of positions
and orientations of objects. Similarly, symbolic actions can
be instantiated in many positions and orientations of the tool
center point (TCP) of the manipulator. The variables used to

Figure 4: Representation of symbolic states and stages of
operation

describe these geometric instances are listed below. These
variables are then used to formulate the constraints. The
problem is formulated with a set of n variables V , expressed
with respect to the world frame:

V = {x1, x2, ..., xn}.
V is associated to a domain D, which is a set of intervals:

D = {[x1, x1], [x2, x2], ..., [xn, xn]},
where xi and xi are respectively the lower and upper bounds
on the real variable xi.

Each object oi is defined by its poseOij , depending on which
state sj is considered:

Oij = (xij , y
i
j , z

i
j , γ

i
j), with xij , y

i
j , z

i
j , γ

i
j ∈ V

where γ is the orientation of the object, i.e., its rotation
about z, the vertical axis of the world frame.

At the end of an action Aj the manipulator is represented by
the pose of its TCP Tj :

Tj = (xj , yj , zj , γj), with xj , yj , zj , γj ∈ V
where γ is the rotation applied to the TCP around the z axis.

Each time an action is applied, we need to create new vari-
ables and extend the domain accordingly. For each pick ac-
tion Ak for instance, four new variables have to be created
to represent the new position of the TCP, and four intervals
are added to the domain:

V = V + {xk, yk, zk, γk}
D = D + {[xk, xk], [yk, yk], [zk, zk], [γk, γk]}

The intervals are initially set to arbitrarily large values. Sim-
ilarly for a place action, eight new variables have to be cre-
ated to represent the new position of the TCP and the new
position of the placed object oi:

V = V + {xk, yk, zk, γk, xik, yik, zik, γik}
D = D + {[xk, xk], [yk, yk], [zk, zk], [γk, γk]}
D = D + {[xik, xik], [yik, yik], [zik, zik], [γik, γik]}

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 7

We can now use these variables to formulate various types
of constraints between poses of objects, poses of the TCP,
and some constraints imposed by the task.

Location constraints CL
These constraints are extracted from the symbolic states. For
instance, if a symbolic state contains the predicate On Cup
Tray, one can formulate a set of inequality constraints on the
x and y coordinates of the cup, expressing the fact that the
cup belongs to the rectangle defined by the tray. We could
express constraints for arbitrary regions, by bounding them
with a convex polyhedral region. Similar constraints can be
extracted from other predicates (i.e. In, Left, Right, Under,
StackedOn,...). Task constraints also include constraints on
desired positions and orientations of objects: the initial and
final poses are such constraints.

Transfer constraints CT
These constraints simply reflect the fact that when an ob-
ject is manipulated, it undergoes the same translation and
rotation than the TCP of the robot. This occurs for instance
during a place action. For an object oi manipulated between
state sj and state sj+1 we can formulate the constraint:

Oij+1 −Oij = Tj+1 − Tj

Grasp constraints CG
These constraints are formulated each time an object is
grasped. They represent the possible relative positions and
orientations of the TCP with respect to the object when the
object is grasped or released. In our scenario, we use only
top-grasps, but such constraints can be formulated for any
types of grasp. For a top-grasp, the TCP is situated exactly
above the object, which can be formulated as follow for an
object oi, after the pick action Aj :

xj = xij

yj = yij

zj = zij +Htop grasp,

where Htop grasp is the distance between the TCP and the
object when a top-grasp is performed.

Manipulator constraints CM
These constraints are the core of our approach. They are
very important for manipulation tasks because they express
the relationship between the position of the TCP in the
workspace and its possible range of rotation. This relation-
ship is non-linear and complex to compute. We approximate
it with using linear constraints.

In order to find a linear approximation of these con-
straints, we compute two maps off-line, using a similar pro-
cedure to (Zacharias F. 2007). Essentially, the workspace
of the robot is discretized into a 3-dimensional grid, and for
each cell, the existence of an inverse kinematic (IK) solution
is tested for all possible rotations of a template top-grasp
around the vertical axis, by an angle γ. From this data, we

Figure 5: Schematic 2-d view of the 4-dimensional linear
outer approximations of mγ and Mγ on a domain d ⊂ D

can build two maps mγ and Mγ , which respectively asso-
ciate the (x, y, z) coordinates of the TCP to a lower and up-
per bound on γ:

mγ : (x, y, z) 7→ γmin

Mγ : (x, y, z) 7→ γmax

In order to extract linear constraints from these maps, we
define two functions:

b = hmax(Mγ , d)

b = hmin(mγ , d),

where d is the domain for the variables representing the po-
sition of the TCP only (i.e., a cubic region in space):

d = {xTCP , xTCP , yTCP , yTCP , zTCP , zTCP }
These functions compute the parameters of a lower-bound

(resp. upper-bound) hyperplane on the data from mγ (resp.
Mγ) restricted to the domain d. A linear regression is used,
followed by a translation towards the lowest (resp. highest)
value found in the data. Such hyperplanes are represented
by γ̂min and γ̂max on Fig. 5. It is now possible to formulate
two linear constraints on the orientation of the TCP over a
domain d during action Aj :

bx ≤ γj ≤ bx

with x = (xj , yj , zj , 1)
T , xj , yj , zj ∈ d

This constraint is useful in two ways:
• For a given region of space, it provides a lower bound

and an upper bound on the possible top-grasps that can be
achieved.

• For a given set of top-grasps, it provides a region of space
where these grasps can be achieved.
We define the set of constraints C of our problem:

C = {CL, CT , CG, CM},
and we finally define a geometric configuration c at state sj
as the position of all objects, and the position of the TCP:

c = (O1
j , . . . ,Omj , Tj)

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 8

Constraint Satisfaction on Intervals
The geometric constraints of the problem are formulated
with a set of linear inequalities and equalities. The manipu-
lator constraints CM have been formulated in terms of lower
and upper bounds on the real capacities of the manipulator.
Consequently, the set of constraints is conservative, mean-
ing that if a solution exists, it must belong to the feasible
set defined by the constraints. Conversely, if the set of con-
straints results in an empty feasible set, it is guaranteed that
the real problem has no solution. Note, however, that

• we still have to perform search within the feasible set in
order to find a solution to the real problem;

• we still have to perform motion planning in order to find
collision-free paths to connect grasp and release positions.

For these reasons, instead of searching a single solution, we
use the constraints to compute a set of tight intervals which
contain all the solutions to the problem. Techniques have
been developed for solving numerical constraint satisfaction
problems on intervals (NCSPI). These intervals can then be
used to reduce the search space during geometric backtrack-
ing.

Narrowing intervals
Various techniques exist for solving NCSPIs (Davis and
Ernest 1987; Lhomme and Rueher 1997; Jaulin 2000). The
common approach is to state the problem as a numerical
CSP, but each variable is assigned an initial interval, i.e. a
lower bound and an upper bound. Then, these intervals are
narrowed using branch-and-bound together with local con-
sistency techniques (Lhomme 1993). These techniques al-
low us to work with non-linear constraints, but their main
drawback is that constraint propagation effort is required to
decide if a problem is inconsistent. As we will see later,
the ability to detect inconsistency fast is essential in our ap-
proach.

By restricting ourselves to linear constraints though, it is
possible to use a global filtering algorithm (adapted from
(Lebbah, Rueher, and Michel 2002), see Algorithm 1) which
rapidly converges to a global optimum, and detects incon-
sistency at the first iteration. This algorithm solves several
linear programs (LP) in order to find the minimum (resp.
maximum) value Z of each variable xi. Z is then used to
update the lower (resp. upper) bound of xi (lines 9 and 11).
The process is repeated until the bounds do not change more
than a predefined ε value. The result is a domain in which
the intervals are narrowed with respect to the constraints.
We have modified the original algorithm at line 6 by adding
the function UpdateManipulatorConstraints(C,D) in
the main loop. Indeed, after each iteration, the intervals may
shrink. If the intervals representing the TCP positions are re-
duced, it is meaningful to refine the manipulator constraints
using the functions hmin(mγ , d) and hmax(Mγ , d), in order
to get a tighter linear approximation of the real problem.

Refining the manipulator constraint while filtering the do-
mains is a very effective process. Let us illustrate this with
a numerical example for a pick action. Initially, the prob-
lem consists of four variables representing the position of

Algorithm 1: FilterDomain

Function FilterDomain(D, C)
input : D: a domain

C: a set of constraints

1 ε = minimal domain reduction
2 Construct the Linear Program LP from C
3 D′ = D
4 repeat
5 D = D′
6 UpdateManipulatorConstraints(C,D)
7 forall the xi ∈ vars(C) do
8 Solve LP, Z = minimize(xi)
9 xi

′ = max(xi, Z)
10 Solve LP, Z = maximize(xi)
11 xi

′ = min(xi, Z)

12 until (D −D′) ≤ ε or D′ = ∅
13 return D′

the object “cup” located in (0.6, 0.25, 0.1) with orientation
0.

V = {xcup, ycup, zcup, γcup}
D = {[0.6, 0.6], [0.25, 0.25], [0.1, 0.1], [0, 0]}

The lower bounds are equal to the upper bounds because the
values of the variables are determined. The pick action leads
us to the creation of 4 new variables for the TCP, which are
initially assigned arbitrary large intervals:

V = {xcup, ycup, zcup, γcup, xTCP , yTCP , zTCP , γTCP }
D = {[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],

[−10, 10], [−10, 10], [−10, 10], [−π, π]}
The pick action also generates grasp constraints CG and ma-
nipulator constraints CM :

xj+1 = xij

yj+1 = yij bx ≤ γj ≤ bx

zj+1 = zij + 0.34

After applying the function FilterDomain, D becomes:

D = {[0.6, 0.6], [0.25, 0.25], [0.10, 0.10], [0, 0],
[0.6, 0.6], [0.25, 0.25], [0.44, 0.44], [−0.70, 2.36]}

The grasp constraints have propagated the values of the po-
sition of the cup to the position of the TCP. In the second
iteration, the bounds on the orientation of the TCP have
been updated with the linear approximations of the maps,
but since the domain of the TCP is now a single point, these
bounds represent the exact possible rotations of the TCP at
this point. Now, we know that in order to pick the cup, the
orientation of the top-grasp must be chosen between −0.70
and 2.36 radians. This constraint propagation process could
for instance solve the stacking problem described in the in-
troduction. It would also give an approximation of a region
on the table which is appropriate for placing the first cup.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 9

Narrowing intervals during search
In order to find a solution, we use a basic depth-first-search
algorithm, endowed with a pruning step (see algorithm 2:
SearchAndFilter (SAF)). Geometric instances of config-
urations are not chosen arbitrarily, but such that the variables
representing them (O1, . . . ,Om, T) belong to their respec-
tive intervals. This is the first level of pruning. But after
an action has been chosen (e.g., to place the cup at position
(0.7,−0.25, 0.1) with γ = π/2), the variables representing
this choice are assigned fixed values, so the corresponding
intervals can be reduced to single points (i.e., for a variable
xi, xi = xi). Then, we can filter the domain again in or-
der to propagate this choice to other variables through the
constraints. The other intervals will be shrunk accordingly,
which will reduce even more the possibilities for further ac-
tions. This process is repeated each time an action is chosen,
so that intervals are shrunk as the search progresses.

Algorithm 2: SearchAndFilter

Function SearchAndFilter(c1, Seq,D)
input : c1: a geometric configuration

Seq: a sequence of symbolic actions
D: a domain

1 if Seq = 〈〉 then return c1
2 Action = Seq.head
3 Rest = Seq.tail

4 foreach Ai ∈ geometricInstanceOf (Action) do
5 c2 = getSuccesorConf(c1, Ai)

6 if c2 ∈ D then
7 D′ = assignV alues(D, c2)
8 D′ = filterDomain(D′)
9 if D′ 6= ∅ then

10 feasible = pathP lanning(c1, c2)

11 if feasible then
12 s = SearchAndFilter(c2, Rest,D′)
13 if s 6= false then
14 return 〈c2, s〉

15 return false

The algorithm is initially called with the initial geometric
configuration, the sequence of symbolic actions, and the ini-
tial domain filtered according to the constraints of the prob-
lem. An action Ai is chosen among the possible geometric
instances of Action (e.g., 16 for pick, 256 for place). c2 is
the result of applying Ai to c1. If this configuration belongs
to the domain, we apply the strategy described above, that is
assigning the values to the domain and filter it again (lines
7-8). If no inconsistency appears, the motion planning algo-
rithm is called to check if a collision-free path exists to reach
c2. If a path exists, the function is recursively called on c2
with the remaining actions and the shrunk domain D′, oth-
erwise the next action Ai is tried. If all the actions fail, the

function returns false to the calling function via the return
statement line 15. If a final configuration is reached (line 1),
the solution is incrementally built (line 14) and returned to
the main calling function. The result is a list of geometric
configurations which can be used to execute the final plan,
because it contains the initial and final poses of the TCPs of
the robot for each action.

Detecting inconsistency and pruning
One of the main problems of geometric backtracking is
when no geometric instantiation of the action sequence ex-
ists. This happens often during task planning, because no
geometric information is used. For instance, the task plan-
ner may try a sequence in which the right arm of the robot
grasps an object situated on the left side. In the worst case,
for such a sequence, all the space of configurations has to be
searched in order to discover that it is infeasible, which may
be computationally expensive. The only solution to avoid
this is to impose a time limit on the backtracking process.
By doing this unfortunately, completeness is lost for cases
when the problem is feasible.

On the other hand in our approach, inconsistency can be
detected before entering the backtracking procedure, while
we filter the initial domain according to the constraints of the
problem. This is more efficient since no search is required.
Inconsistency can also be exploited during search in order
to prune out a whole branch of the search tree. This happens
when the problem is initially consistent, and at some point
in the search, an action is chosen that makes the problem
inconsistent. This will be detected during filtering (line 8-9
in the Algorithm 2). Then, we do not need to search further
with this action sequence, and can try another action.

Experimental results
Experimental setup
In Section I, we have identified geometric backtracking as
being the main source of complexity in combining task
and motion planning. Geometric backtracking occurs while
evaluating the feasibility of a sequence of symbolic actions.
What a task planner does is essentially to evaluate many
of these sequences. Hence, we evaluated our approach by
evaluating single sequences of actions. We compare our al-
gorithm SAF to a standard depth-first-search (DFS) proce-
dure, i.e., SAF without the filtering process (lines 6 to 9),
and without using the argument D′ at line 12. We compare
our algorithm against DFS, because DFS is equivalent to the
strategies used in similar work (see Section II), i.e., a non-
informed backtracking search.

We use a simulation environment provided by DLR2 for
the robotic platform Justin (Ott and al. 2006). Justin is a
humanoid robot with two arms with 7 DoF each. The robot
is situated in front of a table, on which are placed 30 cm ×
30 cm trays, and some cups that can be manipulated. The
space is discretized with a resolution of 5 cm for the trays
and 15 cm for the table, and orientations with an angular
value of π/8. (which means 36 possible positions on trays,

2Deutsche Zentrum für Luft-und Raumfahrt

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 10

Figure 6: An example of constrained regrasping in Experi-
ment 1

32 on the table, and 16 possible orientations). We evaluated
our approach on two different sequences of actions:

In Experiment 1 (see Fig. 6), we used one object, a se-
quence of four actions, and only the right arm:

• Pick right cup1

• Place right cup1 tray1

• Pick right cup1

• Place cup1 tray2,

where tray1 can be randomly situated from 10 cm to 40 cm
above the surface of the table. We also imposed a constraint
on the final orientation of the cup (γ(4)1 = π).

In Experiment 2, we used one object, a sequence of five
actions, and both arms:

• Pick right cup1

• Place right cup1 table

• MoveAway right-arm

• Pick left cup1

• Place left cup1 tray1,

where the cup is initially located on the right side of the
table, and the tray on the left side, with random variation.
The initial orientation of the cup was randomly chosen, and
a constraint was imposed on its final orientation γ(5)1 , which
was also randomly chosen.

For all experiments, we have measured the number of
geometric configurations explored (#config), and the search
time (time). Both algorithms were run on the same prob-
lems, and 100 runs were conducted. For solving the linear
program, we use the Gurobi linear solver(gur). For motion
planning, we use a bi-directional rapidly exploring random
tree (RRT) planner. We only compute a raw trajectory to
assess the feasibility of the path. This allows us a faster
computation during planning (100 ms on average), and the
final smooth trajectory is computed before execution of the
plan. The algorithms are implemented in java, and run on a
MacBook Pro (Intel Core i7 dual-core 2.66 GHz).

Results
The results for Experiment 1 and 2 are shown on Fig. 7
and Fig. 8 respectively. The horizontal axis represent

Figure 7: Results for Experiment 1: #config on the left, time
on the right.

Figure 8: Results for Experiment 2: #config on the left, time
on the right. A similar trend is observed.

the runs, sorted by increasing number of configurations ex-
plored (resp. time) by the DFS algorithm. Hence, the hor-
izontal axis represents the complexity of the problem mea-
sured “ex post facto” by DFS. We do not show the 60 short-
est/easiest runs, for which both algorithms have a similar
performance (the problem is solved in 1.5 s on average).
The difference becomes noticeable for more “complicated”
cases, i.e., when geometric backtracking is required.

In Experiment 1, geometric backtracking is necessary
when tray1 is high or ill-placed. The possibilities for re-
grasping from there are then limited (see Fig. 6), which may
cause the last place action to fail. Hence, the choice in the
intermediate position and orientation of the cup is important
to complete the sequence. In Experiment 2, a position for
the cup has to be found on the table where both arms can
reach it, and where the kinematic constraints of both arms
are satisfied during grasping.

In 75% of the cases, these tasks do not require backtrack-
ing, and both algorithms perform well. But in 25% of the
remaining cases, due to the initial conditions, the time spent
by DFS explodes because it arbitrarily selects the configura-
tions to explore, which is often a wrong choice in such “dif-
ficult cases”. This entails backtracking, and increases expo-
nentially the number of configurations explored, depending
on the depth of backtracking.

On the other hand, SAF takes advantage of the constraints
to choose a suitable intermediate position, which reduces
backtracking. This is clear on the longest runs: the num-
ber of configurations visited explodes for DFS (until 3000 in
Experiment 2), whereas it stays below 30 for SAF. In terms
of time, the trend is similar, since the RRT planner is called

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 11

for each configuration explored. In Experiment 1 however,
the time for SAF increases slightly more than the number
of configurations explored. This is because in Experiment
1, difficult cases are also complicated in terms of cluttering
of the scene, because tray1 acts as an obstacle. Hence, the
RRT planner takes longer time to compute each path.

In cases where the task is not feasible (depending on the
initial positions of objects), a similar trend is observed. If the
cause for infeasibility arises early, DFS may find it quickly.
But if the problem has to do with the last action, or if it
depends on a complicated interaction of the constraints, SAF
is much more efficient. In extreme cases SAF, may detect
infeasibility without backtracking at all, by simply detecting
inconsistency in the system of constraints, which takes less
than 100 ms on average.

In these experiments, a comparison to a state-of-the-art
planner (i.e., asymov) is missing. Indeed, PRM techniques
have proved good performance on various manipulation
problems. However, we hypothesize that in the kind of prob-
lems we aim at solving, PRMs would not perform that well,
their efficiency is based on re-using path segments which are
known to be collision-free. This strategy is no longer effi-
cient when objects can be moved around, and when two ma-
nipulators share the same workspace, because the roadmaps
have to be substantially updated after each action.

Conclusion
The main contribution of this paper is twofold. First, we
have identified geometric backtracking as one of the ma-
jor sources of complexity when combining task and motion
planning. While new approaches that combine task and mo-
tion planning are being increasingly proposed, to the best of
our knowledge the problem of geometric backtracking has
not been explicitly identified and addressed until now. The
second contribution is a method for dealing with geomet-
ric backtracking. The core idea is to extract a set of lin-
ear constraints from the symbolic plan and the kinematics
of the robot, and to apply constraint satisfaction techniques
on intervals in the space of geometric configurations. This
narrows the geometric search space and avoids unnecessary
calls to the motion planner.

The proposed technique is efficient for geometrically con-
strained tasks, and tasks in which action dependencies im-
pose to backtrack far back in the sequence. Another advan-
tage of the proposed approach is to quickly detect unfeasible
cases, which is an important feature when used in combina-
tion with a task planner. In this work, we have used intervals
to deal specifically with geometric constraints. Intervals are
a compact representation which allows us to reason about
space without being affected by the curse of dimensionality
caused by the discretization process. Therefore, we believe
that intervals are appropriate for bridging the gap between
task and motion planning in general.

ACKNOWLEDGMENTS
This work was partially supported by EU FP7 project “Gen-
eralizing Robot Manipulation Tasks” (GeRT, contract num-
ber 248273). We would like to thank in particular Flo-

rian Schmidt from the Robotics and Mechatronics Center
of DLR, which developed for us functionalities in Justin’s
simulation environment which made this work possible.

References
Alili, S.; Pandey, A. K.; Sisbot, E. A.; and Alami, R. 2010.
Interleaving symbolic and geometric reasoning for a robotic
assistant. In ICAPS Workshop on Combining Action and
Motion Planning.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
Int. J. Rob. Res. 28(1):104–126.
Davis, and Ernest. 1987. Constraint propagation with inter-
val labels. Artif. Intell. 32:281–331.
Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009. Semantic attachments for domain-
independent planning systems. In Proc. of the 19th Int. Conf.
on Automated Planning and Scheduling (ICAPS09), 114–
122.
Gurobi optimizer, http://www.gurobi.com/.
Jaulin, L. 2000. Interval constraint propagation with
application to bounded-error estimation. Automatica
36(10):1547–1552.
Karlsson, L.; Bidot, J.; Lagriffoul, F.; and Saffiotti, A. 2012.
Combining task and path planning for a humanoid two-arm
robotic system. In TAMPRA’12 (ICAPS Workshop).
Kavraki, L.; Svestka, P.; Latombe, J.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. In IEEE Int. Conf. on
Robotics and Automation, 566–580.
L. Pack Kaelbling, T. L.-P. 2010. Hierarchical planning in
the now. In Proc. of Workshop on Bridging the Gap between
Task and Motion Planning (AAAI).
LaValle, S. 2006. Planning Algorithms.
Lebbah, Y.; Rueher, M.; and Michel, C. 2002. A global fil-
tering algorithm for handling systems of quadratic equations
and inequations. In Proc. of the 8th Int. Conf. on Principles
and Practice of Constraint Programming, CP ’02, 109–123.
Lhomme, O., and Rueher, M. 1997. Application des
techniques csp au raisonnement sur les intervalles. Revue
d’intelligence artificielle 11(3):283–311.
Lhomme, O. 1993. Consistency techniques for numeric
csps. In Proceedings of the 13th international joint confer-
ence on Artifical intelligence, 232–238.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice.
Ott, C., and al. 2006. A humanoid two-arm system for dex-
terous manipulation. In 2006 IEEE Int. Conf. on Humanoid
Robots, 276–283.
Zacharias F., Ch.Borst, G. H. 2007. Capturing robot
workspace structure: representing robot capabilities. In
Proc. of IROS’07, the IEEE Int. Conf. on Intelligent Robots
and Systems, 3229–3236.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 12

Combining Task and Path Planning for a Humanoid Two-arm Robotic System

Lars Karlsson and Julien Bidot and Fabien Lagriffoul and Alessandro Saffiotti
Centre for Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Ulrich Hillenbrand and Florian Schmidt
German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Abstract

The ability to perform both causal (means-end) and ge-
ometric reasoning is important in order to achieve au-
tonomy for advanced robotic systems. In this paper, we
describe work in progress on planning for a humanoid
two-arm robotic system where task and path planning
capabilities have been integrated into a coherent plan-
ning framework. We address a number of challenges
of integrating combined task and path planning with
the complete robotic system, in particular concerning
perception and execution. Geometric backtracking is
considered: this is the process of revisiting geometric
choices (grasps, positions etc.) in previous actions in
order to be able to satisfy the geometric preconditions
of the action presently under consideration of the plan-
ner. We argue that geometric backtracking is required
for resolution completeness. Our approach is demon-
strated on a real robotic platform, Justin at DLR, and
in a simulation of the same robot. In the latter, we con-
sider the consequences of geometric backtracking.

Introduction
The robot Justin, which has been developed at the institute of
Robotics and Mechatronics at the German Aerospace Center
(DLR) in Oberpfaffenhofen, is an advanced humanoid robot
with two arms with four-fingered human-like hands, a head
with two video cameras for stereo vision, and a base with
four wheels mounted on extensible legs. The upper body of
Justin has 43 degrees of freedom: 7 degrees of freedom for
each arm, 12 for each hand, 3 for the torso and two for the
neck (Ott et al. 2006).

Justin, like other complex manipulators, was until re-
cently dedicated to performing only tasks involving pre-
specified objects and action sequences, at least at an ab-
stract level. In this article, we present the ongoing ef-
forts to provide Justin with a higher degree of auton-
omy within the scope of the EU FP7-project GeRT (see
http://www.gert-project.eu). Here, we focus on
planning for tasks, but there is also work in the project on
perception and grasping. The overall aim of the project is
that Justin should be able to generalize from existing pro-
grams for specific tasks and from known objects of certain

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

classes, to perform new tasks consisting of the same types
of basic operations but combined in new ways, and with
new objects belonging to the same classes. In this paper,
we report on a prototype of a planner for Justin. Of course,
this problem is not limited to Justin, but applies to other ad-
vanced robotic systems as well.

There is a large body of work on task planning which
represents the world in logical terms (Nau, Ghallab, and
Traverso 2004). But such representations are insufficient for
modeling the kinematic and geometric properties of a robot
such as Justin and its environment. When planning with
Justin, one must take into account how it can move its arms
and hands, how it can grasp different objects, and whether
there are obstacles that can block its movements.

There is also a large body of work on path and motion
planning (LaValle 2006). These algorithms plan in continu-
ous state spaces, and include kinematic (or even dynamic)
models of the robotic system as well as models (often in
terms of polyhedrons) of obstacles.

While a path planner can find collision-free paths for vari-
ous movements, it is not able to decide whether such a move-
ment is a step in solving a complex task. A path planner is in
general incapable of the kind of means-end reasoning that a
task planner can do.

What Justin needs is a combination of task and path plan-
ning. It could be achieved by first solving the task planning
problem and then for each action in that plan solving the cor-
responding path planning problem. However, it might hap-
pen that no path can be found for an action in the task plan.
For instance, the presence of obstacles such as a big box in
the middle of the workspace, may render certain parts of the
workspace inaccessible for one or other of the arms. Yet, the
task planner has no way of determining that, and may gener-
ate plans where the wrong arm is chosen for e.g. picking up
an object from such a position. Hence, a solution with task
planning first and path planning after might result in plans
that are invalid at the geometric level. Instead, task and path
planning must be integrated. A hybrid approach is required.

In this article, we present the hybrid task and path plan-
ning system we have developed for Justin. It is the first
time that hybrid planning has been used for such a complex
robotic system. Previous work has mainly relied on simula-
tion and sometimes very simplified models. Thus, the fact
that we adopt hybrid task and path planning for a real two-

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 13

armed humanoid robotic system is the first contribution of
this paper. We present how the planner works together with
other components of Justin’s software, in particular for per-
ception and execution, and we provide details of how the
planner works. In particular, we show how several differ-
ent solvers for path planning, linear interpolation of paths,
and inverse kinematics need to be combined in order to find
paths. This is the second contribution of this paper. We also
consider the issue of geometric backtracking. Choices of
how to perform actions at the geometric level may have neg-
ative consequences for later actions. Geometric backtrack-
ing is the process of revisiting geometric choices in previous
actions in order to be able to apply the action presently un-
der consideration. For instance, if the task is to place two
cups on a small tray, the first cup may be placed in the mid-
dle of the tray, leaving insufficient space for the second cup.
When the action to place the second cup is found to be in-
applicable, one needs to go back to the first place action and
reconsider where the first cup is to be placed. We show how
geometric backtracking is performed in our planner, includ-
ing how alternative geometric choices are sampled. We also
argue that geometric backtracking is necessary for achiev-
ing resolution completeness for the hybrid planner. This is
the third contribution of the paper. Finally, we present a
number of demonstrations performed on the Justin platform,
and experiments on a simulated version of Justin. The for-
mer demonstrate that our approach actually works on a real
robotic system, and the latter investigate the benefits and
costs of hybrid planning and in particular geometric back-
tracking. The experiments include a large obstacle (which
makes path planning essential), and a number of objects that
are put in a limited space (requiring geometric backtrack-
ing). In the demonstrations and experiments, the robot only
manipulates objects for which it has a priori models, which
implies that grasping can be done with previously stored
grasps. While this paper focuses on Justin, we believe that
what can be learned from planning with Justin can also be
applied to other advanced robotic systems.

Related work
The approaches to combining task and path planning we
have encountered in the literature can roughly be divided
into two categories, defined in terms of how the task and
path planning components relate to each other.

Path planning guided by task planning. In these ap-
proaches, path planning is primary, and task planning sec-
ondary. The planners mainly work on a path planning prob-
lem, but there is also a symbolic interpretation of the domain
which can be used to structure the path planning problem
and determine where to direct the search. These approaches
include aSyMov (Cambon, Alami, and Gravot 2009) and
SamplSGD (Plaku and Hager 2010). I-TMP (Hauser and
Latombe 2009) should also be mentioned here, although it
strictly speaking does not involve a task planning algorithm
but a given task graph which represents a set of potential
plans. These approaches address path planning problems in-
volving a number of movable objects and/or multiple robots
and/or a robot with many links. Such path planning prob-
lems have high-dimensional configuration spaces. In order

to reduce that dimensionality, the problem is divided into
tasks or actions corresponding to lower-dimensional sub-
problems. Such actions can for instance be to move one sin-
gle object to a specific position while all other objects re-
main in position. The role of the task planner is to determine
what actions/subproblems are to be explored. For instance,
aSyMov only invokes the task planner as a heuristic for se-
lecting actions.

Task planning querying path planning. In these ap-
proaches, a task plan is generated, and some of the actions
involve path planning problems which are solved by dedi-
cated path planners. Each path planning problem is solved
separately. These approaches include Guitton and Farges
(2009), Alili et al. (2010), SAHTN (Wolfe, Marthi, and Rus-
sell 2010), semantic attachments (Dornhege et al. 2009a;
2009b), and HTN and motion planning (Kaelbling and
Lozano-Perez 2010). Typically, specific clauses in the pre-
conditions and/or effects invoke calls to a path planner. For
instance, the semantic attachments represent a general ap-
proach to invoking external solvers. A precondition clause
such as ([check-transit ?x ?y ?g]) may invoke a call to a
path planner. Information about the current robotic configu-
ration is encoded in the states of the task planner by terms
q1 ... qn and the transformation matrix for the pose of object
o is encoded by terms p0(o) ... p11(o).

It is noteworthy that these approaches have rarely been
applied to real robots. With the exception of I-TMP, which
has been demonstrated on a climbing Kapuchin robot, they
are (as far as we know) only tested on simulated systems or
very simple robots.

Our approach for Justin belongs to the second category.
Besides being aimed at an advanced real robot, it also distin-
guishes itself by using geometric backtracking: only an ex-
tended abstract by Alili et al. (2010) appears to address that
topic before (and only briefly, so there is not sufficient infor-
mation to make a comparison). However, the first category
of planners such as aSyMov (Cambon, Alami, and Gravot
2009) can perform similarly by exploring multiple paths be-
tween states.

Task and path planning
In task planning (Nau, Ghallab, and Traverso 2004) a state s
is a set of atomic statements p(c1, . . . , cn) where p denotes a
property of or a relation between objects denoted by names
ci. An action a has preconditions Pa (a logical combination
of statements) that specify in what states a is applicable, and
effects Ea (for instance a set of literals) that specify how
a state changes (i.e. what statements are added or deleted)
when a is applied. A planning domain D consists of a set of
actions, and a planning problem is comprised of a domain,
an initial state s0 and a goal formula g. A plan is a sequence
of actions P = (a1, . . . , an). The result of a plan is the state
s obtained by applying the first action a1 to get a state s′, and
then recursively applying the rest of the plan to s′. In a valid
plan, each action ai is applicable in the state obtained by
applying the preceding actions (a1, . . . , ai−1) starting from
the initial state s0. A solution to a planning problem is a plan
P with actions from D which when applied to the initial
state s0 results in a state s in which the goal g is satisfied.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 14

Fig. 1 shows an example of an action schema from one of
the domains for Justin.

act: pick(h,g,o)
pre: empty(h) and graspable(o) and can-move-pick(h,g,o,τ)
eff: not empty(h) and grasped(h,o) and is-picked(h,g,o,τ)

Figure 1: Action schema for Justin, representing a set of pick
actions. The parameter h indicates what hand to use (left or
right), g indicates the type of grasp (e.g. top), o is an object
(e.g. cup1), and τ represents a path to be followed by the
hand h during a pick action.

Path planning (LaValle 2006), on the other hand, consid-
ers a continuous space. There is a world spaceW = R2 or
W = R3. The obstacles in the world space are defined by
the obstacle space O ⊆ W . There is a robot which can be a
rigid bodyA or a collection of connected linksA1, . . . ,An.

The configuration space C is determined by the various
translations and rotations that the robot (or its links) can
perform. A(q) is the space occupied by the robot trans-
formed according to the configuration q (and equivalently
for A1, . . . ,An). Cobs is the obstacle region in the configu-
ration space, defined as the set of configurations where the
interior (int) regions ofO andA intersect. Cfree = C \ Cobs
is the free space where the robot can move.

A path planning problem is defined by the above entities
(the domain), a start configuration q1 ∈ Cfree and a goal
configuration qG ∈ Cfree. A solution to a path planning
problem as defined above is a continuous path τ : [0, 1] →
Cfree where τ(0) = q1 and τ(1) = qG. This is the most
basic version of the path planning problem. There might for
instance be parts (objects) that the robot can transport, or
there might be multiple robots. In the case of Justin, the path
planning problems addressed concern one 7-degree arm at
a time, and any transported parts simply follow the hand.
Hence, C for each path planning problem effectively con-
sists of 7 parameters. The obstacle space Cobs comprises the
table surface, objects on the table, and the other arm.

Task planning and path planning representations can be
linked through the object names and atomic statements at the
task planning level: certain names correspond to parts, posi-
tions or regions at the path planning level, and certain state-
ments correspond to properties of or relations between the
parts and/or the robot. A state s then consists of a symbolic
component σs (a set of statements) and a geometric compo-
nent γs (containing the current configuration and poses of
objects). The preconditions Pa of an action a can refer to
both the symbolic and geometric state components, and the
effects Ea can alter them both.

In Fig. 1, the predicates can-move-pick in the precondi-
tions and is-picked in the effects are geometric: the former
concerns the existence of a path τ in γs from the present
arm configuration for the selected arm to one where the se-
lected object can be picked, and the latter updates γs to such
a target configuration.

A statement that is interpreted geometrically can be true
in many different geometric states. This implies that a ge-
ometric effect can be realized in many different ways. For

Figure 2: Point clouds (cyan) from a Kinect camera together
with best matching models (red).

instance, if an object o is to be positioned in a certain region
r, then in(o, r) can be achieved by a set of different poses
which is constrained by the borders of r, the presence of
other objects in r and so on. Hence, an action with an effect
such as in(o, r) can be implemented in many different ways
geometrically. In addition, how it is implemented may affect
subsequent actions. For instance, if a later action has the ef-
fect in(o2, r), it will be constrained differently depending
on the selected pose for o, and in some cases may even be
infeasible.

System overview
Here, we present the relevant modules of Justin: perception,
world model, planning and execution.

The perception module is based on analysis of point
clouds obtained from stereo processing or some other range
sensor. Given geometric models of possible objects in the
actual scene, an interpretation of that scene in terms of these
objects is computed. In a first step, a set of hypotheses (sev-
eral tens) is computed for each object through pose cluster-
ing (Hillenbrand 2008; Hillenbrand and Fuchs 2011). In the
second step, these hypotheses are tested by aligning the ob-
ject models with the data (Fig 2) and scoring the inliers by
proximity to the model surface and similarity of surface ori-
entation. Finally, collisions of models are detected and lead
to pruning the hypotheses with the lowest scores.

The world model receives information from perception
about classes, shapes and poses of objects in the scene.
Presently, the world model has access to polygon mesh mod-
els of the corresponding example objects. When novel ob-
jects are introduced, these will have to be generated online
from the point clouds obtained from range sensing. In par-
ticular, the objects’ poses come with some uncertainty, and
the robot’s actions need to be robust enough to compensate
for that.

In addition, the world model has access to a set of grasps
for each object. These grasps are represented in terms of
configurations for the individual fingers and the relative pose
of the tool center point (TCP) which is roughly in the center
of the wrist.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 15

The planner queries the world model in order to get ge-
ometric information about the planning problem addressed.
From the world model, it can construct an initial geometric
state with the 3D models of the objects positioned in the cor-
rect poses. Purely symbolic information is given in a prob-
lem file, as is the goal. Objects in the geometric state are
automatically given names from the symbolic states.

Next, the planner searches for a plan: how that is done
will be described in the next section. If successful, the plan
is used to generate a robot program in the form of a sequence
of Python scripts. Each action model in the domain corre-
sponds to one parameterized script segment, and each ac-
tion in the plan generates one segment in the final script,
instantiated with the appropriate objects and poses, grasps
and possibly also paths. The scripts may contain, among
other things, arm motions to specific frames, arm motions
according to a given path, finger motions to given configu-
rations, guards for specific conditions such as resistance due
to contact with some object, perceptual operations such as
looking for a specific object, and exception handling. These
scripts are then executed in the Justin execution environ-
ment. Python was already extensively used in the execu-
tion environment, and provides an expressive and efficient
high-level interface language between planning and execu-
tion. Fig. 3 shows one such Python script. In the future, we
intend to add execution monitoring and recovery techniques
to the system.

The planner
Our hybrid task and path planner is based on forward chain-
ing task planning in combination with bidirectional rapidly
exploring random tree (RRT) planning (LaValle 2006). Cur-
rently, we are using the hierarchical task network planner
JSHOP2 (Nau et al. 2003) as the task planning component; it
was chosen because it is a progressive planner and searches
among fully specified states. From the perspective of the task
planner, two modifications are made:

• The state is augmented with a geometric component,
which contains information about the (predicted) config-
urations of the robot and of any movable objects, as well
as their shapes (the latter are the same for all states).

• Atomic statements with certain predicates are not evalu-
ated in the symbolic component of the state but in the ge-
ometric one. When such a statement is encountered while
testing a precondition of an action, a method is called that
evaluates whether it is true in the geometric state com-
ponent. When a statement with a geometric predicate is
encountered while adding the effects of an operator, a
method is called which updates the geometric state ac-
cordingly.

Thus, the application of an action results in updating both
the symbolic state, by adding/removing statements, and the
geometric state, by invoking the associated methods. Notice,
that the interaction between task and path planning occurs
exclusively through the geometric predicates, in the pre- and
postconditions of operators and possibly when the goal is
evaluated. Thus, the only modifications of the task planner

are how preconditions and effects are applied, and the inclu-
sion of a geometric component into the state.

A method for the geometric state may be of two kinds. It
may involve a simple computation, e.g. if it concerns the po-
sition of a certain object. It may also involve a more complex
computation such as searching for a path in the configuration
space of one of the arms. The latter is done as follows for a
statement with the predicate can-move-pick:

1. The present configuration in the geometric state is the ini-
tial configuration for the path planning.

2. The goal configuration is computed by first determining a
desired pose for the tool center point of the selected arm.
There are typically several alternative grasps and hence
several TCP poses that constitute a sample. An inverse
kinematic solver for Justin’s arms then computes a set of
arm configurations that puts the tool center point in the
desired pose. These are tested for collisions, and one of
those found to be collision free will be the goal configu-
ration.

3. Inverse kinematics is also used to generate a configuration
at some distance from the object, and this will be the ap-
proach configuration. Passing through this configuration
reduces the risk of failing the grasp due to e.g. unexpected
collisions between the hand and the object.

4. A bidirectional RRT planner attempts to find a collision-
free path for the arm between the initial and approach
configurations. The RRT planner employs a forward-
kinematic model for projecting Justin’s arm into the work
space.

5. A path between the approach configuration and the goal
configuration is computed by linear interpolation.

6. The fingers are closed according to a grasp-specific con-
figuration.

7. If a path is found, it is stored for later use, and the state-
ment is considered true in the state.

The predicate can-move-pick is used in preconditions. The
corresponding effect predicate, is-picked, updates the geo-
metric state such that the selected arm and hand are set to
the target configuration generated by can-move-pick. In ad-
dition, the grasped object is constrained to follow the hand.

For the predicate can-move-place, which is used when
grasped objects are moved to a new position, the sequence
is: select a target pose (there may be many, if the target is
an extended area), compute inverse kinematics for this pose,
compute inverse kinematics for an approach pose and a lift
pose, do linear interpolation between the start and lift con-
figurations, call the RRT planner for a path between the lift
and approach configurations, and do linear interpolation be-
tween the approach and target configurations.

As mentioned before, each type of action is associated
with a parameterizable Python script that can be executed on
the robot. The parameters include paths found during path
planning, and these are subject to smoothing in the script be-
fore they are executed. The scripts may also contain guards
in order to detect e.g. when an object that is to be placed has
contact with the table. The scripts for the actions in the plan

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 16

user header ’pyrs_source’

move hand to pregrasp config with side left, type top and object 4

path0 = [[0.2443, 0.0873, 0.1745, -0.0, 0.0, 0.6109, -0.0, 0.0, 0.5236, -0.0, 0.0, 0.6109]]

execute_path(path0, path_is_for_manipulators=[’left_hand’])

move arm to REAL pre-grasp (RRT-path which needs shortening):

path1_1 = [[-0.7907, -1.4714, 0.239, 1.6179, 0.7105, -0.6163, 0.6261],...]

execute_path(path1_1, path_is_for_manipulators=[’left_arm’]) # <-- with joint path shortener!

move arm to REAL grasp (along a Cartesian line without shortening):

path1_2 = [[-0.9226375374193561, 1.3244301190878176, 0.9000000000000015, 1.473463845957323,

2.441791818050337, 0.8452778932497086, -0.12911968091025275],...]

execute_path(path1_2, path_is_for_manipulators=[’left_arm’], skip_optimization=True)

grasp it!

path2 = [[0.2443, 0.2793, 0.3142, -0.0, 0.384, 0.6109, -0.0, 0.384, 0.5236, -0.0, 0.384, 0.6109]]

execute_path(path2, path_is_for_manipulators=[’left_hand’])

rave.bind(’leftArm’, ’mug1_1’)

execute_path(path1_2[::-1], path_is_for_manipulators=[’left_arm’], skip_optimization=True)

exit(’out’)

Figure 3: Python script generated by planner for a grasping action (paths have been truncated). Note the different phases:
pregrasp configuration for hand and then for arm, grasp configuration for arm, and actual grasp with hand.

are then executed in a sequence, making the robot perform
the plan.

Geometric backtracking
When the planner selects an action, it not only chooses the
type of action and what objects and locations are involved. It
also needs to make geometric choices that are not visible to
the task planner, but are related to the interpretation of cer-
tain geometric statements. These might be the exact TCP to
use when grasping an object as in the statements can-move-
pick(h,g,o,τ) and is-picked(h,g,o,τ). These might also con-
cern the exact pose when an object is put down at a given lo-
cation, as in can-move-place(h,g,o,τ) and is-placed(h,g,o,τ).
As mentioned before, such choices may very well affect the
applicability of actions later on. However, these choices are
done locally, and are not informed about constraints imposed
by subsequent actions. Hence, it is important that they can
be reconsidered. Otherwise, the planner would be incom-
plete relative to its sampling at the geometric level. For in-
stance, consider the example with the small tray and two
cups from the introduction. If the planner only tries to put
the first cup in the center of the tray (this might be the first
sampled placement), then it will never find a placement for
the second cup and will ultimately fail to find a plan.

To sample statements with geometric predicates in a sys-
tematic manner, we use the van der Corput and Halton se-
quences (Kuipers and Niederreiter 2005). These sequences
guarantee a uniformly distributed sampling over [0, 1]n,
and can straightforwardly be used to sample a bounded n-
dimensional space.

Backtracking occurs along a single sequence of ac-
tions/states

(an, sn, an−1, sn−1, . . . , an−k, sn−k)

where an is the most recent action. Other parallel search
branches at the task planning level are unaffected. Back-
tracking is triggered when an is not applicable because some

particular geometric statement related to motion was false.
The most recent van der Corput indices that were used for
geometric sampling for each action are also maintained:
(in, in−1, . . . , in−k). The most recent index in is incre-
mented, giving a new geometric sample for the previously
failed geometric predicate. If that fails, the procedure is re-
peated. If a maximal value for the index has been reached, it
is reset to 0, and we move up one step to an−1 and increment
its index in−1, giving a new geometric sample at that level
and for the relevant geometric predicates there. If successful,
we update the geometric state γsn and move downwards to
an and in again. If after repeated failures at an−1 the index
in−1 reaches its maximal value, it is reset to 0 and we move
up yet another level and so on, in a recursive manner. Fig. 4
shows an example of geometric backtracking.

In our current implementation, we use the van der Corput
sequence to sample (1) orientations of TCP relative to tar-
get object for the can-move-pick predicate where the domain
[0, 1] of the van der Corput sequence is mapped to [0, 2π]
(radians), and (2) position (x and y) and (optionally) orienta-
tion for the can-move-place action. In general, the sampling
schema is built into the interpretations of the various predi-
cates.

Another important factor is the sample size, which deter-
mines the resolution at the geometric level. Presently, we
have a fixed size for each predicate. This is basically where
we define the balance between task planning and path plan-
ning: a large sample size will effectively result in more effort
being spent on path planning and inverse kinematics tests for
each action.

Overall, we consider how to perform the sampling and
how large to make the sample size as central questions in
hybrid task and path planning. This issue will be discussed
further within the context of our experiments, where we
also give some concrete examples of the utility of geometric
backtracking.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 17

γ1

γ21 γ22 γ23

γ31 γ32 γ33 γ34

s1

a1

s2

a2

s3

a3

s4
γ41

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3 1 2 3

1

1

Figure 4: Geometric backtracking. The arrow shows the tem-
poral order of the (partial) plan being explored. The circles
with γk are different geometric states generated that belong
to the hybrid states sk (the symbolic components of the lat-
ter do not change), ak are actions with geometric precon-
ditions and/or effects, and the numbers on the lines are van
der Corput indices that are used for sampling. The lines end-
ing with a horizontal stroke are failed attempts to satisfy the
corresponding pk. The dashed line shows the order of traver-
sal, starting from γ31 with the failed application of action a3
and ending successfully in γ41 with the same action. Note,
that we always consider the same sequence of actions: what
varies is the sampling at the geometric level.

Demonstrations on real Justin
A number of demonstrations have been performed on the
real Justin robot. The purpose with these demonstrations is
to provide evidence that our hybrid planning approach is rel-
evant to a real robot, and not just limited to simulation. They
show how we have connected perception, planning and exe-
cution on the Justin robot.

We worked on two scenarios where small cups are to be
manipulated by Justin. The initial geometric state was the
same: 2 cups were placed on the table in front of Justin (see
Fig. 5). Information about this geometric state was obtained
through perception, as explained above. The planner had no
a priori information about the geometry, but knew what ob-
jects would be present.

In the first scenario, the 2 cups are to be placed in a re-
gion on the table on the left side of Justin, which is shown
with red in Fig. 5. Justin plans and successfully executes 4
symbolic actions with the left arm:

pick(left,top,cup2), place(left,red-region,cup2),
pick(left,top cup1), place(left,red-region,cup1).

Of course, this only shows the symbolic actions. In reality,
the plan also includes specific paths for the arm and specific
grasps, and those imply specific poses for the objects.

In the second scenario, the 2 cups are to be placed in two
different regions on the table. Cup2 is to be placed in a re-
gion on the right side of Justin (green). Cup1 is to be placed
first in a region in front of Justin (grey) and then it is to be
placed in a region on the left side of Justin (red). Justin plans

Figure 5: The setup of the first two scenarios. The regions
where the cups should be placed are indicated.

Figure 6: Simulated Justin using the top of the box as a tem-
porary placement for the cup during the first series of exper-
iments (P1).

and successfully executes 7 symbolic actions involving both
arms:

pick(right,top,cup2), place(right,green-region,cup2),
pick(right,top,cup1), place(right,gray-region,cup1),
move-hand-away(right,cup1), pick(left,top,cup1),
place(left,red-region,cup1).

Note how cup1 is handled by both hands, and how the right
hand is moved away from it before it is grasped by the left
hand.

Experiments in simulation
In addition to the demonstrations on the real Justin, a num-
ber of experiments in simulation have been conducted. The
aims of these experiments are (1) to test the planner with
more challenging tasks, and (2) to explore the benefits and
costs of using geometric backtracking. The planner was run-
ning in Java 1.6.0 RTE with 32-bit native libraries used for
collision detection (VCOLLIDE), inverse kinematics, and
forward kinematics computation. The computer had an Intel
CORE i5 vPro processor (2.5GHz, 64 bits, 2 cores, 3MiB for
the cache memory), 8 GB memory and Linux kernel 2.6.38.

The first series of experiments involves a large box at the
center of the table. The presence of this box causes repeated

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 18

failures of the path planner when objects placed near the cen-
ter are to be moved from one side of the table to the other.
However, the box can also be used for temporarily placing
objects (Fig. 6), and this gives the robot an opportunity to
shift hands. Hence, the following plan works well for mov-
ing a single cup from one side to the other:

pick(right,top,cup1), place(right,box-top,cup1),
move-hand-away(right,cup1), pick(left,top,cup1),
place(left,red-region,cup1)

Table 1 presents the results from these experiments (the
three lines marked P1, with varying sampling resolution).

What is striking is the amount of time spent on geometric
reasoning (inverse kinematics and path planning): it is sev-
eral orders of magnitude more than the time spent on task
planning. We present average path planning times with four
decimal precision only to show how little time is spent on
task planning. Also note the number of times the geometric
reasoning fails to find a solution. This indicates that if we
had solely relied on task planning, the risk of obtaining a
plan that was not executable due to obstacles and kinematic
constraints would have been considerable. Inspections of the
logs of the planning process confirm this.

The problem was solved with varying resolution in the
sampling for the geometric backtracking. Lower values for
resolution where also tried, but then the planner often failed
to find a solution. Not surprisingly, the choice of resolution
strongly influences the total planning time, and the number
of geometric configurations considered. Most of the time by
far was spent on geometric backtracking (compare columns
#conf and #fail conf to #conf bt and #fail c bt).

The second series of experiments involves moving a num-
ber of cans (shaped as cylinders) onto a tray positioned on
the table. Each tray had a fairly small area which requires
planning when putting more than one can on it. We var-
ied both the number of cans — 2, 3 or 4 — and the size
of the trays: they could just fit 2, 3 or 4 cans, respectively.
We made a series of runs where the position of one cup can
trigger a geometric backtracking when later cups are placed.
Without geometric backtracking, the problems could not be
solved. The planner would simply have considered the sec-
ond (or third) placement action as inapplicable, and would
have backtracked at the task planning level.

The following is a plan generated for putting three cans
on a tray large enough for three cans (P3).

pick(right,top,can1), place(right,tray,can1),
pick(right,top,can2), place(right,tray,can2),
pick(right,top,can3), place(right,tray,can3).

Table 1 shows the results of the experiments. The problems
are: P2 with 2 cans and a tray for 2, P3 with 3 cans and a
tray for 3, P4 with 4 cans and a tray for 4, P5 with 2 cans
and a tray for 4, and P6 with 3 cans and a tray for 4. Again, a
considerable amount of time is spent on geometric reasoning
and especially backtracking. The task planning problem, on
the other hand, requires comparatively little effort. However,
for P5 and P6 (with plenty of extra space on the tray), there
is none or little backtracking.

A general problem appears to be to determine in advance
how much geometric backtracking (if any) is needed. This

is due to the complexity of the problem: each arm is a 7-
degrees of freedom system with complex kinematics, there
are constraints on how the objects can be grasped, there
are obstacles that constrain movements (including other ob-
jects that can be moved), and the goal positions can be con-
strained in different ways. Hence, it may be a good idea to
for instance iteratively increase the resolution instead of set-
ting a fixed level. This also applies to the maximal number
of nodes for path planning. We should also point out that
the way we sample at the geometric level may not always
be optimal. For instance, in order to fit several objects into
a constrained area, it might be better to focus the sampling
near the borders of the (remaining) space.

Summary and conclusions
In this article, we have presented a prototype of a hybrid task
and path planning system for a humanoid two-arm robotic
system. It is as far as we know the first time hybrid task and
path planning has been applied to such an advanced robotic
system. The planning system integrates a task planner and
several methods for generating paths: a bidirectional RRT
planner for longer movements and linear Cartesian interpo-
lators for shorter approach and lift motions. The interface
between task and path planning consists of a number of ge-
ometric predicates that can occur in the preconditions and
effects of actions. We have presented how the planner works
together with other components of the robot’s software, and
we have demonstrated that we have a working system. We
also consider the issue of geometric backtracking: the pro-
cess of revisiting geometric choices in previous actions in
order to be able to apply the action presently under consid-
eration. Simulated experiments have been made to illustrate
the utility of geometric backtracking. We think that efficient
methods for geometric backtracking (in particular how to
sample and how much to sample) are vital for achieving ef-
ficient hybrid planning, and much remains to be done.

The current system has some limitations. First, there is no
grasp planning available yet, which restricts us to a priori
known objects for which there is a set of directly applica-
ble grasps. Second, although some robustness towards un-
certainty has been built into the path planning and the pro-
duced Python scripts, a monitoring and recovery component
would also be needed. Both these issues will be addressed in
the near future.

Acknowledgements The project receives funding from
the European Community’s Seventh Framework Programme
under grant agreement no. ICT- 248273 GeRT.

References
Alili, S.; Pandey, A. K.; Sisbot, E. A.; and Alami, R. 2010.
Interleaving symbolic and geometric reasoning for a robotic
assistant. In ICAPS Workshop on Combining Action and
Motion Planning.
Cambon, S.; Alami, R.; and Gravot, F. 2009. A hybrid ap-
proach to intricate motion, manipulation and task planning.
Int. J. Rob. Res. 28(1):104–126.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 19

Problem Time #plans #sym bt #acts Time path #conf #fail conf #conf bt #fail c bt Resol
P1 17.3638 10 5 5 17.3597 225.2 1087 215.2 950.8 6× 60
P1 5.4522 10 5 5 5.4479 73.6 221.8 63.6 93.4 2× 60
P2 4.7092 4 0 4 4.7053 26.1 2484.1 23.1 2362.9 16× 120
P2 1.7159 4 0 4 1.7129 13.6 484.4 10.6 423.4 6× 60
P2 0.7986 4 0 4 0.7962 8.4 82 5.4 50.9 2× 30
P3 11.9506 6 0 6 11.9467 59.2 6064.6 55.2 5822.6 16× 120
P3 4.1042 6 0 6 4.1006 30.4 1253.7 26.2 1143.1 6× 60
P3 2.2240 6 0 6 2.2215 19.6 461.8 15.6 339.8 2× 60
P4 1056.9276 8 0 8 1056.9241 4193.7 459769.7 4186.7 459564.7 16× 120
P4 154.1280 8 0 8 154.1246 716 37909.4 709.1 37819.7 12× 60
P4 15.0828 8 0 8 15.0792 84 3647 77 3562 6× 60
P5 0.3184 4 0 4 0.3162 4 9 0 0 16× 120
P5 0.3420 4 0 4 0.3393 4 9 0 0 6× 60
P5 0.3175 4 0 4 0.3145 4 9 0 0 2× 30
P6 0.7151 6 0 6 0.7121 6.1 89.4 0.2 2.2 16× 120
P6 0.5324 6 0 6 0.5284 6.1 30.5 0.2 2.3 6× 60
P6 0.6374 6 0 6 0.6349 6.6 40.6 0.7 12.4 2× 60

Table 1: Results from simulated experiments. Time is the time in second spent during the whole planning process (both task and
path planning). #plans is the number of partial symbolic plans that were visited during the whole planning process. These plans
consist of primitive actions. #symb bt is the number of times the task planning process has backtracked. #acts is the number of
symbolic primitive actions of the solution plan. Time path is the time in second spent on path planning. #config is the number of
geometric configurations that were visited during the path planning process. #fail conf is the number of failed attempts to create
geometric configurations. #conf bt is the number of geometric configurations that were visited during geometric backtracking.
#fail c bt is the number of failed attempts to create geometric configurations during geometric backtracking. Resol(ution)
indicates the number of grasps that are tried to pick an object (cup or can) and the number of poses that are tried for the place
actions. Each line presents the average of 10 runs. The RRT planner had a limit of 500 nodes per attempt.

Dornhege, C.; Eyerich, P.; Keller, T.; Trüg, S.; Brenner, M.;
and Nebel, B. 2009a. Semantic attachments for domain-
independent planning systems. In Gerevini, A.; Howe,
A.; Cesta, A.; and Refanidis, I., eds., Proceedings of the
19th International Conference on Automated Planning and
Scheduling (ICAPS09), 114–122.

Dornhege, C.; Gissler, M.; Teschner, M.; and Nebel, B.
2009b. Integrating symbolic and geometric planning for
mobile manipulation. In IEEE International Workshop on
Safety, Security and Rescue Robotics (SSRR).

Guitton, J., and Farges, J.-L. 2009. Taking into account
geometric constraints for task-oriented motion planning. In
Proc. Bridging the gap Between Task And Motion Planning,
BTAMP’09 (ICAPS Workshop).

Hauser, K., and Latombe, J.-C. 2009. Integrating task and
PRM motion planning: Dealing with many infeasible motion
planning queries. In Proc. Bridging the gap Between Task
And Motion Planning, BTAMP’09 (ICAPS Workshop).

Hillenbrand, U., and Fuchs, A. 2011. An experimental study
of four variants of pose clustering from dense range data.
Computer Vision and Image Understanding 115:1427–1448.

Hillenbrand, U. 2008. Pose clustering from stereo data.
In Proceedings VISAPP International Workshop on Robotic
Perception (RoboPerc 2008), 23–32.

Kaelbling, L. P., and Lozano-Perez, T. 2010. Hierarchical
planning in the now. In Proc. of Workshop on Bridging the
Gap between Task and Motion Planning (AAAI).

Kuipers, L., and Niederreiter, H. 2005. Uniform distribution
of sequences. Dover Publications.
LaValle, S. M. 2006. Planning Algorithms. Cambridge, UK:
Cambridge University Press.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research,
special issue on the 3rd International Planning Competition
20:379–404.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Ott, C.; Eiberger, O.; Friedl, W.; Bäuml, B.; Hillenbrand,
U.; Borst, C.; Albu-Schäffer, A.; Brunner, B.; Hirschmüller,
H.; Kielhöfer, S.; Konietschke, R.; Suppa, M.; Wimböck, T.;
Zacharias, F.; and Hirzinger, G. 2006. A humanoid two-arm
system for dexterous manipulation. In Proceedings IEEE-
RAS International Conference on Humanoid Robots (Hu-
manoids 2006), 276–283.
Plaku, E., and Hager, G. 2010. Sampling-based motion plan-
ning with symbolic, geometric, and differential constraints.
In Proceedings of ICRA10.
Wolfe, J.; Marthi, B.; and Russell, S. J. 2010. Combined task
and motion planning for mobile manipulation. In Brafman,
R. I.; Geffner, H.; Hoffmann, J.; and Kautz, H. A., eds., Pro-
ceedings of the 20th International Conference on Automated
Planning and Scheduling (ICAPS10), 254–258.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 20

Planning Robot Motions to Satisfy Linear Temporal Logic,
Geometric, and Differential Constraints

Erion Plaku
Department of Electrical Engineering and Computer Science

Catholic University of America, Washington DC, 22064

Abstract

This paper shows how to effectively compute collision-
free and dynamically-feasible robot motion trajectories
that satisfy task specifications given by Linear Tem-
poral Logic (LTL). The proposed approach combines
sampling-based motion planning over the continuous
state space with discrete search over both the LTL task
representation and a workspace decomposition. In dis-
tinction from related work, the proposed approach sam-
ples the discrete space to shorten the length of the dis-
crete plans and to more effectively guide motion plan-
ning in the continuous state space. Experimental results
on various scenes, LTL specifications, and a snake-like
robot model with nonlinear dynamics and numerous
degrees-of-freedom (DOFs) show significant computa-
tional speedups over related work.

1 Introduction
Crucial to the goal of enabling robots to complete tasks on
their own is their ability to plan at multiple levels of dis-
crete and continuous abstractions. Whether the task is to
search, inspect, manipulate objects, or navigate, it generally
involves abstractions into discrete actions, which often re-
quire substantial continuous motion planning to carry out.

The coupling of the discrete and the continuous, how-
ever, poses significant challenges as discrete and continuous
planning have generally been treated separately. On the one
hand, while discrete planning can take into account sophis-
ticated task specifications, it has generally been limited to
discrete worlds (Ghallab, Nau, and Traverso, 2004). On the
other hand, while motion planning can take into account ob-
stacles, dynamics, and other continuous aspects of the robot
and the world, due to the increased complexity, it has gener-
ally been limited to simple tasks, such as planning motions
to reach a goal state. (Choset et al., 2005; LaValle, 2006).

To bridge the gap between the discrete and the continuous,
researchers are proposing to incorporate task specifications
directly into motion planning (Bhatia et al., 2011; Cambon,
Alami, and Gravot, 2009; Ding et al., 2011; Fainekos et al.,
2009; Hauser and Ng-Thow-Hing, 2011; Kress-Gazit et al.,
2007; Plaku and Hager, 2010; Plaku, Kavraki, and Vardi,
2009, 2012; Wolfe, Marthi, and Russell, 2010). More specif-
ically, the problem being studied in this line of research re-
quires generating a collision-free and dynamically-feasible

motion trajectory that satisfies a given task specification. In
this context, LTL has often been used as the discrete logic in
which to express the tasks. LTL makes it possible to express
tasks in terms of propositions, logical connectives (∧ and, ∨
or, ¬ not), and temporal connectives (© next, ♦ eventually,
� always, ∪ until, R release). As an illustration, the task of
inspecting all the areas of interest can be expressed as

♦πA1 ∧ . . . ∧ ♦πAn , (1)
where πAi

denotes the proposition “robot inspected area
Ai.” As another example, the task of reaching A1 before A2

and A3 can be expressed as
(¬πA2

∧ ¬πA3
) ∪ (πA1

∧ ♦πA2
∧ ♦πA3

).

The problem of planning motions that satisfy an LTL speci-
fication φ is often approached by first using model check-
ing to compute a sequence of propositional assignments
σ = τ1, τ2, . . . that satisfies φ. Referring again to the LTL
specification in Eq. 1, σ could be obtained by setting each
τi = {πAi

}, i.e., πAi
is true and every other proposition is

false. In a second stage, controllers are used to enable the
robot to satisfy the propositions in the order specified by σ.
In this context, discrete logic is used in (Arkin, 1990; Pay-
ton, Rosenblatt, and Keirsey, 1990; Saffiotti, Konolige, and
Ruspini, 1995) to combine a set of behavior schemas which
use controllers to link motion to abstract actions. This idea
has been revisited more recently in (Kress-Gazit et al., 2011)
to synthesize reactive controllers from LTL for car-like sys-
tems and in (Ding et al., 2011) to deploy robotic teams in ur-
ban environments. The work in (Fainekos et al., 2009) uses
LTL to determine the sequence of triangles a point robot
needs to visit and relies on a controller to drive the robot
between adjacent triangles.

A limitation of these approaches is that it is generally not
known in advance which propositional assignments are actu-
ally feasible in the continuous world. The LTL specification
could present exponentially many alternative discrete solu-
tions, as it is the case in Eq. 1. The underlying assumption
in these approaches is that any sequence of propositional as-
signments that satisfies the LTL specification can be carried
out in the continuous world. However, as a result of geomet-
ric constraints imposed by obstacle avoidance, the geometric
shape of the robot, and the underlying motion dynamics, it
may be impossible to carry out certain propositional assign-
ments τi. This is in fact one of the main challenges when

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 21

incorporating LTL task specifications directly into motion
planning, limiting the applicability of these approaches to
specific systems and to specific discrete actions for which
controllers are available.

In order to be generally applicable, recent work by the
author (Plaku and Hager, 2010; Plaku, Kavraki, and Vardi,
2009, 2012) and others (Bhatia et al., 2011) has pro-
posed a two-layered approach that couples the ability of
sampling-based motion planning to handle the complexity
arising from high-dimensional robotic systems, nonlinear
motion dynamics, and collision avoidance with the abil-
ity of discrete planning to take into account discrete spec-
ifications. While discrete planning guides sampling-based
motion planning, the latter feeds back information to fur-
ther refine the guide and advance the search toward a so-
lution that satisfies the LTL specification. Other approaches
that utilize discrete search and sampling-based motion plan-
ning have also been developed for multimodal motion plan-
ning (Hauser and Ng-Thow-Hing, 2011) and manipulation
planning (Nieuwenhuisen, van der Stappen, and Overmars,
2006; Stilman and Kuffner, 2008; Stilman, 2010; Wolfe,
Marthi, and Russell, 2010). These other approaches, how-
ever, do not take into account LTL specifications.

This paper builds upon the success of combining LTL
with sampling-based motion planning (Bhatia et al., 2011;
Plaku, Kavraki, and Vardi, 2009, 2012). The search for a
collision-free and dynamically-feasible trajectory that sat-
isfies the LTL specification is conducted simultaneously in
both the continuous and discrete planning layers. Sampling-
based motion planning extends a tree in the continuous state
space by adding new trajectories as tree branches. Such tra-
jectories are obtained by sampling input controls and prop-
agating forward the motion dynamics of the robot. Dis-
crete planning guides the sampling-based motion planner by
searching over both the LTL formula representation and a
workspace decomposition to provide discrete plans as inter-
mediate sequences of propositional assignments that should
be satisfied. In distinction from related work (Bhatia et al.,
2011; Plaku, Kavraki, and Vardi, 2009, 2012), the proposed
approach samples the discrete space to shorten the length of
the discrete plans and to more effectively guide motion plan-
ning in the continuous state space. Moreover, the search is
expanded toward new propositions that enable the sampling-
based motion planner to make rapid progress toward ob-
taining a solution. Experimental results on various scenes,
LTL specifications, and a snake-like robot with nonlinear dy-
namics and numerous DOFs show significant computational
speedups over related work.

2 LTL Specifications
Let Π denote a set of propositions, where each πi ∈ Π cor-
responds to a Boolean-valued problem-specific statement,
such as “robot is in area Ai.” LTL combines propositions
with logical connectives (¬ not, ∧ and, ∨ or), and tempo-
ral connectives (© next, ♦ eventually, � always, ∪ until, R
release). A discrete state τi ∈ 2Π denotes all the proposi-
tions that hold true in the world. As the world changes, e.g.,
as the result of robot actions, the discrete state could also

change. LTL planning consists of finding a sequence of dis-
crete states σ = [τi]

n
i=1 that satisfies a given LTL formula,

whose syntax and semantics are defined below.

2.1 LTL Syntax and Semantics
Every π ∈ Π is a formula. If φ and ψ are formulas, then
¬φ, φ ∧ ψ, φ ∨ ψ, ©φ, ♦φ, �φ, φ ∪ ψ, φRψ are also
formulas. Let σ = τ0, τ1, . . ., where each τi ∈ 2Π. Let
σi = τi, τi+1, . . . denote the i-th postfix of σ. The notation
σ |= φ indicates that σ satisfies φ and is defined as
• σ |= π if π ∈ Π and π ∈ τ0;
• σ |= ¬φ if σ 6|= φ;
• σ |= φ ∧ ψ if σ |= φ and σ |= ψ;
• σ |=©φ if σ1 |= φ;
• σ |= φ ∪ ψ if ∃ k ≥ 0 such that σk |= ψ and ∀ 0 ≤ i <
k : σi |= φ.

The other connectives are defined as false = π ∧ ¬π,
true = ¬false, φ ∨ ψ = ¬(¬φ ∧ ¬ψ), ♦φ = true ∪ φ,
�φ = ¬♦¬φ, and φRψ ≡ ¬(¬φ ∪ ¬ψ). More details can
be found in (Kupferman and Vardi, 2001).

2.2 Co-Safe LTL and Automata Representation
Since LTL planning is PSPACE-complete (Sistla, 1994), as
in related work (Bhatia et al., 2011; Plaku, Kavraki, and
Vardi, 2009, 2012), this paper considers co-safe LTL. Co-
safe LTL formulas are satisfied by finite sequences of dis-
crete states rather than infinite sequences which satisfy gen-
eral LTL formulas. Most robotic tasks are finite in nature,
hence, the use of co-safe LTL does not limit the general
applicability of the approaches. Co-safe LTL formulas can
be translated into NFAs (Nondeterministic Finite Automata)
with at most an exponential increase in size (Kupferman
and Vardi, 2001). As recommended in (Armoni et al., 2005;
Plaku, Kavraki, and Vardi, 2012), NFAs are converted into
DFAs (Deterministic Finite Automata), which are then min-
imized. A DFA search has a significantly smaller branch-
ing factor, since there is exactly one transition that can be
followed from each state for each propositional assignment,
while when using an NFA there are generally many more.

Formally, a DFA is a tuple A = (Z,Σ, δ, zinit,Accept),
whereZ is a finite set of states, Σ = 2Π is the input alphabet,
δ : Z × Σ → Z is the transition function, zinit ∈ Z is the
initial state, and Accept ⊆ Z is the set of accepting states.
The state obtained by running A on σ = [τi]

n
i=1, τi ∈ 2Π,

starting from the state z is defined as

A([τi]
n
i=1 , z) =

{
z, n = 0

δ(A([τi]
n−1
i=1 , z), τn), n > 0.

A accepts σ iff A(σ, zinit) ∈ Accept. As a result, σ |= φ
when the equivalent automaton A accepts σ.

To facilitate presentation, let Reject denote all the rejecting
states of A, i.e., states that cannot reach an accepting state.
Moreover, let δ(z) denote all the non-rejecting automaton
states connected by a single transition from z, i.e.,

δ(z) = {δ(z, τ) : τ ∈ 2Π} − Reject.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 22

2.3 Interpretation of LTL over Motion
Trajectories in the Continuous State Space

The continuous state space S gives meaning to the proposi-
tions in the task specification. As an example, the propo-
sition “robot is in area Ai” holds iff the robot is actu-
ally in Ai. The meaning of each proposition πi ∈ Π is
defined by a function HOLDSπi

: S → {true, false},
where HOLDSπi

(s) = true iff πi holds at the continu-
ous state s ∈ S . This interpretation provides a mapping
DISCRETESTATE : S → 2Π from the continuous state space
S to the discrete space 2Π, i.e.,

DISCRETESTATE(s) = {πi : πi ∈ Π∧HOLDSπi(s) = true}.
Moreover, trajectories over S give meaning to temporal
connectives. A trajectory over S is a continuous function
ζ : [0, T] → S, parametrized by time. As the contin-
uous state changes according to ζ, the discrete state, ob-
tained by the mapping DISCRETESTATE, may also change.
In this way, ζ gives rise to a sequence of discrete states,

DISCRETESTATES(ζ)
def
= [τi]

n
i=1, where τi 6= τi+1. As a re-

sult of this mapping, ζ is said to satisfy an LTL formula φ iff
DISCRETESTATES(ζ) |= φ.

Note that the underlying motion dynamics of the robot are
specified as a set of differential equations f : S × U → Ṡ,
where U is a control space consisting of a finite set of in-
put variables that can be applied to the robot (e.g., a car can
be controlled by setting the acceleration and the rotational
velocity of the steering wheel). The approach can take into
account general nonlinear dynamics, relying only on a sim-
ulator, which, when given a state s, an input control u, and
a time step dt, computes the new state that results from inte-
grating the underlying motion dynamics.

A dynamically-feasible trajectory ζ : [0, T] → S starting
at s ∈ S is obtained by computing a control function ũ :
[0, T] → U and propagating the dynamics forward in time
through numerical integration of ζ̇(h) = f(ζ(h), ũ(h)), i.e.,

ζ(t) = s+

∫ t

0

f(ζ(h), ũ(h)) dh.

The dynamically-feasible trajectory ζ : [0, T] → S is con-
sidered collision free if each state along the trajectory avoids
collisions with the obstacles.

2.4 Problem Statement
Given 〈S,U , f, sinit,Π, φ〉 compute a control function ũ :
[0, T]→ U such that the resulting dynamically-feasible tra-
jectory ζ : [0, T]→ S where

ζ(t) = sinit +

∫ t

0

f(ζ(h), ũ(h)) dh

is collision free and satisfies the LTL specification φ, i.e.,
DISCRETESTATES(ζ) |= φ.

2.5 Examples
To facilitate presentation, this section provides examples of
the robot model, workspaces, and the LTL specifications,
which are used in the experiments.

Snake-Like Robot Model The snake-like robot model,
as shown in Fig. 1, consists of several unit links attached
to each other. The motion dynamics of the robot are mod-
eled as a car pulling trailers (adapted from (LaValle, 2006,
pp. 731)). The continuous state

s = (x, y, θ0, v, ψ, θ1, θ2, . . . , θN),

consists of the position (x, y) ∈ R2 (|x| ≤ 30, |y| ≤ 25),
orientation θ0 ∈ [−π, π), velocity v (|v| ≤ 2), and steering-
wheel angle ψ (|ψ| ≤ 1rad) of the head link of the snake-
like robot, and the orientation θi (θi ∈ [−π, π), 1 ≤ i ≤ N)
of each trailer link, where N is the number of trailers. The
robot is controlled by setting the acceleration a (|a| ≤ 1)
and the rotational velocity ω (|ω| ≤ 1rad/s) of the steering-
wheel angle. The differential equations of motions are

ẋ = v cos(θ0) ẏ = v sin(θ0) θ̇0 = v tan(ψ)

v̇ = a ψ̇ = ω

θ̇i = v
d

(∏i−1
j=1 cos(θj−1 − θj)

)
(sin(θi−1)− sin(θ))

where 1 ≤ i ≤ N and d = 0.05 is the hitch length. A contin-
uous state s is considered valid iff the robot does not collide
with the obstacles and the robot does not self intersect, i.e.,
non-consecutive links do not collide with each other.

While related work in LTL motion planning (Bhatia et
al., 2011; Ding et al., 2011; Fainekos et al., 2009; Kress-
Gazit et al., 2007) has generally focused on low-dimensional
robotic systems, by increasing the number of trailer links,
the snake-like robot provides challenging test cases for high-
dimensional motion-planning problems with dynamics, as
noted in (Laumond, 1993). In the experiments in this paper,
the number of trailer links is varied as 0, 5, 10, 15 yielding
problems with 5, 10, 15, 20 DOFs.

Workspaces The workspaces in which the robot operates,
as in the related LTL motion-planning work (Bhatia et al.,
2011; Ding et al., 2011; Fainekos et al., 2009; Kress-Gazit et
al., 2007; Plaku, Kavraki, and Vardi, 2009, 2012), are popu-
lated with polygonal obstacles and propositions. In this way,
a proposition πi is associated with a polygon pi, and the
function HOLDSπi

(s) is true iff the position component of
s is inside pi. In addition, as in the related LTL motion-
planning work, each workspace is triangulated (using the
Triangle package (Shewchuk, 2002)). The triangulation con-
forms to the vertices of the polygons associated with the
obstacles and the propositions, i.e., triangulation treats the
polygonal obstacles and propositions as holes. The polygo-
nal propositions p1, . . . , pk and the triangles t1, . . . , tm give
rise to an adjacency region graph G = (R,E), where

R = {p1, . . . , pk, t1, . . . , tm} and

E = {(ri, rj) : ri, rj ∈ R are physically adjacent}.
Each region r ∈ R is labeled by the corresponding discrete
state, i.e.,

DISCRETESTATE(r) =

{{π`}, if r = p` for some 1 ≤ ` ≤ k,
∅, otherwise

An illustration of the workspaces, propositions, and triangu-
lations is provided in Fig. 1.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 23

Figure 1: Workspaces used in the experiments. Obstacles are in gray. Propositions are in a golden color and are numbered
1, 2, . . . , 8. The robot is in red and is shown in some initial state. The workspace triangulations are also shown. These
workspaces provide challenging environments, as the snake-like robot has to wiggle its way through various narrow passages.

LTL Tasks LTL tasks used in the experiments are defined
over 8 propositions, as shown in Fig. 1.

The first task is to compute a collision-free and
dynamically-feasible trajectory ζ which satisfies the propo-
sitions π1, π2, . . . , π8 in succession, i.e.,

φ1 = β ∪ (π1 ∧ ((π1 ∨ β) ∪ (π2 ∧ (. . . (π7 ∨ β) ∪ π8)))),

where β = ∧8
i=1¬πi.

The second task is to compute a collision-free and
dynamically-feasible trajectory which eventually satisfies
πi, πj , πk, πi, πj with different i, j, k, i.e.,

φ2 =
∨

1≤i,j,k≤8,i6=j,j 6=k,i 6=k
♦πi∧(♦πj∧(♦πk∧(♦πi∧(♦πj)))).

This task presents polynomially different possibilities about
which propositions to satisfy.

The third task is to compute a collision-free and
dynamically-feasible trajectory ζ that eventually satisfies
each proposition, i.e.,

φ3 =

8∧

i=1

♦πi.

This task presents combinatorially many different possibili-
ties regarding the order in which to satisfy the propositions.

3 Method
Let sinit ∈ S denote the initial state of the robot. Let φ de-
note the LTL specification. In order to compute a collision-
free and dynamically-feasible trajectory ζ that satisfies φ,
i.e., DISCRETESTATES(ζ) |= φ, as mentioned earlier, the
approach couples sampling-based motion planning in the
continuous state space S with discrete search over both
the automaton A representing LTL and the region graph
G = (R,E). To facilitate presentation, the general idea is
described first followed by details of the approach.

3.1 Coupling Sampling-based Motion Planning
and Discrete Search

Sampling-based motion planning uses a tree data struc-
ture T as the basis for conducting the search in the con-
tinuous space S. Each vertex vi ∈ T is associated with
a collision-free continuous state, denoted as state(vi). The
vertex vi also keeps track of its parent in T , denoted as
parent(vi), and the collision-free and dynamically-feasible
trajectory that connects its parent state to state(vi), denoted
as ptraj(vi). Initially, T contains only its root vertex v1,
where state(v1) corresponds to the initial continuous state
sinit. As the search progresses, T is extended by adding new
vertices vj and new collision-free and dynamically-feasible
trajectories ptraj(vj) as branches of T . As described in Sec-
tion 3.3, these collision-free and dynamically-feasible tra-
jectories are obtained by sampling controls and propagating
forward for several steps the motion dynamics of the robot,
and stopping the propagation if a collision is found.

Let traj(T , vj) denote the trajectory from state(v1) to
state(vj), which is obtained by concatenating the collision-
free and dynamically-feasible trajectories associated with
the tree edges from v1 to vj . Then, traj(T , vj) satisfies the
LTL formula φ iff DISCRETESTATES(traj(T , vj)) |= φ. More-
over, recall that DISCRETESTATES(traj(T , vj)) |= φ iff the
sequence of discrete states ends up on an accepting state
when run on the automaton A representing φ. In order to
make this computation efficient, each vertex vj is associ-
ated with the automaton state, denoted as z(vj), obtained by
running DISCRETESTATES(traj(T , vj)) on A. The computa-
tion of z(vj) is done incrementally when checking ptraj(vj)
for collisions, as described in Section 3.3. As it will be ex-
plained in the next paragraph, vj is also associated with
region(vj), which denotes the workspace region that contains
the position component of state(vj).

The objective of the discrete layer is to guide sampling-
based motion planning as it expands T in the continuous
space S. To do so effectively, the discrete layer selects at
each iteration an automaton state zfrom and a workspace re-
gion rfrom from which to expand the search and an automa-

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 24

Algorithm 1 LTLMOTIONPLANNING(Π, φ,G, sinit, f, tmax)

Input
Π: propositions
φ: LTL formula
G = (R,E): workspace region graph
sinit: initial state of the robot
f : S × U → Ṡ: differential equations of motion
tmax: upper bound on time
Output: If successful, method computes a collision-free

and dynamically-feasible trajectory ζ that satisfies φ

1: A ← AUTOMATON(φ); T ← CREATETREE(sinit)
2: while TIME() < tmax and SOLVED() = false do

♦ discrete layer
3: 〈zfrom, rfrom, zto〉 ← DISCRETETARGET(T ,A, G)
4: σ ← DISCRETEPLAN(A, G, zfrom, rfrom, zto)
5: σactive ← ∅
6: for i = |σ| down to 1 do
7: 〈z, r〉 ← σ(i)
8: if |vertices(T , z, r)| > 0 then
9: σactive.pushback(〈z, r〉)

♦ continuous layer
10: for several times do
11: 〈z, r〉 ← SELECTATRANDOM(σactive)
12: v ← SELECTATRANDOM(vertices(T , z, r))
13: u← SAMPLECONTROLINPUT()
14: for several times do ♦ extend T from v
15: dt← GETINTEGRATIONSTEP(state(v), u)
16: snew ← INTEGRATEMOTIONEQS(f, state(v), u, dt)
17: rnew ← LOCATEREGION(snew)
18: znew ← δ(z(v),DISCRETESTATE(snew))
19: if COLLISION(snew) = true or

(znew) ∈ Reject then
20: break for loop of extend T
21: vnew ← ADDNEWVERTEX(T , snew, u, dt, rnew, znew, v)
22: if znew ∈ Accept then return traj(T , vnew)
23: if 〈znew, rnew〉 6∈ σactive then
24: σactive.pushback(〈znew, rnew〉)
25: vertices(T , znew).pushback(vnew)
26: vertices(T , znew, rnew).pushback(vnew)
27: v ← vnew

ton state zto toward which to expand the search. The automa-
ton state zfrom and the workspace region rfrom are selected
from those already associated with the vertices in T . The
automaton state zto is selected from those connected by a
single automaton transition from zfrom, i.e., zto ∈ δ(zfrom).
An additional criterion is that zto should not be associated
with the tree vertices, i.e., ∀vj ∈ T : z(vj) 6= zto, so that the
search can be expanded toward new automaton states.

The discrete and the continuous layers work in tandem
to effectively compute a collision-free and dynamically fea-
sible trajectory that satisfies the LTL task specification φ.
The search proceeds incrementally until a solution is ob-
tained or an upper bound on computational time is exceeded.
Each iteration consists of invoking the discrete layer to se-
lect zfrom, rfrom, zto and then compute a discrete plan, i.e., a
sequence of automaton states and workspace regions that

connects 〈zfrom, rfrom〉 to zto. Sampling-based motion plan-
ning is invoked next which aims to expand T from vertices
associated with 〈zfrom, rfrom〉 toward zto while using the dis-
crete plan as a guide. As the motion planner expands T , new
automaton states and workspace regions could be reached by
the vertices and trajectories added to T . As a result, the dis-
crete layer could suggest to the continuous layer a different
discrete plan for expanding T in the next iteration. This cou-
pling of discrete planning in the discrete layer and sampling-
based motion planning in the continuous layer, as evidenced
by experimental results, allows the approach to efficiently
compute a collision-free and dynamically-feasible motion
trajectory that satisfies the LTL task specification. Pseu-
docode is given in Algo 1. More detailed descriptions of the
main steps of the approach follow.

3.2 Discrete Layer
DISCRETETARGET(T ,A, G) selects an automaton state zfrom
and a region rfrom from which to expand the search and
an automaton state zto toward which to expand the search
(Algo 1:3). To facilitate the selection, tree vertices are
grouped according to their associated automaton states, i.e.,

vertices(T , z) = {v : v ∈ T ∧ z(v) = z}.
These vertices are further grouped according to their associ-
ated regions, i.e.,

vertices(T , z, r) = {v : v ∈ T ∧ z(v) = z ∧ region(v) = r}.
Let Γ denote the set of all automaton states that are already
associated with the vertices in T , i.e.,

Γ = {z : z ∈ Z ∧ |vertices(T , z)| > 0}.
The automaton state zfrom is selected from Γ according to the
probability distribution

prob(z) = 21/d(z)/
∑

z′∈Γ

21/d(z′),

where d(z) denotes the minimum number of automaton tran-
sitions to reach an accepting state in A from z. Since the
overall objective is to effectively compute a trajectory that
satisfies the LTL specification, the selection of zfrom is biased
toward automaton states that are close to accepting states.

The region rfrom is selected uniformly at random from
those regions associated with vertices(T , zfrom), i.e.,

{r : r ∈ R ∧ |vertices(T , zfrom, r)| > 0}.
The random selection is commonly advocated in motion-
planning literature as it allows the sampling-based motion
planner to expand T from different regions.

To expand the search toward new automaton states, zto
is selected among those automaton states not yet associated
with the tree vertices, i.e., zto 6∈ Γ. To ensure that the discrete
plans are not too long, another criterion is that zto should be
a non-rejecting automaton state connected by a single transi-
tion from zfrom, i.e., zto ∈ δ(zfrom). Taking these criteria into
account, zto is selected uniformly at random from the set

δ(zfrom)− Γ.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 25

In this way, the selection of zfrom, rfrom, zto aims to expand
the search from tree vertices associated with automaton
states that are close to accepting states and toward new au-
tomaton states.

DISCRETEPLAN(A, G, zfrom, rfrom, zto) computes a se-
quence of automaton states and regions that connects
〈zfrom, rfrom〉 to zto (Algo 1:4). The discrete search is con-
ducted over an abstract graph, which is obtained by im-
plicitly combining the automaton A and the region graph
G = (R,E). More specifically, the edges coming out of a
vertex 〈z, r〉 in the abstract graph are computed as

EDGES(〈z, r〉) = {〈δ(z,DISCRETESTATE(r′)), r′〉 : (r, r′) ∈ E}.
The cost of an edge (〈z′, r′〉, 〈z′′, r′′〉) is defined as the dis-
tance from region r′ to r′′. A vertex 〈z, r〉 in the abstract
graph is considered as a goal vertex iff z = zto.

The discrete plan σ from 〈zfrom, rfrom〉 to zto is computed
as the shortest path with probability p and as a random path
with probability 1− p. While shortest paths provide greedy
guides to the sampling-based motion planner, random paths
allow for exploration of new regions, which provide alter-
native routes to prevent the sampling-based motion plan-
ner from getting stuck. A randomized version of depth-first-
search, which visits the out-going vertices in a random order
is used for the computation of random paths. Shortest paths
are computed using Dijkstra’s algorithm.

Note that sampling-based motion planning can expand T
only from those 〈z, r〉 ∈ σ for which |vertices(T , z, r)| > 0.
For this reason, σ is scanned backwards and 〈z, r〉 is added
to σactive if |vertices(T , z, r)| > 0. (Algo 1:6-9).

3.3 Continuous Layer
The objective of sampling-based motion planning is to ex-
pand T by adding several collision-free and dynamically-
feasible trajectories using σactive as a guide. Each trajectory
is generated by first selecting 〈z, r〉 from σactive uniformly at
random (Algo 1:11). A vertex v is then selected uniformly
at random from vertices(T , z, r) (Algo 1:12) and a control
input u is sampled uniformly at random (Algo 1:13). Note
that other selection and sampling strategies are possible, as
discussed in motion-planning books (Choset et al., 2005;
LaValle, 2006). Random selections and sampling are com-
monly used in motion planning and are also shown to work
well for the problems studied in this work.

A trajectory ζ is then obtained by integrating for several
steps the motion dynamics of the robot when applying the
control input u to state(v). To ensure accuracy, as advocated
in the literature, this paper uses Runge-Kutta methods with
an adaptive integration step (Algo 1:15-16).

Intermediate states snew along ζ are added as new vertices
to T . Each new vertex vnew is associated with the corre-
sponding region rnew and automaton state znew (Algo 1:17-
18). Recall that rnew is computed as the region that contains
the position component of snew. The automaton state znew
is computed as δ(z(v),DISCRETESTATE(snew)), where v is
the parent of vnew. The integration of ζ stops if snew is in
collision or znew is a rejecting automaton state (Algo 1:19-
20). Otherwise, if znew is an accepting automaton state, then

traj(T , vnew) constitutes a collision-free and dynamically-
feasible trajectory that satisfies the LTL task specification.
In such case, the search terminates successfully.

The sampling-based motion planner may augment σactive.
In fact, 〈znew, rnew〉 is added to σactive if not already there
(Algo 1:23-24). Such additions enable the sampling-based
motion planner to expand the search toward new automaton
states and new regions.

4 Experiments and Results
Experimental validation is provided by using several scenes,
LTL specifications, and a snake-like robot model with nu-
merous DOFs, as described in Section 2.5. By increasing the
number of links, the robot model provides challenging test
cases for high-dimensional problems. In the experiments in
this paper, the number of links is varied as 0, 5, 10, 15 yield-
ing problems with 5, 10, 15, 20 DOFs. The running time
for each problem instance is obtained as the average of
thirty different runs. Experiments are run on an Intel Core
2 Duo machine (CPU: P8600 at 2.40GHz, RAM: 8GB) us-
ing Ubuntu 11.10. Code is compiled with GNU g++-4.6.1

Fig. 2 provides a summary of the results. Comparisons
to related work (Bhatia et al., 2011; Plaku, Kavraki, and
Vardi, 2009) show significant computational speedups. The
speedups are more pronounced in the case of tasks 2 and
3. Recall that task 1 presents only one possible order in
which to satisfy the propositions, while tasks 2 and 3 rep-
resent polynomially and exponentially many different pos-
sibilities. As a result, while the automaton for task 1 has
linear size, the automata for tasks 2 and 3 have polynomial
and exponential size, respectively. Since related work guides
motion planning by using complete discrete plans, i.e., from
〈z(vinit), r(vinit)〉 to some z ∈ Accept, as the size of the au-
tomaton increases, so does the length of the discrete plan
and the computational cost to obtain such discrete plans. In
distinction, the proposed approach uses short discrete plans
from 〈zfrom, rfrom〉 to zto, where zto is connected by only one
automaton transition from zfrom. Moreover, while all the dis-
crete plans in related work start from 〈z(vinit), r(vinit)〉, the
proposed approach is biased to start discrete plans from au-
tomaton states that are close to accepting states.

As expected, the running time increases with the number
of DOFs. As more and more links are added to the robot, it
becomes increasingly difficult for the robot to move along
the narrow passages of the workspaces and satisfy the LTL
specifications. Nevertheless, the proposed approach is able
to efficiently solve all problem instances, even as the number
of DOFs is increased to 20, while related work struggles to
find solutions.

In all the above experiments, the number of expansion it-
erations per discrete target is set to 200 (Algo. 1:10). Fig. 3
summarizes the results of the proposed approach when vary-
ing the number of expansion iterations. Significantly large
numbers of iterations result in wasted computational time
particularly when it is difficult to expand T to reach the
discrete target. A small number of iterations may not give
the sampling-based motion planner enough time to make
progress in expanding T to reach the discrete target. As the
results indicate, however, the approach works well for a wide

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 26

 0

 10

 20

 30

 40

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 1 -- task 1]

new approach

related work

 0

 50

 100

 150

 200

 250

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 1 -- task 2]

new approach

related work

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 1 -- task 3]

new approach

related work

 0

 10

 20

 30

 40

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 2 -- task 1]

new approach

related work

 0

 50

 100

 150

 200

 250

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 2 -- task 2]

new approach

related work

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20

ti
m

e
 [

s
]

DOFs

[scene 2 -- task 3]

new approach

related work

Figure 2: Comparison of the proposed LTL motion-planning approach to related work (Bhatia et al., 2011; Plaku, Kavraki, and
Vardi, 2009). Results are shown over the two scenes (Fig. 1) and the three LTL specifications (Section 2.5) when varying the
number of DOFs of the snake-like robot model from 5 to 20.

 6
 7
 8
 9

 10
 11
 12

 50 150 250 350 450 550

ti
m

e
 [
s
]

nr tree expansion iterations per discrete target

[scene 1, task 3, 20DOFs]

Figure 3: Impact of the number of expansion iterations per
discrete target (Algo. 1:10) on the computational efficiency
of the approach.

range of values. Similar trends to Fig. 3 which shows the re-
sult for scene 1, task 3, and the robot model with 20 DOFs,
were observed for the other scenes, tasks, and robot DOFs,
but are not shown here due to space constraints.

As in related work, the focus of this paper was on improv-
ing the computational time to solve LTL motion-planning
problems. The solution trajectories, even though not op-
timized, are generally short. The table below summarizes
the average path length computed as the distance traveled
by the reference point of the head link of the snake-like
robot. These results are presented as ratios over the lower
bound on the solution obtained by the shortest-collision
free path for a point robot with no differential constraints.

[scene 1, task 1]
DOFs 5 10 15 20

length ratio 1.11 1.22 1.31 1.34
As the results indicate, the solutions produced by the pro-
posed approach come close to the lower bound. Similar re-
sults were obtained for the other scenes and tasks but are not
shown here due to space constraints.

5 Discussion
Toward the goal of bridging the gap between the discrete
and the continuous, this paper showed how to effectively
compute collision-free and dynamically-feasible motion tra-
jectories that satisfy task specifications given by LTL. LTL
makes it possible to express sophisticated tasks in terms
of propositions, logical connectives, and temporal connec-
tives. The approach combined sampling-based motion plan-
ning over the continuous state space with discrete search
over both the LTL task representation and a workspace re-
gion graph. The discrete search guides the sampling-based
motion planner to expand the search from tree vertices as-
sociated with automaton states that are close to accepting
states and toward new automaton states. In distinction from
related work, the proposed approach samples the discrete
space to shorten the length of the discrete plans and to more
effectively guide motion planning in the continuous state
space. Experimental results show significant computational
speedups over related work.

Even though the focus of this paper, as in related work,

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 27

was on improving the computational time to solve LTL
motion-planning problems, the proposed approach gener-
ally produces short trajectories. The quality of the trajecto-
ries can be further improved by using common postprocess-
ing techniques (Choset et al., 2005; LaValle, 2006). In ad-
dition, A* criteria could be incorporated into the approach
to select automaton states and workspace regions that pro-
mote the generation of shorter trajectories. Recent results
in sampling-based motion planning (Karaman and Frazzoli,
2011), which show optimality in the case of point-to-point
planning, could provide a basis on how to obtain optimality
even when considering LTL motion-planning tasks.

References
Arkin, R. C. 1990. Integrating behavioral, perceptual and

world knowledge in reactive navigation. Robotics and Au-
tonomous Systems 6:105–122.

Armoni, R.; Egorov, S.; Fraer, R.; Korchemny, D.; and
Vardi, M. 2005. Efficient LTL compilation for SAT-based
model checking. In Intl Conf on Computer-Aided Design,
877–884.

Bhatia, A.; Maly, M.; Kavraki, L.; and Vardi, M. 2011. Mo-
tion planning with complex goals. IEEE Robotics Au-
tomation Magazine 18:55–64.

Cambon, S.; Alami, R.; and Gravot, F. 2009. A hy-
brid approach to intricate motion, manipulation and task
planning. International Journal of Robotics Research
(1):104–126.

Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles of
Robot Motion: Theory, Algorithms, and Implementations.
MIT Press.

Ding, X. C.; Kloetzer, M.; Chen, Y.; and Belta, C. 2011. For-
mal methods for automatic deployment of robotic teams.
IEEE Robotics and Automation Magazine 18(3):75–86.

Fainekos, G. E.; Girard, A.; Kress-Gazit, H.; and Pappas,
G. J. 2009. Temporal logic motion planning for dynamic
mobile robots. Automatica 45(2):343–352.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: theory and practice. Morgan Kaufmann.

Hauser, K., and Ng-Thow-Hing, V. 2011. Randomized
multi-modal motion planning for a humanoid robot ma-
nipulation task. International Journal of Robotics Re-
search 30(6):678–698.

Karaman, S., and Frazzoli, E. 2011. Sampling-based algo-
rithms for optimal motion planning. International Journal
of Robotics Research 30(7):846–894.

Kress-Gazit, H.; Conner, D. C.; Choset, H.; Rizzi, A.; and
Pappas, G. J. 2007. Courteous cars: Decentralized
multi-agent traffic coordination. Special Issue of the
IEEE Robotics and Automation Magazine on Multi-Agent
Robotics.

Kress-Gazit, H.; Wongpiromsarn, T.; ; and Topcu, U. 2011.
Correct, reactive robot control from abstraction and tem-
poral logic specifications. IEEE Robotics and Automation

Magazine on Formal Methods for Robotics and Automa-
tion 18(3):65–74.

Kupferman, O., and Vardi, M. 2001. Model checking
of safety properties. Formal methods in System Design
19(3):291–314.

Laumond, J. 1993. Controllability of a multibody mobile
robot. IEEE Transactions on Robotics and Automation
9(6):755–763.

LaValle, S. M. 2006. Planning Algorithms. Cambridge,
MA: Cambridge University Press.

Nieuwenhuisen, D.; van der Stappen, A.; and Overmars, M.
2006. An effective framework for path planning amidst
movable obstacles. In International Workshop on Algo-
rithmic Foundations of Robotics, volume 47 of Springer
Tracts in Advanced Robotics. 87–102.

Payton, D. W.; Rosenblatt, J. K.; and Keirsey, D. M. 1990.
Plan guided reaction. IEEE Trans. on Systems, Man, and
Cybernetics 20(6):1370–1372.

Plaku, E., and Hager, G. D. 2010. Sampling-based motion
and symbolic action planning with geometric and differ-
ential constraints. In IEEE International Conference on
Robotics and Automation, 5002–5008.

Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2009. Falsifi-
cation of LTL safety properties in hybrid systems. In In-
ternational Conference on Tools and Algorithms for the
Construction and Analysis of Systems, volume 5505 of
Lecture Notes in Computer Science. York, UK: Springer.
368–382.

Plaku, E.; Kavraki, L. E.; and Vardi, M. Y. 2012. Falsifica-
tion of LTL safety properties in hybrid systems. Interna-
tional Journal on Software Tools and Technology Trans-
fer. invited, in print.

Saffiotti, A.; Konolige, K.; and Ruspini, E. H. 1995. A multi-
valued logic approach to integrating planning and control.
Artificial Intelligence 76(1-2):481–526.

Shewchuk, J. R. 2002. Delaunay refinement algorithms
for triangular mesh generation. Computational Geome-
try: Theory and Applications 22(1-3):21–74.

Sistla, A. 1994. Safety, liveness and fairness in temporal
logic. Formal Aspects of Computing 6:495–511.

Stilman, M., and Kuffner, J. 2008. Planning among movable
obstacles with artificial constraints. International Journal
of Robotics Research 27(12):1295–1307.

Stilman, M. 2010. Global manipulation planning in robot
joint space with task constraints. IEEE Transactions on
Robotics 26(3):576–584.

Wolfe, J.; Marthi, B.; and Russell, S. 2010. Combined task
and motion planning for mobile manipulation. In Intl.
Conf. on Automated Planning and Scheduling, 254–258.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 28

From Low-Level Trajectory Demonstrations to Symbolic Actions for Planning

Nichola Abdo and Henrik Kretzschmar and Cyrill Stachniss
University of Freiburg

Department of Computer Science
Georges-Köhler-Allee 079
79110 Freiburg, Germany

Abstract

Robots that should solve complex manipulation tasks
need to reason about their actions on a symbolic level
to compute plans comprising sequences of actions. Plan-
ning, however, requires knowledge about the precon-
ditions and effects of all the actions. In this work, we
present an approach that allows a robot to learn manipu-
lation skills from teacher demonstrations. Our approach
enables the robot to learn to physically execute the mo-
tion needed to perform the actions, and, most importantly,
to infer the preconditions and effects. Our system can
express the acquired manipulation action as symbolic
planning operators and thus can use any modern planner
to solve tasks that are more complex than the individual,
demonstrated actions. We implemented our approach on
a PR2 robot and present real world manipulation experi-
ments that illustrate that our system allows non-experts
to transfer knowledge to robots.

Introduction
Future service robots must be flexible enough to carry out
a variety of day-to-day tasks under diverse conditions. It is,
however, practically impossible to preprogram a robot for all
kinds of situations that occur in the real world. Therefore, we
need means for easily instructing robots and teaching them
new skills by non-experts.

Planning for solving complex manipulation tasks can be
done using low-level motor commands or on a symbolic level.
Computing solutions based on low-level motor commands
is infeasible due to the high-dimensionality of the resulting
planning problem and thus robots need to reason about their
actions on a higher level. Computing plans of high-level
actions to achieve some goal, however, requires a high-level
symbolic representation describing the preconditions and
effects of the robot’s actions.

In this work, we aim for a fast and intuitive learning pro-
cess that allows the robot to learn new actions such that it
can later on reason about the actions on both, the motion
level and a symbolic level. Our approach is based on learning
by demonstration. The robot observes a human teacher and
learns how to physically execute the movements in order
to solve a manipulation task. In addition to that, the robot
learns the preconditions and effects of the actions, which are
both needed for planning. While using the learned actions

to solve manipulation tasks, the robot monitors its perfor-
mance and reacts to unexpected changes. In summary, our
system (i) encodes the low-level movements, (ii) estimates
the preconditions and effects of the individual actions, and
(iii) generates a planning problem definition that allows state-
of-the-art planning systems to solve new tasks using the
learned actions. We implemented our approach and carried
out extensive experiments using a PR2 robot to illustrate the
capabilities and flexibility of our system. We demonstrate
that our approach enables the robot to autonomously solve
tasks that are more complex than the basic actions that have
been demonstrated to the robot.

Related Work
In the literature, there are various approaches for transfer-
ring task knowledge from humans to robots. In recent years,
imitation learning methods have become popular to encode
robot motion. See Billard et al. (2008) for an overview. The
key idea is to speed up the learning process by exploiting
demonstrations given by a teacher. For example, Bentivegna
et al. (2004) demonstrate to a humanoid robot how to play air
hockey by learning primitives that the robot can use in new sit-
uations. The robot learns how to choose a primitive in a given
situation and practices these primitives to improve its perfor-
mance. Asfour et al. (2006) use hidden Markov models to
encode and reproduce demonstrated actions. Dynamic move-
ment primitives (DMPs) are popular to learn control policies
for robotic manipulators from demonstrations and to gener-
alize the movements to new situations. Our approach also
relies on these movement primitives as proposed by Pastor et
al. (2009) to encode the low-level movements of the actions.
Calinon and Billard (2008) propose Gaussian mixture mod-
els to represent the variance over time in the demonstrated
trajectories of a manipulator to exploit this information in
the reproduction step. Also Eppner et al. (2009) consider the
variance to guess less relevant parts of the demonstrations.
Our method analyzes the variations in the state during the
demonstrations to identify the preconditions and effects of
the individual actions. This allows our approach to generate
a symbolic representation of the actions, which is then used
for planning purposes.

There are also a number of approaches that aim at teaching
robots skills on a symbolic level for task planning based on
teacher demonstrations. Veeraraghavan and Veloso (2008)

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 29

demonstrate sequences of actions to teach a robot a plan for
solving sequential tasks that involve repetitions. They instan-
tiate preprogrammed behaviors and then learn the correspond-
ing preconditions and effects. Pardowitz, Zöllner, and Dill-
mann (2006) extract task-specific knowledge from sequences
of actions. The robot extracts the relevant elementary actions
and task constraints from teacher demonstrations of pick-and-
place actions when setting a table. Manipulation skills are
arranged in a hierarchical manner with macro actions encom-
passing elementary ones. The preconditions and effects of
actions are expressed by predetermined properties like the
relative positions of the objects. Ekvall and Kragic (2006)
also provide a robot with demonstrations of tasks related to
setting a table. The robot incrementally learns the constraints
for each task with respect to the order of executing the actions.
This knowledge is then used to choose the best strategy for
solving a new task. To identify the different states observed
during the demonstrations, they apply k-means clustering
to the relative positions and orientations of the objects and
inspect the cluster variances. Zhuo et al. (2009) learn action
preconditions and effects for hierarchical task networks from
given observed decomposition trees. Such trees describe how
a task can be broken down into smaller subtasks.

Similar to Ekvall and Kragic, our system applies k-means
to features to identify preconditions and effects of actions.
By inspecting the variance within the extracted clusters, our
system additionally tries to determine if a certain feature or
aspect of the action is relevant as a precondition or effect
and to recognize similar states across different actions. Un-
like the approaches above, we do not require to demonstrate
sequences of actions to the robot or to provide task decompo-
sition information. Instead, our system learns the individual
actions by demonstration, and uses the identified conditions
to chain the actions in plans for solving a variety of tasks.

Many researchers adopt object action complexes (OACs),
as presented by Krüger et al. (2009), as a representation that
combines low-level robot control and high-level planning.
OACs consider objects as important to the robot in terms of
the actions that can be applied to them. Pastor et al. (2009)
suggested adding a symbolic meaning to DMPs such that
they can be used for high level planning in the context of
OACs. However, this was not realized in their work. There
are approaches that learn simple cause-effect rules based on
simulated actions or exploration so that they can be integrated
into the OAC frameworks (Petrick et al. 2008). Furthermore,
Omrcen, Ude, and Kos (2008) present an approach that allows
a robot to learn the effect of poking different objects by
exploration. The approach uses a neural network to learn the
relation between pushing actions and the predicted motion
of the object. This is then used to plan for applying several
poking actions to move objects to desired locations.

In contrast to these techniques, our approach does not rely
on exploration or simulation to learn the effects of carrying
out actions. Instead, our system learns both the preconditions
and effects of the actions from a few teacher demonstrations
and represents the actions as high-level planning operators.
From the same demonstrations, our approach learns the tra-
jectories of the manipulator using dynamic movement primi-
tives.

Overview
Our approach allows a robot to acquire and combine actions
to solve complex tasks. By observing a teacher, the robot
learns how to physically execute individual actions. The robot
then infers symbolic information that allows it to combine
the learned actions via a planning system to solve complex
tasks that have not been shown to it.

Our work enables a robot to identify preconditions that
have to be satisfied to carry out a certain action as well as the
effects of an action. An example of such a precondition is
the fact that the gripper of the robot needs to be open before
an object can be grasped. Identifying preconditions and ef-
fects is done by estimating the distribution of world states to
identify patterns while the teacher repeatedly demonstrates
the same action. These patterns lead to logical predicates,
allowing the robot to translate low-level sensory data into a
high-level logical representation and verify when the precon-
ditions or effects are satisfied. Consequently, our robot can
associate the low-level movements of its end effector with
symbolic information and to derive a definition of the action
in the Planning Domain Definition Language PDDL. Given
the PDDL description, the robot is able to use any modern
planning system to solve tasks that are more complex than
the individual actions that have been demonstrated to it.

Perception and Predefined Features
Our approach assumes that the robot can identify relevant
objects in the scene along with their poses. For this work, we
attached checkerboard markers to the relevant objects and
used an out-of-the-box detector that is available in the robot
operating system ROS. The detector provides the robot with
the types of the objects (e.g. block, table, . . .) and their poses.
The robot also uses its laser scanner, for example to estimate
the state of doors or for 2D obstacle avoidance. Note that our
approach is orthogonal to the perception problem. Therefore,
our method should be applicable in the same way when using
a system for marker-free detection of objects.

To encode the state of the world, our approach relies on
features, which can take continuous or discrete values. We
derive the preconditions and effects of the different actions
using the values of these features during the demonstrations.
So far, we applied our system to solve blocks world-like
tasks and to operate doors. We defined continuous features
such as the opening of the gripper, the relative poses between
the gripper and manipulated objects, and the relative poses
between objects. We furthermore defined discrete features
such as the visibility of objects, and the state of the door.
Depending on what the user demonstrates, new features may
need to be defined. This can be done easily and does not
affect already learned actions.

Recording and Encoding Demonstrations
To teach the robot basic actions, we use kinesthetic training,
i.e., the teacher moves the manipulators of the robot, as il-
lustrated in Fig. 1. This method is rather accurate and does
not require extra sensors since the robot can directly record
the movements using its own encoders. Our approach allows

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 30

Figure 1: Examples of kinesthetic training showing how to
place a block on another one and how to operate a handle.

for demonstrating individual actions one by one and does not
require demonstrating sequences of actions.

A popular way to encode movements of a manipulator
are DMPs. Our approach uses DMPs as described by Pas-
tor et al. (2009) to encode the trajectory of the robot’s end
effector as observed in the demonstrations. DMPs allow us
to easily adapt the movement to different situations such as
new starting or goal points. Our system groups the learned
DMPs together so that multiple DMPs for each action are
available to the robot. In our experiments, we recorded 10
demonstrations per action. Moreover, we propose in the next
section a method for extracting the preconditions and effects
from these demonstrations.

Identifying Preconditions and Effects
The preconditions of actions and their effects are expressed
in terms of features. To identify the preconditions and effects
based on a set of demonstrations, we inspect the recorded
values of all features at the beginning and at the end of each
demonstration. For each feature, we then seek to find patterns
in its values to decide whether or not it is important for an
action.

General Problem and Assumptions
In the most general case, the robot cannot be sure that an ac-
tion can be carried out unless the current state of the world is
identical to a state observed in one of the demonstrations. Oth-
erwise, a precondition might not be satisfied and executing
the action might fail. Finding the preconditions only based
on successful demonstrations does not lead to satisfying re-
sults without further assumptions. The resulting unsupervised
learning problem can be viewed as a one-class classification
problem in which only positive examples are provided. In our
case, the examples correspond to demonstrations in which
the preconditions and the effects are satisfied.

Such problems can be addressed using density estimation
methods or by only estimating the boundaries of the distribu-
tion (Schölkopf et al. 2000). A simple nearest neighbor ap-
proach considers all states to be fulfilling the conditions that
are similar under a distance function to the states observed
during the demonstrations. In our setting, a key disadvantage
of the nearest neighbor approach is the fact that a large subset
of the features are not relevant as preconditions and effects
of most actions. As a result, the entire feature space would
have to be populated by samples to make the robot ignore
irrelevant feature values. This is infeasible in practice since
only a few demonstrations can be provided by a teacher. In

contrast to the nearest neighbor approach, one-class classifi-
cation methods such as single-class support vector machines
(SVMs) could be more appropriate approaches in this set-
ting (Schölkopf and Smola 2002).

To tackle the above mentioned problem, we assume that
the preconditions and effects of the actions can be expressed
in terms of the predefined features and their corresponding
values, and that the individual features are independent of
each other. We consider that a feature is relevant as a precon-
dition or an effect of an action if its values follow certain pat-
terns throughout the demonstrations. Moreover, we assume
that the teacher provides demonstrations with variations. If
the teacher demonstrates actions with too few variations, the
robot may identify additional preconditions or effects that are
irrelevant in reality.

Estimating Preconditions and Effects by Analyzing
the Variations in the Demonstrations
In our approach, three questions have to be answered: First,
which features are relevant for an action as a precondition
or as an effect? Second, if a feature is regarded as relevant,
which values are typically observed and how to derive a logi-
cal predicate that encodes the decision whether the precondi-
tion or effect is fulfilled? Third, given two logical predicates,
how to decide whether both represent the same condition?
The last question is important to allow a planning system to
verify beforehand whether the effects of an action match the
preconditions of another one. This is essential for planning.

As preconditions, we consider features that take the same
or similar values at the beginning of all demonstrations of an
action. The same holds for the effects: features that always
take similar values after having executed an action are con-
sidered to be an effect of that action. Informally speaking,
for each action independently, we estimate for each feature
the region of the feature space that covers the samples corre-
sponding to the demonstrations. By analyzing the volumes of
such regions, we can decide whether the feature is relevant
or not. This allows us to derive the logical predicates and to
estimate whether two predicates model the same condition or
not.

Note that for an action, we only consider those features
that involve objects or things that are close to the robot dur-
ing the demonstrations or that involve only the robot itself.
This allows us, for example, to ignore the state of a window,
potentially in a different room, while the teacher shows the
robot how to operate the door.

Features Taking Continuous Values There exist multiple
ways for estimating the boundaries of regions in a potentially
high-dimensional space that are populated by samples. Ap-
proaches to one-class classification belong to this class of
algorithms such as single-class SVMs (Schölkopf et al. 2000).
Alternative approaches are the one-class k-means, the one-
class PCA, and the one-class k-nearest neighbor (Kennedy,
Namee, and Delany 2009).

Compared to most other learning problems, we suffer from
having only a small number of training examples. A user is
expected to provide around ten demonstrations of one action.
This will lead to ten sample points in feature space. With so

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 31

few training examples, applying techniques such as SVMs
is likely to provide results that do not generalize well. For
example, in the context of image classification based on a
small number of training images, simpler methods such as
nearest neighbor approaches are reported to perform better
than SVMs (Boiman, Shechtman, and Irani 2008). Since we
consider training sets in the order of 10 sample points, we
propose to not use single-class SVMs but follow a simpler
approach and apply one-class k-means. Note that one-class
k-means does not mean that k = 1 but that all centroids
represent the single class jointly, which allows for covering
multiple modes. Additionally, we consider the variance of
the samples within each of the identified clusters.

If all samples are concentrated in one cluster, we can di-
rectly compute the variance in the individual feature values
over multiple demonstrations. If the variance is small, we can
regard the feature as relevant and thus to be a precondition
or an effect. There are, however, situations in which such a
simple criterion is not successful. For example, before grasp-
ing a block, the gripper must be open and the gripper must
either be on top of the block or at its side (top grasp or side
grasp). For the robot, it can be advantageous to consider this
as two distinct actions, but the teacher may teach that as one
grasping action. To allow for considering such situations in
which feature values can be centered around multiple pos-
sible values, we apply k-means clustering to the individual
feature values and then analyze the variances in each cluster.

Since the teacher demonstrates an unknown number of
ways of performing an action, the system typically does not
know the number of clusters k to look for in advance. We
therefore perform multiple iterations of k-means with increas-
ing values for k from 1 up to

√
N/2, where N is the number

of data points. Note that this upper limit is a heuristic, as
suggested by Mardia, Kent, and Bibby (1979).

For a cluster to be considered as representing an impor-
tant aspect of the action, its average squared intra-cluster
distances should not exceed a certain limit. This predefined
limit reflects the desired accuracy of executing the manipula-
tion action. For a cluster c with mean µc, this condition can
be expressed as

1

Nc

Nc∑

i=1

dist(vci , µc)
2 ≤ ε1, (1)

where Nc is the number of data points assigned to cluster
c and vci is the value of the ith data point in the cluster.
Here, dist(., .) is a distance measure for the feature under
consideration. This can either be the Euclidean distance or
the angular difference based on an angle/axis representation
in case of a rotation, i.e.,

distrot(Rv, Rµ) = angleOf (RvR
−1
µ), (2)

where Rv and Rµ are the corresponding rotation matrices.
The value ε1 is the maximum allowed variance for each
cluster (that is separately defined for the Euclidean and the
angular distance function). If the condition in Eq. (1) is satis-
fied for all clusters, our system could identify a potentially
multi-modal pattern in the input data and considers this pat-
tern as a precondition or effect. Then, no further increase

of k is needed. However, if this criterion fails for all values
of k, the system determines that the feature is irrelevant to
the action since no pattern could be found.

To finally make the decision if a state satisfies a precon-
dition or an effect, we have to check, according to the one-
class k-means formulation, whether the minimum distance be-
tween the centroids and the current feature value v is smaller
than a threshold or not. We represent this fact by so-called
predicates that are used by the planning system. A predi-
cate Pf is defined for each action for which the feature f
is relevant as a precondition or effect. We may generate an
individual predicate for the precondition and effect as well as
for each cluster c. The predicate is defined as:

Pf,c(v) =
{
true if dist(v, µc) ≤ dmax

false otherwise,
(3)

where dmax is a threshold defining the maximum allowed
distance to the centroid.

Features Taking Discrete Values Besides features taking
continuous values, we also consider features taking discrete
values. An example of such a feature is object-is-visible,
which can be true or false. To decide whether a discrete-
valued feature is relevant for an action, we compute the en-
tropy of the distribution of the feature values during the
demonstrations. The entropy H is a measure of uncertainty
and is defined as

H(f) = −
L∑

l=1

P (f = vl) log2 P (f = vl), (4)

where P (f = vl) is the probability that the feature f takes the
value vl (out of L possible values). The distribution over the
values is computed based on the observations. A low entropy
indicates that the probability mass is concentrated in one
state (or a few states, depending on the number of possible
states) and thus indicates a low variation of the feature value
over the demonstrations. To avoid overfitting in case of few
demonstrations, a Dirichlet prior can be added.

In our approach, we consider a feature f as relevant if
H(f) < ε2, where ε2 is a threshold specifying the certainty
the system should have about the value of this feature. The
value that the feature has to take to satisfy the precondition
or effect is then given by

vf = argmax
vl∈{v1...vL}

P (f = vl). (5)

In most cases, the discrete features are binary variables taking
true and false as possible values, but there exist also features
that can take more than two values. An example of a feature
that we found useful in our experiments is a three-state rep-
resentation of a door: the door can be completely open so
that the robot can go through it, or it can be partially open
so that the robot first needs to open it further to pass through
without having to operate the handle, or the door may be
closed completely.

Similar to the continuous case, we can derive a boolean
predicate Pf (v) that is later on used in the planning process

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 32

to test whether a discrete precondition is fulfilled as:

Pf (v) =
{
true if v = vf and H(f) < ε2
false otherwise.

(6)

Identifying Identical Predicates
Whenever the user teaches actions individually and not as a
sequence, the predicates have to be learned for each action
individually. To allow a planner to compute a plan, we need
to identify which predicates from one action are the same as
the predicates from other actions. Consider two predicates
Pa1f and Pa2f generated from two different actions a1 and
a2 but from the same feature f . To decide if they represent
the same condition, we consider the feature values from the
demonstrations of a1 and a2 as a merged sample set. The
predicates Pa1f and Pa2f will be merged into one predicate if
the merged sample set still fulfills the criterion given in Eq. (1)
(or the entropy criterion for the discrete case). Otherwise,Pa1f
and Pa2f remain individual predicates.

Generating the PDDL Description
Over the last 15 years, the Planning Domain Definition Lan-
guage PDDL has been established as a standard language
for defining planning problems. Therefore, we developed a
system that automatically derives a PDDL description which
allows us to easily use most out-of-the-box planning compo-
nents.

To generate a PDDL description, we first need to define
the objects involved in the planning process and their types.
This is obtained from the perception system as mentioned
before. Second, we need the predicates that define the state
of the planner, and which are computed using the method
described above. Third, the start and goal states need to be
specified. The start state is simply obtained by evaluating all
predicates according to the current observations. The goal,
obviously, has to be provided by the user in terms of the
predicates. Finally, the actions with their preconditions and
effects on the state have to be provided.

For expressing each action in terms of its preconditions
and effects, we consider the different possible cases for each
relevant feature f . Since f could be relevant as a precondition,
an effect, or both, our system adds the appropriate predicate,
Pf , or its negation in the preconditions or effects part of the
PDDL operator. An example of a generated PDDL operator
for approaching a block from the top to grasp it is:
(:action reachBlockTop
:parameters (?b-block ?g-gripper)
:precondition (and (visible ?b)

(gripperOpen ?g)
:effect (and (not (visible ?b))

(gripperAroundBlockTop ?g ?b)))

The operator has been learned from demonstrating the
reaching motion to the robot. The parameter block represents
the typed variables ?b and ?g that are involved in the predi-
cates. The types of objects are not learned but are provided by
the perception system during the demonstrations. The terms
in the precondition and effect blocks correspond to learned
predicates. Here, we replaced the automatically generated
names by meaningful ones.

Accounting for Physical Constraints
After implementing our approach, we identified that the robot
misses background knowledge about its capabilities and the
physical world. For example, the robot should not move away
from a door if its gripper is still grasping the handle of the
door. The robot simply cannot move the door although that
might be a valid plan from the PDDL definition point of view.
Such constraints could in theory be identified based on a
physical simulation system that operates in parallel to the
planner and verifies that a plan does not violate any physical
constraints. However, such simulations are considerably ex-
pensive and complex. We therefore added a few additional
constraints manually to the PDDL description. In particular:
(i) The robot cannot move away from a door while grasping
its handle. A similar rule needs to be added for any object that
the teacher grasped during the demonstrations but that cannot
be carried away. (ii) The robot is not allowed to release an
object from its gripper without placing it somewhere, for
example on a table. Otherwise, the object may break or the
robot may not be able to pick it up again from the ground—
this actually happened during our first experiments. (iii) The
robot cannot reach any object that is further away than 70 cm
from its torso without navigating first. This encodes the size
of the workspace which is given by the size of the robot’s
arm.

Planning using the Acquired Actions
Given the collection of actions including the PDDL descrip-
tion, the planning problem can be outsourced to any standard
symbolic planning system capable of interpreting PDDL. In
our system, we use the fast downward planner proposed by
(Helmert 2006). We used Helmert’s implementation and inte-
grated it into a ROS module.

To execute the next action of a computed plan, the robot
has to choose one of the DMPs from its library that belongs to
the corresponding action. The DMPs can be adjusted easily to
situations that have a different starting or goal point compared
to the learning phase. The DMP will generate a new trajectory
whose shape resembles the demonstration but generalizes to
the new situation. To only enforce minor adaptations due to a
new start and goal point, our approach selects the DMP for
which the relative pose of the end effector between the goal
point g and start point s during training was most similar
to the current situation. The relative pose is described by its
translational t(s, g) and rotational component r(s, g). We
select a DMP using the cosine similarity measure

dt(s, g, i) =
t(s, g) · t(si, gi)
||t(s, g)|| ||t(si, gi)||

, (7)

where si and gi are the start and goal pose during the demon-
stration from which the i-th DMP has been learned. Similarly,
dr (s, g, i) is defined for the rotational component and takes
into consideration the angle and direction of rotation.

Additionally, we simulate the trajectory for the i-th DMP
after setting the new start and goal to check for collisions
between the end effector and obstacles. The term do(s, g, i)
is the minimum distance to the closest obstacle along the

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 33

Figure 2: The robot builds a tower of three blocks. To do so, the robot only uses the basic actions that it has learned from
demonstrations and combines them in a new way.

trajectory. Then, we choose the DMP with the index

i∗ =argmax
i

αtdt(s, g, i) + αrdr (s, g, i)

+ αodo(s, g, i), (8)

where αt , αr , and αo are scaling coefficients chosen to reflect
the relative importance of the different criteria. Finally, the
chosen DMP is instantiated with s and g and executed.

Note that even when properly selecting appropriate DMPs,
in the real world a robot may not carry out all actions as
expected or the environment may change. Especially for long
action sequences, it is unlikely that the individual steps can be
executed without corrections. For example, if the gripper slips
off the door handle, the robot should be able to detect that and
compute a new plan. We therefore implemented a separate
module that monitors the execution of the plan, computes
the current values of the features, updates the values of the
individual predicates, and compares the actual state to the
expected effects of the actions. In case something unforeseen
happens, the execution monitor triggers replanning using the
current state of the world as the start state. The fast downward
planner is efficient enough to compute a new plan online so
that the robot can proceed without significant interruptions.

Experiments
The evaluation is intended to show the capabilities of
our approach. All components of the system have been
implemented as ROS modules and our experiments are
carried out with a real PR2 robot. We considered tasks
from two different manipulation domains: blocks world-
like tasks like moving and stacking blocks as well as
operating and opening doors. Videos covering the ex-
periments can be found at: http://www.informatik.uni-
freiburg.de/%7Estachnis/videos/tampra/

Training and Learning Preconditions and Effects
The first set of experiments is designed to illustrate how our
system can learn individual actions from multiple demon-
strations and is able to identify the preconditions and effects
reliably. Teaching was done by kinesthetic training as illus-
trated in Fig. 1. We demonstrated 11 different actions to the

Table 1: Success rate for learning preconditions and effects.
#demonstrations 5 6 9 10 >10
success rate 17/20 19/20 19/20 20/20 20/20

robot and provided 10 demonstrations per action. Actions
include reaching for objects and grasping them, placing an
object on a target, turning a door handle, pushing a door, etc.
In all our experiments, the DMPs were learned without any
problems and stored in the robot’s action library. Moreover,
the correct set of preconditions and effects was identified by
our system, i.e., no necessary conditions were missing and
all relevant ones were identified.

For example, for the action reachHandle, the system
correctly identified as preconditions that (a) the gripper has
to be open and that (b) the handle must be visible. As effects,
it identified that (a) the door handle is inside the gripper, (b)
the gripper stays open, and (c) the handle is still visible. At
the same time, the system correctly identified that all other
features, like the relative pose of the gripper to the robot’s
torso and the exact distance of the door handle relative to the
robot, are irrelevant.

To provide a more quantitative evaluation, we recorded
20 demonstrations for the action reachBlock. We then ran-
domly sampled demonstrations, performed the learning step,
and compared the extracted preconditions and effects to the
real ones. We repeated this process 20 times and obtained
the results shown in Tab. 1. When using 10 or more demon-
strations, the system produced the correct results in all cases.
With less than 10 demonstrations, the system often failed 1
to 3 out of 20 times in the sense that our approach found at
least one false positive precondition or effect. This is due to
too little variations in the feature values in the small number
of demonstrations.

Building a Tower of Three Blocks
The second set of experiments is designed to show how the
robot can use the learned actions to solve novel tasks, i.e.,
tasks that have not been demonstrated to it beforehand. In this
example, the robot was placed in front of a table with three

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 34

Figure 3: The robot computes a plan to grasp the two blocks and go through an open door. Once the robot has grasped the
two blocks, a person closes the door. After having detected that, the robot computes a new plan to clear its left gripper by first
going back to the table and placing the yellow block there. The robot then moves back to open the door, and then back to the
table to grasp the yellow block again. Finally, the robot leaves the room with both blocks and reaches the goal state. See also
http://www.informatik.uni-freiburg.de/%7Estachnis/videos/tampra/ for a video of this experiment.

blocks on top of it. As the goal configuration, the three blocks
should be stacked on top of each other (yellow-blue-red). The
planner computed a plan using the learned pick-and-place
operators. This involves reaching, grasping, placing, and re-
leasing blocks. Furthermore, the system correctly merged
identical predicates. For example, the effect of grasping is
equivalent to the precondition of placing. Moreover, each
step was executed by choosing a DMP and adapting it to the
new situation. Fig. 2 depicts the plan execution.

We repeated this experiment 20 times. In all cases, the
robot was able to generate a valid plan to the goal. The only
sources of failure that occurred during the execution were
checkerboard markers not being detected by the perception
system, or an error in estimating the pose of a block.

Reacting to Unexpected Changes in the
Environment

This experiment is designed to illustrate how the robot can
deal with unexpected changes in the environment while exe-
cuting plans. The goal was to take two blocks and bring them
to the corridor outside the room. Initially, both blocks lie on a
table in the room and the door is open. While the robot picks
up the two blocks with its manipulators, a person closes the
door. After detecting that change, the robot computes a new
plan and decides to bring one block back to the table to free
one gripper. It then opens the door with the free hand, moves
back to the table, picks up the block again, and finally brings
both blocks outside the room. Pictures from this experiment
are shown in Fig. 3.

Maintaining a Goal State
The last experiment illustrates how the robot can use the
learned actions to plan for reaching a goal state from different
possible starting states. We placed the robot in front of a
door and instructed it to keep it fully open. Then, a human
repeatedly closed the door and the robot opened it from
basically any possible configuration.

During this experiment, the robot came up with three
different plans depending on the current configuration
of the door and the visibility of its handle. If the door is
completely closed, our robot needs to carry out the following
actions: reachHandle; graspHandle; turnHandle;
pullDoor; releaseHandle; moveArmToInnerSide;
pushDoor. If the door latch was not locked, it is sufficient
to execute: reachHandle; graspHandle; pullDoor;
releaseHandle; moveArmToInnerSide; pushDoor.
If the door is already partially open but the robot does not
see the handle, then executing: moveArmToInnerSide;
pushDoor is sufficient. Some of these actions are visible
in the second and third rows of Fig. 3 showing the previous
experiment. Further images had to be omitted due to limited
space but the reader may consider the video showing parts
of this experiment. We conducted this experiment for more
than 20 min without any critical failures. It may happen that
the execution of an action fails but the execution monitor
always detects that and compensates for it immediately by
replanning.

Limitations
Despite these encouraging results, there is space for further
improvements. Currently, our system is able to identify only
a limited variety of patterns in the feature values to find the

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 35

preconditions and effects. To find more complex patterns,
which are needed to symbolically represent more complex
actions, more sophisticated pattern recognition algorithms
than one-class k-means clustering are needed.

Our system furthermore assumes that preconditions and
effects can be expressed based on a set of predefined fea-
tures. It would be interesting to substantially extend the list
of features available to the robot, such as features that capture
physical aspects like forces and dynamics. As the number of
features increases, we expect to require more teacher demon-
strations. Alternatively, the robot could explore preconditions
and effects in simulation to reject irrelevant features that re-
sulted in learning false positive conditions. For instance, a
robot that is taught in front of a table may regard the color of
the table as an important aspect, although this is obviously
not the case. Such a simulation could also allow the robot to
explore physical constraints without having to manually pro-
vide them. Finally, our approach relies on several thresholds,
which reflect the desired accuracy of performing the actions.
These thresholds are currently set manually. Learning them
should be considered.

Conclusion
We addressed the problem of learning a library of manipula-
tion actions based on demonstrations provided by a teacher.
Our approach requires only few demonstrations of actions
and identifies the preconditions that need to be fulfilled for
each action to be applicable, as well as the effects that are
always fulfilled as a result of executing it. These conditions
are represented by logical predicates, leading to a symbolic
representation in the Planning Domain Definition Language.
Therefore, the robot can use existing state-of-the-art planners
to solve manipulation tasks which are in sum more complex
compared to the taught actions. Furthermore, from the same
demonstrations, the robot learns how to physically execute
the actions by encoding the observed trajectories as dynamic
movement primitives. We implemented our approach and
presented experiments using a real PR2 robot to illustrate the
capabilities and flexibility of our system, including its ability
to react to unexpected changes in the environment.

Acknowledgments
This work has partly been supported by the EC under grant
FP7-ICT-248258-First-MM. We thank Malte Helmert for
providing his implementation of the FD planner, Peter Pastor
for making his DMP implementation available, and Luciano
Spinello for the fruitful discussions about single-class SVMs.

References
Asfour, T.; Gyarfas, F.; Azad, P.; and Dillmann, R. 2006. Im-
itation learning of dual-arm manipulation tasks in humanoid
robots. In Int. Conf. on Humanoid Robots.
Bentivegna, D.; Atkeson, C.; Ude, A.; and Cheng, G. 2004.
Learning to act from observation and practice. Int. Journal
of Humanoid Robotics.
Billard, A.; Calinon, S.; Dillmann, R.; and Schaal, S. 2008.
Robot programming by demonstration. In Siciliano, B., and
Khatib, O., eds., Handbook of Robotics. Springer.

Boiman, O.; Shechtman, E.; and Irani, M. 2008. In defense
of nearest-neighbor based image classification. In IEEE
Conf. on Computer Vision and Pattern Recognition.
Calinon, S., and Billard, A. 2008. A probabilistic program-
ming by demonstration framework handling skill constraints
in joint space and task space. In Int. Conf. on Intelligent
Robots and Systems.
Ekvall, S., and Kragic, D. 2006. Learning task models from
multiple human demonstrations. In Intl. Symposium on Robot
and Human Interactive Communication, 358–363.
Eppner, C.; Sturm, J.; Bennewitz, M.; Stachniss, C.; and
Burgard, W. 2009. Imitation learning with generalized task
descriptions. In Int. Conf. on Robotics & Automation.
Helmert, M. 2006. The fast downward planning system.
Journal on AI Research 26.
Kennedy, K.; Namee, B. M.; and Delany, S. 2009. Learning
without default: A study of one-class classification and the
low-default portfolio problem. In Conf. on Artificial Intelli-
gence and Cognitive Science.
Krüger, N.; Piater, J.; Wörgötter, F.; Geib, C.; Petrick, R.;
Steedman, M.; Ude, A.; Asfour, T.; Kraft, D.; Omrcen, D.;
Hommel, B.; Agostino, A.; Kragic, D.; Eklundh, J.; Krüger,
V.; and Dillmann, R. 2009. Formal definition of object action
complexes and examples at different levels of the process
hierarchy. Technical report.
Mardia, K.; Kent, J.; and Bibby, J. 1979. Multivariate Analy-
sis. Academic press.
Omrcen, D.; Ude, A.; and Kos, A. 2008. Learning prim-
itive actions through object exploration. In Proc. of the
Int. Conf. Humanoid Robots.
Pardowitz, M.; Zöllner, R.; and Dillmann, R. 2006. Incremen-
tal acquisition of task knowledge applying heuristic relevance
estimation. In Int. Conf. on Robotics & Automation.
Pastor, P.; Hoffmann, H.; Asfour, T.; and Schaal, S. 2009.
Learning and generalization of motor skills by learning from
demonstration. In Int. Conf. on Robotics & Automation.
Petrick, R.; Kraft, D.; Mourão, K.; Pugeault, N.; Krüger, N.;
and Steedman, M. 2008. Representation and integration:
Combining robot control, high-level planning, and action
learning. In Int. Cognitive Robotics Workshop.
Schölkopf, B., and Smola, A. 2002. Learning with Kernels.
MIT Press.
Schölkopf, B.; Platt, J.; Shawe-Taylor, J.; Smola, A.; and
Williamson, R. 2000. Estimating the support of a high-
dimensional distribution. Technical report, Microsoft Re-
search, TR87.
Veeraraghavan, H., and Veloso, M. 2008. Teaching sequential
tasks with repetition through demonstration. In Int. Conf. on
Autonomous Agents and Multiagent Systems.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Munoz-
Avila, H. 2009. Learning HTN method preconditions and
action models from partial observations. In Int. Conf. on
Artificial Intelligence.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 36

Automated Planning and Real Systems Based on PLC: A Practical

Application in a Didactic Bench of Manufacturing Automation

João Paulo da Silva Fonseca; Rodrigo Nogueira Cardoso; William Henrique Pereira Guimarães;
Kauê de Sousa Ribeiro; Alexandre Rodrigues de Sousa; José Jean Paul Zanlucchi de Souza

Tavares.
Manufacturing Automated Planning Lab, College of Mechanical Engineering, Federal University of Uberlândia

Av. João naves de Ávila 2121 – Uberlândia – MG – Brazil – CEP 38400.299
E-mails:, jpaulosfonseca@gmail.com, rodrignog@hotmail.com, will_henrique2003@yahoo.com.br, kauedesr@hotmail.com,

alexanrsousa@gmail.com, jean.tavares@mecanica.ufu.br

Abstract
Automated planning systems have been developed for more
than 40 years, however, their practical application in real
problems is still restricted and, many times, a challenge.
One of the reasons for such restriction lies on language
ruptures. On the one hand, automated planning systems
provide a plan with a sequence of actions represented in the
Planning Domain Definition Language (PDDL); on the
other hand, real systems use equipment as Programmable
Logic Controller (PLC), which utilizes languages such as
Ladder and centralizes sensor and actuation activities. This
paper presents a mechatronics approach integrating
automated planner in industrial systems based on PLC
network. First, the planning domain was modeled using
itSIMPLE. Next, the model was evaluated by two
automated planners (Metric-FF and SGPlan6) in respect to
optimization specific metrics, in this case, costs
minimization. The best plan was chosen to be implemented
in the practical system. The sequence of actions defined in
PDDL was translated in a Sequential Flow Chart and then,
translated in a Ladder diagram, to be implemented in PLC.
A practical example is done in a didactic bench, and finally
a comparison between real and planned results is presented
and discussed.

Keywords: Automated Planning; Manufacturing
Automation; Programmable Logic Controller (PLC);
Didactic Bench; itSIMPLE.

 Introduction

Discrete systems based on Programmable Logic
Controllers (PLC) are widely used on the
manufacturing automation processes. The
internationally recognized efficiency allied to their
robustness guarantees their success in industrial
applications. On the other hand, for some years
several studies have been showing artificial
intelligence techniques like neural nets, genetic
algorithms, specialized systems, fuzzy logic,
automated planning as enhancement proposals for
practical systems. Specifically, the automated
planning emerged in 1971 with the presentation of the
first automated planner: Stanford Research Problem
Solver (STRIPS) (Fikes and Nilsson 1971). According

to the authors, automated planners consist in a system
for automatic resolution of problems. Automated
planners runs a search algorithm, based on a model,
specifics criteria, an inputs’ set (initial state) and a
goal (final state); to define the best sequence of
actions.

 On the other side, most of commercial PLC work
with very simple programming languages, such as
Ladder and Sequential Flow Chart (SFC) while
automated planners make use of a huge formalism
provided by Planning Domain Definition Language
(PDDL) (Fox and Long 2003) - an international
standard for automated planners.

 However, what can be seen is a great abyss
between those development standards, making it
difficult to integrate newer technologies in industrial
applications like, for example, automated planners in
manufacturing. Tavares and Fonseca (2011)
presented an initial study to evaluate this gap between
the theoretical field and practical systems by use of a
recurrent problem on a supply chain, through a simple
proposal.
 This work presents a mechatronics approach
integrating automated planners in industrial systems
based on PLC network. First of all theoretical
foundation is presented, followed by methodology
with planning domain and problem definition. The
integration between plan and PLC is showed for this
specific scenario comparing planned and actual results
applied to a didactic bench. Discussion and
conclusion is presented, followed by bibliographies.

 Theoretical Foundation

Next paragraphs present the theoretical base of this work.
Initially it reviews automated planning concepts, followed
by the itSIMPLE system (Vaquero 2007), and finally there
is a brief description about PLC and its programming
languages.
 Following Ghallad et al. (2004) classical Planning
requires eight restrictive assumptions, it means, finite
system Σ, fully observable, deterministic, static, a set of

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 37

goals state Sg, a linearly sequence of action (a1 … an),
implicit time and off-line planning.
 State transition system Σ is a tuple of (S, A, E, γ), where
S is a set of state, A is a set of action, E is an exogenous
event and γ is a state-transition function.
 It’s possible to think of a modern manufacturing process
as sequence of actions and whose completion can be
detected by sensors responsible to the controllers'
observation. These actions can be performed by devices,
numerically controlled machines, automated guided
vehicles, conveyor belts, manipulator robots, etc. Therefore
these actions consist of relatively complex programs in
different languages, also including PLC programming
languages.
 So the sequencing hereby referred can be seen as a
translation activity from plans produced by automated
planners to control programs for devices and machines.
Even though the perception and actuation processes can
also be performed by PLC; it’s noted that this level of
language is not suitable to fit automated planners results.
The designing process by itself is not feasible in a low
level language as Ladder, even though in the end, it’s
desired to have a way to automatically stimulate the plan or
sequence of actions when using PLC and detect the
termination condition of these actions with sensors
perceptions (Tavares et al. 2011).
 The possibility of applying new design tools for
planning and scheduling systems in this type of integration,
with the precision, dependencies’ analysis, adaptability and
intelligent behavior insertion advantages becomes,
therefore, very attractive.
 Until recently this possibility was very remote, since the
automated planning’s problems were solely treated with
model problems, and extracted directly in formal
specification languages such as PDDL. However, since the
beginning of this century, a discussion has taken over the
automated planning community, which refers to the
possibility of utilizing those artificial intelligence
techniques in real problems, as manufacturing ones.
 Actual problems of great interest have been analyzed
with such techniques like logistical problems in port
systems (Dahal et al. 2003) or in logistics on the loading
and unloading of oil in the São Sebastião’s port (Sette et al.
2008), or even in the raw oil routing in pipelines (Li et al.
2005).

The itSIMPLE System
The itSIMPLE system (Vaquero et al. 2009) was designed
to allow the user to have a disciplined design process to
create knowledge models from different fields of
automated planning. The process suggested and
implemented in the domain model design tool follows a
cyclic sequence of stages inherited from the Software
Engineering and Knowledge Engineering combined with
experience gained in the design of planning applications.
 The software provides a different approach for modeling
the planning domain. Its main feature is to enable the entire
modeling process to be done through Unified Definition

Language (UML) diagrams (OMG 2010). As the group of
the PDDL language experts, and its formalisms, is very
limited, itSIMPLE opened the door for a larger group of
people to be able to model the planning domain from a
graphical language. Hence, the software consists in a tool
capable of translating the UML model to a corresponding
PDDL that can be used by automated planners allowing
then to verify and compare different planners with the
same domain description.
 The itSIMPLE environment incorporates a set of
representation languages and theories capable of dealing
with requirements and knowledge engineering, in
association with the project life cycle, as shown in Figure
1. Among the various specification and modeling
languages, the itSIMPLE proposes the utilization of the
semi-formal language UML, a diagrammatic language
widely known and used in the software and requirements
engineering, for the initial steps in building the model and
the domain knowledge. Classical Petri nets (Murata 1989)
are used for dynamic verification of the plans. And as the
community in AI Automated Planning uses PDDL as a
standard representation of domains and also as an input
representation to the planners, the itSIMPLE integrates this
language as well (up to version 3.0 of PDDL) in its design
process (Vaquero et al. 2009).

Figure 1: itSIMPLE’s structure and languages. (Vaquero et al.
2009)

 In the current version, itSIMPLE can communicate with
the main planners available in the literature. Therefore, the
process of choosing a planner is not in fact done, and this
version of the system simply prepares the application
domain (practical manufacturing processes and most of the
planning problems) for all planners included. In a future
version it is intended to eliminate this process, choosing
only the planners most appropriate for the problem at hand.
 The itSIMPLE is currently a public domain software1.
This system participated in the three editions of the
International Competition on Knowledge Engineering for
Planning and Scheduling (ICKEPS), ranking first in the
third edition in 2009.

Programmable Logic Controllers
The PLC are electronic equipment used in flexible
automation systems. There are very useful and versatile

1 itSIMPLE. Available at http://code.google.com/p/itsimple/

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 38

working tools for applications in command and control
systems, therefore they are widely used in industrial
markets. The PLC allows the development and easy
manipulation of the logic to actuate on the outputs
according to the inputs. Thus, we can associate different
input signals to control various actuators connected at exit
points (Oliveira 1993).
 With the evolution of microprocessors, it was the
increased processing power and memory of the PLC that
started to become attractive, besides all fields of industrial
activity and also the area of building automation working
in climate control, alarms, and illumination. The current
generations of controllers have advanced control functions,
availability of a large number of inputs and outputs, as well
as ease of communication with supervision systems and
smart sensors and actuators.
 The languages used in PLC are basically among the five
languages defined by IEC 1131-3, which are the Ladder
Language, Function Block Diagram, SFC, and other
textual languages like Instructions List and Structured
Text.
 The Ladder diagram is a graphical programming
language derived from the representation of the circuit
diagram which makes use of relay controllers directly
connected. This diagram is characterized by power lines on
the right and left of the diagram; these are linked by
current paths with switch elements (normally open
contacts, normally closed contacts) and coils. Figure 2
illustrates an example of Ladder diagram language related
with bushing process of two different parts (A and B).

Figure 2: Ladder diagram language example. (Tavares 2011)

 Commercially, SFC and Ladder languages are the two
most representative of the PLC languages universe.
According Miyagi (1996), the Ladder diagram corresponds
to a logical representation based on the circuit diagram of
relays, whose utilization was widespread before the rise of
the PLC, which explains the preference for this type of
language for most programmers. On the other hand the
SFC development was motivated by the interest in
graphical tools to represent explicitly the functions to
describe sequential processes for industrial applications.

Methodology
Having presented the theoretical foundation for this work,
the methodology used for its development follows Vaquero

et al. (2009). Nevertheless, the process and problem of
domain modeling has been entirely developed using the
itSIMPLE software.

 Planning Domain Modeling
Initially it was developed a Didactic Test Bench (Fonseca
2011) where it would possible to evaluate the application
of automated planning in practical systems. This bench is
composed by one vehicle, one supplier reservoir, two
customer reservoirs and two pumps to satisfy several
demand from clients. The vehicle must receive product
from the supplier reservoir and carry it up to the customer
reservoirs. The level of each customer reservoir will be a
function of client demand for each customer. Customer
reservoir is emptied by its own electro-pump and fulfilled
by the electro-pump of the vehicle. Physically, the product
is delivered directly to the supplier reservoir, closing the
cycle and ensuring the continued functioning of the bench.
Figure 3 shows actual photos of the Didactic Bench.

Figure 3: Didactic bench photos.

 The modeling process begins at the construction of the
Use Cases Diagram. An analysis of the characteristics of
the proposed problem allows the identification of three
agents, the supplier, the vehicle and the customer. The
agent Supplier will be responsible for carrying out the Use
Case Load, the agent Vehicle will be responsible for
carrying out the Use Cases Move, Load and Unload while
the agent Customer will be responsible for the Use Cases
Unload, PartialOrder (for partial deliveries), FinalOrder
(to fulfill partial deliveries) and CompleteOrder (for full
deliveries). The Use Case Load requires the activities of
both Vehicle and Supplier agents simultaneously while the
Use Case Unload requires the activities of both Vehicle
and Customer agents. Figure 4 shows the Use Case
diagram of the Bench domain.
 Proceeding with the modeling process, the static
structure of the domain represented by Classes Diagram
must be conceived based on the description of the Use
Cases. The primary elements of this domain are the
Vehicle, the Customers, the Supplier and the Client Class.
In addition to these Classes, the diagram is formed by the
LevelTransf (responsible for the discretization of quantities
of product sold and displayed by the level sensors) and
Global (containing all global variables of the domain), the
first being a Resource Class and the second a Global Class
(stereotype <<utility>>). Figure 5 shows the Class
diagram of the Bench domain.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 39

Figure 4: Bench´s Use Case Diagram

Figure 5: Bench’s Class Diagram

 Each class must have attributes and methods that
represent the behavior of real objects in the system. For
example, the Vehicle Class has the necessary information
to instantiate all objects of the Vehicle Type these
information are the class’s attributes. In this model the
Vehicle Class has three attributes: maxlevel (Int),
correspond to the maximum level of the vehicle’s
reservoir; critical_lev (Int), correspond to the minimum
level of the vehicle’s reservoir; and lev (Int), representing
the current level. Moreover, the Vehicle Class has an
association isAt with the Place Class in order to identify
which place the vehicle is at the exact moment. To ensure
proper functioning of the system, Agents Classes must take
actions to ensure the functionality of the plant. So the
Vehicle Class has three operators: move, load and unload.
The other classes follow the same methodology. The
modeling of this domain can be found in better detail in
Fonseca and Tavares (2011).
 Automated planners work in such a way that, given an
initial situation and a final situation, an algorithm scans a
search tree in order to find the best solution for the
characteristics of the project, which may be minimize or
maximize processing time, operation costs and time etc.
 The metrics developed in this model, which can be
considered minimization of costs, are transportcost and
lostcost (cost for postponed demand), according to Figure
6. The loss cost naturally is something agreed by a clause
in the contract between supplier and distributor and, for
this specific case was chosen arbitrarily a weight of value
50.
 These variables are defined as attributes of the Global
Class and its logical representation is given at the State

Diagrams as rules of the actions of Vehicle (Figure 7) and
Distributor (Figure 8). By definition, the state diagram is
where the classes with relevant dynamic characteristics are
modeled.

Figure 6: Metrics of the model.

Figure 7: Vehicle´s State Diagram.

Figure 8: Distributor´s State Diagram.

Problem Definition
The problem to be solved is to move, load and unload the
vehicle v1 in order to attend the demand of Clients. For
practical example, initially the Vehicle is stationed under
the Supplier reservoir; the Distributors reservoir a1 and a2
contains 20% of available stock, the same value of the
critical one.
 Moreover, the Client c1 has an unmet demand of 70% of
Distributor reservoir a1, while the Client c2 has an unmet
demand of 100% of Distributor reservoir a1. The final
state, defined as a goal snapshot is: Vehicle stationed at the
original position (Supplier); Clients c1 and c2 with
attended demands; Distributors reservoir a1 and a2 with
intermediate level, specifically 50%. The Figures 9 and 10
shows the initial snapshot and the goal snapshot
corresponding to this problem.

Figure 9: Initial snapshot

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 40

Figure 10: Goal snapshot

Plan Definition
The itSIMPLE has a significant number of automated
planners, such as SGPlan6 (Hsu and Wah 2008), Metric-FF
(Hoffmann 2003), MIPS-XXL (Edelkamp and Jabbar
2008), LPG-td (Gerevini et al. 2004), HSP (Bonet and
Geffner 2000) etc. This work presents the result obtained
with the Metric-FF and the SGPlan6 planners, which
generated the plan-solutions described below, in Figures 11
and 12, respectively. These possible solutions lead the
Vehicle v1 to perform the actions sequentially to take the
system from initial situation to goal situation.

The Integration between Plan and PLC

The plan-solution was translated directly in a SFC model,
and, the base of PLC Ladder program. After Ladder
deployment, the solution-plan could control the Didactic
Test Bench that has the Omron CJ1M ETN21 CPU13 PLC
(Omron 2001).
 Initially, the sequence of actions defined by the plan-
solution model is translated directly into a discrete event
model of the SFC type. The model development follows a
logic in which every action defined in the plan-solution
sequence is related to a state in the SFC. The model begins
at the initial snapshot and ends in the goal snapshot. The
intermediate states are linked with the preconditions and
post-conditions of each action as transitions receptiveness
between states of the SFC model. The SFC model which
corresponds to the plan-solution suggested by the Metric-
FF planner is partially presented in Figure 13.
 For each sensor and actuator variables were assigned in
the PLC according to Tables 1 and 2.
 As the comparison function block of CX-one
(programming software of Omron CJ1M CPU13 PLC)
works with memory locations, the comparison between the
levels perceived by sensors with the expected level in each
plan states was performed by auxiliary memories. For this,
the perceived values of the level sensors were stored in
auxiliary memories, as described in Table 3. The values
perceived by the analog input I0.00 (vehicle level sensor)

were stored in the memory location D100; values
perceived by the analog input I0.01 (distributor1 level
sensor) were stored in the memory location D101; and the
values perceived by the analog input I0.02 (distributor2
level sensor) were stored in the memory location D102.

1: LOAD V1 F1 LEVEL8
2: MOVE V1 F1 A1
3: UNLOAD V1 A1 LEVEL8
4: MOVE V1 A1 F1
5: LOAD V1 F1 LEVEL8
6: MOVE V1 F1 A2
7: UNLOAD V1 A2 LEVEL8
8: MOVE V1 A2 F1
9: COMPLETE_ORDER A1 C1 LEVEL7
10: LOAD V1 F1 LEVEL2
11: MOVE V1 F1 A1
12: UNLOAD V1 A1 LEVEL2
13: MOVE V1 A1 F1
14: PARTIAL_ORDER A2 C2 LEVEL8
15: LOAD V1 F1 LEVEL5
16: MOVE V1 F1 A2
17: UNLOAD V1 A2 LEVEL5
18: MOVE V1 A2 F1
19: FINAL_ORDER A2 C2 LEVEL2
Figure 11: Metric-FF’s plan.

1: LOAD V1 F1 LEVEL8
2: MOVE V1 F1 A2
3: UNLOAD V1 A2 LEVEL8
4: MOVE V1 A2 F1
5: PARTIAL_ORDER A2 C2 LEVEL8
6: LOAD V1 F1 LEVEL5
7: MOVE V1 F1 A2
8: UNLOAD V1 A2 LEVEL5
9: FINAL_ORDER A2 C2 LEVEL2
10: MOVE V1 A2 F1
11: LOAD V1 F1 LEVEL8
12: MOVE V1 F1 A1
13: UNLOAD V1 A1 LEVEL8
14: MOVE V1 A1 F1
15: COMPLETE_ORDER A1 C1 LEVEL7
16: LOAD V1 F1 LEVEL2
17: MOVE V1 F1 A1
18: UNLOAD V1 A2 LEVEL2
19: MOVE V1 A1 F1
Figure 12: SGPlan6’s plan.

 To implement the plan-solution in the PLC, both
attributes and operators of each class (represented in the
Class Diagram) should be associated with a state set of the
sensors and actuators of the Bench. For example, the action
2: (MOVE V1, F1, A1) corresponds to the movement of
the vehicle to the left, in other words, digital output 3
(Q1.02) enabled and digital output 4 (Q1.03) disabled. The
pre-condition for enabling Q1.02 is the vehicle stationed in
the supplier, in other words, fc1 activated which is the
same as digital input 1 (I0.00) enabled; the vehicle level
sensor should indicate 100%, which corresponds to the
auxiliary memory D100 = 3784; and the distributors´ level
sensors 1 and 2 should indicate 20%, which corresponds to
the following values for the auxiliary memories:
D101=736 and D102 = 1061 (sensor values differ among
themselves in a percentage scale and have been adjusted
according to a static calibration process, precisely due to

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 41

the fact that uncertainties exist in the real world elements)
When the system reaches the state presented, the digital
output Q1.02 must be enabled, allowing the movement of
the vehicle to the left until the post-condition for this action
is achieved. The post-condition for this action is the
vehicle stationed on distributor a1, in other words, fc2
activated or digital input 2 (I0.01) enabled and reservoir
levels similar to those perceived in the precondition. This
should occur for all actions in the Plan. Thus, Table 4
represents part of the from/to Table needed to facilitate the
interface between the plan-solution presented above and
the construction of the Ladder diagram used in the PLC.

Figure 13: SFC corresponding to plan-solution.

Table 1: Digital input

Microswitch Digital Input
fc1 I0.00
fc2 I0.01
fc3 I0.02

Table 2: Digital output

Actuator Digital Output
B1 Q1.00
B2 Q1.01

Drive motors to left Q1.02
Drive motors to right Q1.03

B3 Q1.04
B4 Q1.05

Table 3: Analogic Input x Auxiliary Memory Location

Level Sensor Analogic Input
Auxiliary
Memory

S1 I2001 D100
S2 I2002 D101
S3 I2003 D102

Table 4: Partial from/to Table

Snapshot/
Action Plan PLC
Initial
Snapshot - -

 (isAt v1 f1) I0.00=1

 (=(lev v1)2) D100=1322

 (=(level a1)2) D101=736

 (=(level a2)2) D102=1061

 (=(amount_reveived c1)0)

 (=(amount_reveived c2)0)

Action 1 (Load v1 f1 level 8)
Q1.00=1 until
D100>3783

 (isAt v1 f1) I0.00=1

 (=(lev v1)10) D100=3784

 (=(level a1)2) D101=736

 (=(level a2)2) D102=1061

 (=(amount_reveived c1)0)

 (=(amount_reveived c2)0)

Action 2 (Move v1 f1 a1)
Q1.02=1 and Q1.03=0
until I0.01=1

 (isAt v1 a1) I0.01=1

 (=(lev v1)10) D100=3784

 (=(level a1)2) D101=736

 (=(level a2)2) D102=1061

 (=(amount_reveived c1)0)

 (=(amount_reveived c2)0)
.
.
.

.

.

.

.

.

.

Action 19 (Final_order a2 c2 level 2)
Q1.05=1 until
D102=1958

Goal
Snapshot (isAt v1 f1) I0.00=1

 (=(lev v1)2) D100=1322

 (=(level a1)5) D101=1854

 (=(level a2)5) D102=1773

 (=(amount_reveived c1)10)

 (=(amount_reveived c2)7)

 The actions of the plan-solution are represented in the
PLC by the memory addresses W10.xx where xx is the
value given to the plan-solution’s action (Table 5).
 Thus, we started with a bench´s model, which it was
used by an automated planner in order to generate a plan
from the requirements given. This plan was translated into
an operational language, so that, joining it with the

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 42

mapping of the PLC inputs and outputs, it was possible to
make the Ladder diagram corresponding to the plan-
solution. Figure 14 illustrates a part of the Ladder diagram
obtained through the methodology described for this paper.
 In this case the initial snapshot W10.00 event enables
the relay W20.00 (Trans0). This relay marks the transition
between the initial snapshot and Action 1 (LOAD V1 F1
LEVEL8). This action is associated directly to power of
the electro-pump 1 by enabling digital output Q1.00. In
addition, Action No. 1 is subjected to non-enabling the
transition 1 (between this action and the next). This, on the
other hand, will be enabled as soon as the vehicle´s level
sensor indicates 100%, which corresponds to the auxiliary
memory D100 = 3784. At this point, the Action No. 0 is
disabled and Action No. 1, enabled. This process continues
until the system reaches the goal snapshot.

Table 5: Plan Actions and the PLC’s Memory Addresses

Action PLC’s Memory Addresses
1 W10.01
2 W10.02
3 W10.03
.
.
.

.

.

.

17 W10.17
18 W10.18
19 W10.19

Figure 14: Partial Ladder Diagram of Bench’s Domain.

 For validating the model developed in itSIMPLE, the
real costs of the plan-solution were accounted and
compared with planning costs. The Figure 15 shows the
comparative result between Planning Transport Cost and
Actual Transport Cost, for the planner Metric-FF. Since the
Figure 16 illustrates the same result for the planner
SGPlan6. The Table 6 presents the results expected and
obtained at the goal snapshot.
 The transport cost is a function of distance and level
transferred. However, the uncertainty of practical system,

mainly caused by level sensors, generated a discrepancy
between the Planning and Real Transport Cost.

Figure 15 Development of the real and planning transport cost
for the planner Metric-FF.

Figure 16: Development of the real and planning transport cost
for the planner SGPlan6.

Table 6: Comparison between goal snapshot modeled and tested.

State S1(%) S2(%) S3(%)

Model Goal State - 50 50

Tests

Metric-FF State 19 - 47 34

SGPlan6 State 19 - 61 43

Discussion and Conclusion
We can note that, by the automated planning methodology,
it is possible to: define the objective state for the system
and then act with demand forecast, anticipating the
distributors´ stock for future deliveries and market
variations; apply the variables optimization metric for
minimization of costs; simulate behavior of real system
before the practical implementation.
 Nevertheless, the results show that the modeling and
planning capacity of a system is directly associated with
the reliability of the instrumentation system. Systems with
high level of uncertainty related with instrumentation
measures, can feed planning techniques with wrong data
reducing its efficiency. Despite sensors uncertainty, plan-
solution can be based on a forecast demand. This work

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 43

doesn't deal with stochastic demands and re-planning
activities.
 However, there are more complex situations where the
processing time becomes a variable to be minimized.
According to recent studies (Huang et al. 2011), when the
processing time is presented as a new variable in the
model, a way to optimize this variable is by parallelization
process, by the distribution of actions and processes on
different machines . Another solution to reduce automated
planning processing time is introducing Partially
Observable Markov Decision Process (POMDP) (Ghallab
et al. 2004).The analysis of such cases is a further work for
this project.
 This work ratifies the applicability of automated
planners in practical cases and their use in manufacturing
automation. Moreover, new horizons are opening for the
automation community of regarding the possibility to use
Artificial Intelligence to complete control a productive
process, considering specific cases and object-oriented and
not only a generic case.
 The best of all worlds for the automated planning
application in manufacturing automation would be the
integration of disparate languages, in this case, PDDL and
Ladder. This integration would be possible by developing
an application able to realize an interface between PLC and
itSIMPLE. Thus, we can mention another further work,
which is the development of an application for the
automatic integration between the planner allocated in
itSIMPLE and the process controller from Petri Nets to
Ladder. This interface is PLC dependent.

Acknowledgments
Authors are grateful to Prof. Dr. José Reinaldo Silva, Dr.
Tiago Stegun Vaquero, UFU, FEMEC, FAU, CAPES,
CNPQ and FAPEMIG.

References
Bonet, B. and Geffner, H. 2000. HSP: Heuristic Search Planner Entry at
AIPS-98 Planning Competition, AI Magazine Vol 21(2).

Castrucci, P. and Moraes, C. C. de. 2001 Engenharia de Automação
Industrial. São Paulo: LTC

Dahal, K.; Galloway, S.; Burt, G.; Mcdonald, J. and Hopkins, I. 2003.
Port System Simulation Facility with an Optimization Capability.
International Journal of Computational Intelligence and Applications,
vol. 3, no. 4, pp. 395-410.

Edelkamp, S. and Jabbar, S. 2008. MIPS-XXL: Featuring External
Shortest Path Search for Sequential Optimal Plans and External Branch-
And-Bound for Optimal Net Benefit. In 6th International Planning
Competition Booklet, Sydney, Australia.

Fikes, R. E. and Nilsson N. J. 1971. Strips: A new approach to the
application of theorem proving to problem solving. Journal of Artificial

Intelligence, 2:189–208.

Fonseca, J.P.S. Desenvolvimento e Montagem de uma Bancada Didática
de Planejamento Automático. 2011. 165 f. Redaction of Course
Conclusion, Federal University of Uberlândia, Uberlândia.

Fonseca, J.P.S. and Tavares, J.J.P.Z.S. 2011. Didactic Test Bench for
Automated Planning. In Procedings of 21st Brazilian Congress of
Mechanical Engineering, Natal, Brazil.

Fox, M., and Long, D. 2003. PDDL2.1: An Extension of PDDL for
Expressing Temporal Planning Domains. Journal of Artificial Intelligence
Research, 20:61–124.

Gerevini, A., Saetti, A., Serina, I. and Toninelli, P. 2004. LPG-TD: a
Fully Automated Planner for PDDL2.2 Domains. In American
Association for Artificial Intelligence (AAAI).

Ghallab, M., Nau, D., Traverso, P. 2004. Automated Planning: theory and

practice. Morgan Kaufmann Publishers, May 2004

Hoffmann, J. The Metric-FF planning system: Translating “ignoring
delete lists” to numeric state variables. 2003. Journal of Artificial

Intelligence Research, 20:291–341.

Hsu, C.W. and Wah, B.W. 2008. The SGPlan Planning System in IPC-6.
Illinois, Usa: University Of Illinois, 2008. 3 p.

Huang, C.Y.; Chen, W.L. and Yeh, S.C. 2011. Supply Network Planning
for Memory Module Industry by Distributed Parallel Computing. In
Proceedings of 21st International Conference on Production Research.
Sttutgart, Germany.

Li, J.; Wenkai, L.; Karimi, I. A. and Srinivasan, R. 2005. Robust and
Efficient Algorithm for Optimizing Crude Oil Operations, In: American
Institute of Chemical Engineers Annual Meeting.

Miyagi, P. E. 1996. Controle Programável: Fundamentos do controle de
sistemas a eventos discretos. São Paulo: Blucher.

Murata, T. 1989. Petri Nets: Properties, Analysis and Applications. IEEE
Proceedings, vol. 77, no.0 4, April.

Nguyen, A. 2003. Challenge ROADEF’2005: Car Sequencing Problem.
Renault, France.

Oliveira, J.C.P. 1993. Controlador Programável. São Paulo: Makron
Books.

OMG – Object Management Group. Unified Modeling Language
specification. Available at: <http://www.omg.org/uml>. Accessed on:
jul,14 2010.

Omron Corporation (Japan) (Org.). Programmable Controllers: Operation
Manual. Tokyo, 2001. CD-ROM.

Sette, F.M.; Vaquero, T.S.; Park, S.W. and Silva, J.R. 2008 . Are
Automated Planers up to Solve Real Problems?. Proc. IFAC Conf., Seoul.

Tavares, J.J.P.Z.S. and Fonseca, J.P.S. 2011. Supply Chain Didactic
Testing Bench With Automated Planning Tool. In Proceedings of 21st
International Conference on Production Research. Sttutgart, Germany.

Tavares, J.J.P.Z.S.; Fonseca, J.P.S.; Vaquero, T.S. and Silva, J.R. 2011.
Integração de Planejamento Automático e Sistemas Reais Baseados em
CLP. In Proceedings of X Simpósio Brasileiro de Automação Inteligente.
São João Del Rey, Brazil.

Vaquero, T.S. 2007. ITSIMPLE: Ambiente integrado de análise de
domínios de planejamento automático. 316 f. MsC. diss. University of
São Paulo, São Paulo, Brazil.

Vaquero, T.S.; Silva, J.R.; Ferreira, M.; Tonidandel, F. and Beck, J.C.
2009. From Requirements and Analysis to PDDL in itSIMPLE3.0. In
Procedings of International Competition in Knowledge Eneginering for
Planning and Scheduling (ICKEPS 2009), 54-61.

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 44

A Constraint-Based Approach for Multiple
Non-Holonomic Vehicle Coordination in Industrial Scenarios

Federico Pecora and Marcello Cirillo
Center for Applied Autonomous Sensor Systems

Örebro University, SE-70182 Sweden
<name>.<surname>@oru.se

Abstract
Autonomous vehicles are already widely used in industrial lo-
gistic settings. However, applications still lack flexibility, and
many steps of the deployment process are hand-crafted by
specialists. Here, we preset a new, modular paradigm which
can fully solve logistic problems for AGVs, from high-level
task planning to vehicle control. In particular, we focus on
a new method for multi-robot coordination which does not
rely on pre-defined traffic rules and in which feasible and
collision-free trajectories are calculated for every vehicle ac-
cording to mission specifications. Also, our solutions can
be adapted on-line to exogenous events, control failures, or
changes in mission requirements.

Introduction
Industrial actors involved in the development of autonomous
vehicles (e.g., autonomous forklifts for warehouses) are con-
stantly interested in decision support tools which could im-
prove the flexibility and the performance of their products.
Atlas-Copco1 (Larsson, Appelgren, and Marshall, 2010),
Kiva Systems2, INRO3 (Thomson and Graham, 2011) and
Kollmorgen4, among others, aim to achieve complete au-
tomation in Autonomous Ground Vehicle (AGV) deploy-
ments. Although it is current practice to employ automated
solutions in several aspects of logistics automation, many
key parts of the deployment phase are still ad-hoc and man-
ual. For instance, the definition of AGV paths is often done
off-line, and these paths are hand crafted for each different
setting. Also, large-scale industrial deployments of AGVs
rarely include more than very crude heuristics to optimize
mission scheduling. Another limitation of current industrial
solutions is the resolution of spatial conflicts, which is of-
ten performed off-line through manually synthesized traffic
rules, whose correctness cannot be formally proved. Other
fallacies of real systems include the lack of support for re-
sources and an often only partial support for on-line mis-
sion constraint posting (e.g., changed deadlines, new re-
quirements, collapses of resource availability).

When automated solving components are used in indus-
trial AGV deployments, these are usually not integrated. For

1http://www.atlascopco.com
2http://www.kivasystems.com/
3http://www.inro.co.nz/
4http://www.kollmorgen.com

instance, it is often the case that path planning is de-coupled
from trajectory generation, or that the allocation of vehicles
to destinations does not depend on the trajectory that will ac-
tually be followed by the vehicles. This leads to inefficien-
cies in the quality of the solutions and reduced flexibility
in dealing with contingencies. Furthermore, the methodol-
ogy for assessing how many AGVs are necessary for a par-
ticular deployment typically consists of what-if analyses on
simulated scenarios. This analysis becomes more cumber-
some and, especially, less accurate if many de-coupled solv-
ing modules are employed.

In this paper, we introduce a system which strives to facil-
itate all phases of deployment of AGVs in real settings. Our
approach is modular, in that it can be applied “partially” or
in “pieces”, depending on the requirements of the particu-
lar deployment at hand. For instance, AGV paths may be
automatically generated by a path planner (as is the case in
this paper), or the routes could be manually decided by a
field specialist (as is often the case in industrial settings).
The same principle applies to task planning, which can be
automated or manually decided by human operators (in this
paper, the specific task planning algorithm is omitted). To
achieve this, the modules rely on a shared, constraint-based
representation of the overall problem, and each module re-
fines this representation from “its own” point of view.

Related Work
Many of the problems underlying the automation of task and
motion planning for industrial vehicles have been addressed
in research. As a result, important advancements have been
achieved in addressing separate parts of the overall prob-
lem. Algorithms such as M∗ (Wagner and Choset, 2011),
an extension of the classical A∗ to multi-robot systems, and
the work of Luna and Bekris (2011), whose focus is a new
method for multi-robot path planning which is computation-
ally efficient and complete, are recent examples of promis-
ing theoretical results. A new system for the coordination of
large multi-robot teams has been presented by Kleiner, Sun,
and Meyer-Delius (2011). The authors propose a system that
generates an overall, optimal road map configuration. How-
ever, in this work the agents are assumed as moving on a
grid, and the local motions are calculated for each robot in-
dependently from the motions of other robots.

A common approach for multi-robot path planning which

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 45

usually guarantees fast results is the assignment of prior-
ity levels to different robots. This can be seen as an im-
proved version of hand-coded traffic rules, but cannot ensure
deadlock-free situations. An example of an algorithm which
relies on this paradigm is presented by ter Mors (2011).
The overall system can find optimal, conflict-free routes in
low polynomial time, but relies on a pre-defined roadmap
shared by all agents for path planning. Desaraju and How
(2011) further extend the idea of prioritized path planning,
by substituting the pre-defined priority levels with a merit
based token, which is passed among agents. Once a robot
has planned its own path, it circulates it to the other team
members, which in turn update their trajectories.

In recent years, a number of approaches to multi-robot
coordination have been presented which rely on pre-defined
paths. Examples include the work of Kleiner, Sun, and
Meyer-Delius (2011), whose algorithm is resolution com-
plete and can be easily applied to situations in which a large
number of agents is moving. However, the overall coordi-
nated motions lack flexibility, as time is considered only im-
plicitly in configurations along the paths. Therefore, the fi-
nal result cannot take into account motion delays, or explicit
temporal constraints imposed on the single agents and their
positions over time.

A Constraint-Based Approach
A trajectory is a sequence of points and an associated tem-
poral profile, which specifies exactly when the vehicle will
be in a certain point. Instead of reasoning in terms of one
trajectory, in our approach we reason in terms of tempo-
ral and spatial constraints on trajectories. The collection of
spatial and temporal constraints on one vehicle’s trajectory
is called a trajectory envelope. We can describe the overall
mission planning problem (which will be defined precisely
shortly) as a Constraint Satisfaction Problem (Tsang, 1993,
CSP) where variables represent vehicles, their values repre-
sent possible trajectories that they should execute, and con-
straints are spatial and temporal requirements on these tra-
jectories. A solution to the overall problem is therefore an
assignment of trajectories to vehicles such that none of the
requirements on trajectories is violated.

Trajectory envelopes are the key representational ele-
ments used to express and solve our problem. More pre-
cisely, (see also figure 1):
Definition 1. A trajectory envelope is a triple 〈S,D,O〉
where
• S = {S1, . . . Sn} is a set of linear spatial constraints in

the form Aix + Biy ≤ Ci; each set Si of spatial con-
straints specifies a convex region in the map within which
the vehicle must be contained;

• D = {D1, . . . Dn} is a set of linear temporal constraints
in the form li ≤ tei − tsi ≤ ui, where tsi (tei) represents
the time at which the vehicle enters (exits) the area spec-
ified by the set of spatial constraints Si; these constraints
provide bounds on when the vehicle is within the convex
region specified by Si;

• O = {O1, . . . On−1} is a set of linear temporal con-
straints in the form li ≤ tei − tsi+1 ≤ ui; these constraints

tsi tei

li ≤ tei − tsi ≤ ui

Di

tsi+1

Di+1

tei+1

li+1 ≤ tei+1 − tsi+1 ≤ ui+1

time

Oi
x

y

Aix + Biy ≤ Ci Ai+1x + Bi+1y ≤ Ci+1

Si+1Si

li ≤ tei − tsi+1 ≤ ui

Figure 1: A trajectory envelope consisting of two spatio-temporal
polygons.

provide bounds on when the vehicle is within the (convex)
spatial overlap between Si and Si+1.

Problem Statement
Given N vehicles, we define the overall mission planning
problem in our scenario as follows:
Definition 2. A mission planning problem is a tuple
〈M, I,G, T ,V〉, where
• M is a metric map of the environment;
• I = {l1, . . . lN} is a set of coordinates in the map speci-

fying the initial location of all vehicles;
• G = {G1, . . . Gm} is a set of goals in the form 〈k, s, g〉,

each specifying that k loads must be transported from lo-
cation s to location g;

• T = {T1, . . . Tn} is a set of temporal constraints on G∪I;
these constraints are in the form li ≤ tx− ty ≤ ui, where
tx and ty are start/end timepoints of a goal or initial po-
sition;

• V = {V1, . . . VN} are the capacities of the vehicles (max-
imum amount ∈ N of load each vehicle can carry).

Finding a solution to a mission planning problem is decom-
posable into three parts; first, compute an allocation of ve-
hicles to goals which achieves the necessary displacement
of loads to places; second, compute the trajectory envelopes
E for each vehicle; third, synthesize a set of temporal con-
straints Tcol imposing that spatio-temporal polygons inter-
sect either only in space, or only in time, or not at all. Note
that a solution to a mission planning problem in fact repre-
sents sets of possible trajectories for each vehicle.

Our approach is based on four functional modules,
namely task planning, trajectory planning, trajectory
scheduling, and control. All modules output constraints cap-
turing some aspect of the mission’s requirements. Together,
these constraints define trajectory envelopes for all vehicles,
and provide a global representation of the mission, from its
high-level goals to the specific trajectories vehicles must ex-
ecute to achieve these goals. Each of the four modules pro-
gressively refines the representation, imposing increasingly
specific requirements:

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 46

πk

Task planning

Si

Trajectory schedulingTrajectory planning

VTI G M

Spatio-temporal constraint database

Tcol

Control

Tcon
[li, ui]

c

Ti πk Si Di Oi
[li, ui]

Temporal constraint propagation (STP)

Figure 2: Overall information flow of the four solving modules.

1. Task planning decides goal locations for currently avail-
able vehicles, therefore constraining the start and end
points of vehicle trajectories. Also, task planning may im-
pose quantified temporal requirements on these trajecto-
ries, e.g., “vehicle A must reach goal (x, y) before time
t”, or “vehicle A must reach its goal before vehicle B”.

2. Trajectory planning decides locations that should be vis-
ited in-between goals for each vehicle. Crucially, these are
not simple paths between the initial and goal positions,
rather they are trajectory envelopes, i.e., temporally-
constrained sets of spatial constraints.

3. Trajectory scheduling imposes further temporal con-
straints which ensure that the trajectory envelopes of dif-
ferent vehicles do not intersect in time and space. As ex-
plained below, this is a hybrid form of spatio-temporal
reasoning based on state-of-the-art scheduling techniques.

4. The Control module employs a kinematic and geomet-
ric model of a vehicle to generate and follow one specific
trajectory that lies within the trajectory envelope obtained
as a result of the above modules. This results in appropri-
ate control signals for the vehicle or in the selection of a
new trajectory within the trajectory envelope in the case
that the currently selected trajectory does not adhere to
the constraints.

Note that commitment to a specific trajectory in the above
scheme is performed only at the control level, and that the
controller is given the constraints within which it can se-
lect one of many trajectories to follow. As we will show,
the way in which these constraints are posted and propa-
gated by the first three modules ensures that for each vehi-
cle there exists a trajectory, within the constraints, which is
feasible with respect to all vehicles. Also, due to the particu-
lar type of hybrid temporal-spatial scheduling performed by
the trajectory scheduling module, the selection of mutually-
compatible trajectories by all vehicles can be done in poly-
nomial time.

All communication between the four modules occurs
through a spatio-temporal constraint database (see figure 2),
which contains variables and constraints defining an over-
all CSP. The variables of this problem are spatio-temporal
polygons, and the constraints are spatial or temporal rela-
tions defining the trajectory envelopes. Note that the tem-
poral constraints in D and O constitute a Simple Temporal

Problem (Dechter, Meiri, and Pearl, 1991, STP), which is
solvable in cubic time through the Floyd-Warshall (Floyd,
1962) temporal constraint propagation algorithm. The algo-
rithm computes the lower and upper bounds [li, ui] of all
timepoints given the constraints in the database, and is trig-
gered every time a constraint is added to the database. Thus,
through temporal constraint propagation, the bounds of all
timepoints ti of the spatio-temporal polygons are maintained
at all times consistent with the temporal constraints that are
present in the spatio-temporal database. Note also that if a
temporal constraint is added which invalidates previously
existing temporal constraints, the constraint database can de-
tect this though a propagation failure, and thus rejects this
constraint. This feature of temporal constraint propagation
is employed in the trajectory scheduling to search for tem-
poral constraints that avoid collisions between vehicles.

For convenience, we will refer to the sets S and D ∪ O
as the spatial and temporal envelopes of a trajectory, respec-
tively. Also, we refer to the i-th set of spatial and tempo-
ral constraints {Si ∪Di ∪Oi} on a trajectory envelope as
a spatio-temporal polygon. Two spatio-temporal polygons
i and j are spatially overlapping if Si ∩ Sj 6= ∅. Tempo-
ral overlap is less straightforward: since the underlying STP
maintains bounds on the timepoints of spatio-temporal poly-
gons, temporal overlap must be assessed by choosing an ear-
liest start time for the timepoints. Specifically, two spatio-
temporal polygons i and j are said to be temporally overlap-
ping in the earliest start time solution if [lsi , l

e
i]∩
[
lsj , l

e
j

]
6= ∅.

Note that two spatially and temporally overlapping polygons
belonging to trajectory envelopes of different vehicles entail
that the vehicles may collide.

Solving a Mission Planning Problem
It is often the case in real-world deployments that a partic-
ular task allocation strategy, i.e., a task planning module, is
given and cannot be substituted. This is due to the often very
domain-specific objective functions, preferences and char-
acteristics of the application scenario (e.g., a milk packag-
ing factory vs. an underground mine). For this reason, in the
following sections we omit details about task planning and
focus on modules (2–4). Consequently, we assume for the
purposes of the following description that a task planner has
decided, for each goal G = 〈s, g, k〉, a high-level plan that
achieves the displacement of k loads from s to g by an ap-

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 47

propriate set of vehicles. Each element of this plan is in the
form πk = 〈i, f, s, g〉, indicating that vehicle i should load
an amount f ≤ Vi of load in s and transport it to g. Obvi-
ously, f can also be equal to 0, when s represents the initial
position of a vehicle and g its first load pick-up location.

We can now define the solution to the mission planning
problem as follows:
Definition 3. A solution to a mission planning problem
〈M, I,G, C,V〉 with N vehicles is a triple 〈Π, E , C〉 where
• Π = {π1, . . . , πp} is a set of high-level plans which

achieve the goals in G;
• E = {〈S1,D1,O1〉 . . . 〈SN ,DN ,ON 〉} is a set of trajec-

tory envelopes where
– Si is a set of spatial envelopes for the trajectory of ve-

hicle i;
– for every 〈i, f, s, g〉 in the high-level plan Π, Si con-

tains a sequence of spatial polygons 〈S1, . . . , Sn〉
where S1 contains location s, Sn contains location g,
and each Sj spatially overlaps Sj+1;

– Di and Oi are sets of temporal constraints defining the
temporal envelope of the trajectory for vehicle i; these
constraints impose that overlapping spatial polygons
also overlap in time;

• C = T ∪ Tcol is a set of temporal constraints between the
start/end timepoints of any pair of spatio-temporal poly-
gons in E; this set contains the constraints T expressing
the initial temporal requirements of the mission planning
problem, as well as a set of constraints Tcol which ensures
that the intersection of spatio-temporal polygons for dif-
ferent vehicles is either only spatial, or only temporal, or
neither (i.e., these constraints disallow collisions).

Trajectory Planning
In order to obtain trajectory envelopes, we first employ
a lattice-based planner to generate kinematically feasible
paths for the (non-holonomic) vehicles in the mission plan-
ning problem. A lattice can be seen as a generalization of a
grid: instead of using perpendicular lines, the state-space is
discretized by repeating the same primitive set of connect-
ing edges. We start from a set of kinematically acceptable
motion primitives which can be repeated over and over to
obtain a directed graph. Obviously, the graph need not be
completely specified from the start, and can be progressively
built during search. The graph is then efficiently explored
using deterministic, theoretically sound algorithms. In our
case, we chose to rely on the classic A∗ (Hart, Nilsson, and
Raphael, 1968) for optimal path generation5, and on one of
its most efficient anytime versions, ARA∗ (Likhachev, Gor-
don, and Thrun, 2003), which can provide provable bounds
on sub-optimality.

Our approach is inspired by existing lattice-based path
planners, as the ones successfully used in real world ap-
plication by Pivtoraiko, Knepper, and Kelly (2009) and by
Urmson, Anhalt, and others (2008).

5The resulting path is optimal wrt the choice of the set of prim-
itive motions and to the granularity with which the lattice is built.

Each vertex of the lattice represents a pose of the vehi-
cle in the form 〈x, y, θ〉, where x and y are coordinates on
a grid of a pre-determined resolution, and θ ∈ Θ is the ve-
hicle orientation, where Θ is the set of pre-selected possible
orientations for a specific vehicle model. For instance, in the
experimental runs presented in this paper, the grid resolution
is always equal to 0.2 meters, Θ is a set of 16 angles, equally
spaced between π and −π, and each vertex is connected to
15 others through pre-calculated, kinematically feasible mo-
tion primitives. In our setup, the cost is based on the distance
covered by each edge of the lattice, multiplied by a cost fac-
tor that penalizes backwards and turning motions.

Using off-line computation, it is possible to speed up the
exploration of the lattice in environments with obstacles in
two ways. First, as each edge is the instantiation of a pre-
calculated motion template, we can pre-compute for each
primitive the cells which the vehicle will partially or to-
tally occupy during the motion. This way, obstacle detec-
tion can be efficiently performed on-line, by checking the
occupancy level of each cell in the grid-partitioned environ-
ment. Second, a more informed heuristic function can be
pre-computed and stored in a lookup table (Knepper and
Kelly, 2006) by saving the minimum cost to connect two
poses in a specific range (10 meters, in the experimental runs
presented in this paper). This proves to be a much more effi-
cient heuristic than simple Euclidean distance, as it uses the
kinematic model of the non-holonomic vehicle to factor in
maneuvering costs. Both functions are however admissible,
and they entail optimal solutions when used with A∗.

When the environment presents obstacles, a third heuristic
function is also used. Regardless of the pose of the vehicle,
each cell in the environment is associated with a value repre-
sented by the distance from the goal in a 8-connected graph.
All three heuristic functions are evaluated when a new ver-
tex of the lattice is expanded, and we always use the higher
in value. Clearly, the resulting heuristic function is not ad-
missible in environments with obstacles. This, however, is
not a big drawback in practical applications, where our goal
is to obtain drivable and kinematically feasible, albeit sub-
optimal, paths. Also, in real settings (as the one described
below), we preferably employ ARA∗ to explore the lattice,
in order to speed up the computation, therefore relinquishing
optimality anyway.

Recall that a trajectory envelope is defined as a set of tem-
porally constrained spatio-temporal polygons. The starting
point for computing the spatial constraints Si for vehicle i’s
trajectory envelope is a path obtained through the path plan-
ning strategy outlined above. Then, the computed spatial en-
velope is used together with the path and the minimum and
maximum speeds of the particular vehicle to determine the
temporal envelope of the trajectory (i.e., the temporal con-
straints Di and Oi). These two procedures are described in
the following paragraphs.

Spatial envelope generation. For each vehicle, waypoints
are sampled along the path obtained by the path planning al-
gorithm. The sampling procedure is incremental, and works
as follows:

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 48

1. select the first two points of the path;
2. build a convex polygon around the vector defined by these

two points whose shape is the bounding box of the vehi-
cle, centered in the first point;

3. grow the sides of the polygon outwards, stopping the
growth of each side when it intersects with an obstacle
or when a threshold on growth has been reached;

4. select two points along the path immediately outside the
polygon, and go to step (2).

The resulting sequence of polygons is such that (1) the path
is completely covered by polygons, and (2) each polygon
intersects the next one6. The resulting polygons are used to
define the spatial envelope Si for each vehicle i. All spatial
envelopes are then added to the spatio-temporal constraint
database.

Temporal envelope generation. Again starting from the
first point along a vehicle’s path, the path is traversed to
compute the distance covered by the vehicle while traveling
in each spatial polygon Sj ∈ Si. These distances are used
to compute the temporal bounds within which the vehicle
can possibly occupy each polygon and each area of polygon
intersection. For this computation, we employ two constant
speeds (vmin, vmax) corresponding to the minimum and max-
imum desired speeds for the vehicle. For each spatial poly-
gon Sj we thus obtain a pair of bounds [lj , uj] restricting
the temporal distance between its start and end timepoints
(tsj , t

e
j), as well as a pair of bounds

[
l′j , u

′
j

]
restricting the

distance between the end time tej of spatial polygon Sj and
the start tsj+1 of spatial polygon Sj+1. Together, all these
constraints constitute the spatial envelope Di ∪ Oi of the
trajectory of the i-th vehicle, and are added to the spatio-
temporal constraint database.

Trajectory Scheduling
The spatio-temporal polygons generated by the trajectory
planning module impose vehicles to be in certain (convex)
regions within certain temporal bounds. In order to complete
the synthesis of the solution to the mission planning prob-
lem, further constraints must be added (the set Tcol) in order
to prune out of the solution trajectory envelopes in E those
trajectories that lead to collisions. This problem is cast as a
CSP whose variables are sets of spatio-temporal polygons
which have a non-empty spatial and temporal intersection.
The values of these variables are temporal constraints which
separate these temporally concurrent, spatially overlapping
polygons in time. In other words, the trajectory schedul-
ing module resolves concurrent use of floor space by al-
tering when different vehicles occupy spatially overlapping
polygons. This results in temporal constraints that disallow
the concurrent occupation of overlapping polygons by more
than one vehicle at a time.

The reduction of the trajectory scheduling problem to a
CSP is inspired by the ESTA precedence-constraint post-
ing algorithm (Cesta, Oddi, and Smith, 2002) for resource

6Polygon intersection is not guaranteed with this procedure,
which, however, gives very good results in practice.

Function SolveESTA(E): success or failure
static Tcol ← ∅1
repeat2

conflicts←
{
〈(tsi , tei), (tsj , tej)〉 ∈ E :3

[lsi , l
e
i] ∩

[
lsj , l

e
j

]
6= ∅ ∧ Si ∩ Sj 6= ∅

}
4

if conflicts 6= ∅ then5
MCS← Choose(conflicts, hvar)6

resolvers←
{
(tei , t

s
j) : Di, Dj 6=i ∈ MCS

}
7

while resolvers 6= ∅ do8
(tei , t

s
j)← Choose(resolvers, hval)9

resolvers← resolvers \ (tei , tsj)10
STP← STP ∪ (0 ≤ tsj − tei ≤ ∞)11
if STP is consistent then12
Tcol ← Tcol ∪ (0 ≤ tsj − tei ≤ ∞)13
if SolveESTA(E) = failure then14
Tcol ← Tcol \ (0 ≤ tsj − tei ≤ ∞)15

else return success16

until conflicts = ∅17

scheduling. The algorithm is a CSP-style backtracking
search (see algorithm SolveESTA()). It starts by collect-
ing all pairs of spatio-temporal polygons that overlap both
spatially and temporally (line 3–4). These conflicts are the
variables of the CSP, and as usual in CSP search, ordered ac-
cording to a most-constrained-first variable ordering heuris-
tic (hvar) — the rationale being that it is better to fail sooner
rather than later so as to prune large parts of the search tree.
Once a conflict is chosen, its possible resolvers are identi-
fied (line 7). These are values of the CSP’s variables, and
each is a temporal constraint to be imposed between the pair
of spatio-temporal polygons that would eliminate their tem-
poral overlap. Note that since conflicts are pairs of spatio-
temporal polygons, there are only two ways to resolve the
temporal overlap, namely imposing that the end time of one
spatio-temporal polygon is constrained to occur before the
start time of the other, or vice-versa. Again as is common
practice in constraint-based reasoning, the resolver to at-
tempt first is chosen (line 9) according to a least constrain-
ing value ordering heuristic (hval) — the rational being that
the value which leaves most options open for future choices
should be given precedence. The algorithm then attempts to
post the chosen resolving constraint into the spatio-temporal
constraint database (line 11). If the underlying STP is still
consistent, then the procedure goes on to identify and re-
solve another conflict through a recursive call (line 14). In
case of failure (line 15), the chosen value is retracted from
the spatio-temporal constraint database and another value is
attempted.

Clearly, the efficiency of the search for resolving con-
straints depends on how well-informed the value and vari-
able ordering heuristics are. In our specific case, we employ
two heuristics which take into account both the temporal
and the spatial features of the trajectory scheduling prob-
lem. The heuristic hvar employed for variable ordering gives
preference to the pairs of spatio-temporal polygons that are
spatially closer to other conflicting pairs. The idea of this

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 49

heuristic is that conflicts that are “close” to other conflicts
are more likely to be the most difficult to solve, as the possi-
ble choices for resolving these conflicts will depend on how
other conflicts are resolved.

As a value ordering heuristic, we follow the method used
by Cesta, Oddi, and Smith (2002), whereby the temporal
bounds

[
l
s/e
i , u

s/e
i

]
and

[
l
s/e
j , u

s/e
j

]
of the start/end time-

points of the chosen pair of spatio-temporal polygons are
analyzed to determine which ordering least restricts the tem-
poral slack of the intervals.

From Envelopes to Vehicle Control
The trajectory scheduling module performs the last step in
defining trajectory envelopes that solve the mission plan-
ning problem. Every vehicle’s control module must at this
point select one particular trajectory (i.e., a path and a speed
profile) within the vehicle’s trajectory envelope to execute.
However, it is important to note that the particular trajec-
tory chosen by each vehicle’s controller depends on which
trajectory other vehicles have chosen, as trajectories of dif-
ferent vehicles are temporally dependent.

The presence of temporal dependencies between trajecto-
ries entails that vehicle controllers must communicate their
choice to other controllers. This choice can be seen as a set
of temporal constraints Tcon, which is added to the shared
constraint database. Here, we leverage an important feature
of the STP underlying our constraint database: in a fully
propagated and consistent STP, i.e., one in which the bounds
[li, ui] of all timepoints ti have been updated to reflect the
constraints, there exist two specific assignments of times to
timepoints that are temporally consistent, namely the earli-
est time assignment (ET) and the latest time assignment (LT).
The former is obtained by choosing the lower bound li for
all timepoints, and the latter by choosing the upper bound ui
for all timepoints. Therefore, we can immediately obtain the
fastest and slowest speed profiles for all vehicles.

Our vehicle control scheme consists in a model predictive
controller (Qin and Badgwell, 2003) which synthesizes con-
trol outputs to the vehicle. These outputs enable the vehicle
to follow the given trajectory, both with respect to the spa-
tial constraints Si and with respect to a particular solution
to the temporal constraints in {Di ∪ Oi}. Having selected a
particular speed profile, this means that a controller must en-
ter and exit spatial polygons exactly at the times prescribed
in the particular speed profile selected for that vehicle (e.g.,
the fastest speed profile). Whenever these times cannot be
achieved, vehicle controllers must revise their trajectories
and compute new control outputs. Fortunately, to compute
an allocation of times which is different from the ET or LT,
it is sufficient to impose one constraint which models the
desired allocation of one timepoint, and this can be achieved
in polynomial time. As a result of propagation, the new ET
allocation will clearly be temporally feasible. Indeed, even
more interestingly, numerous alternative, globally consistent
speed profiles can be computed before hand, each of which
reflects one specific time in which vehicles should enter and
exit each spatial polygon on their trajectory.

Experimental Evaluation
We now present an experimental validation of the two cen-
tral modules of our approach, namely trajectory planning
and trajectory scheduling. We validate the modules both
qualitatively and quantitatively, with a special focus, in the
quantitative analysis, on the performance of the trajectory
scheduling algorithm. All test runs were performed in simu-
lation. The kinematic model employed in all the experiments
is that of a Linde H50D forklift.

Qualitative Evaluation
A single run in an industrial scenario was performed to
qualitatively assess the feasibility of the approach in a re-
alistic setting. For this purpose, we used a real map of an
underground mine (courtesy of Atlas-Copco Drilling Ma-
chines, see figure 3), where we deployed 7 identical ve-
hicles with pre-assigned tasks. Each task consisted in an
initial and final pose for one of the vehicles, in the form
{〈xi, yi, θi〉, 〈xf , yf , θf 〉}.

The overall run consisted of three phases. First, our
lattice-based path planner generated in parallel individual
kinematically feasible paths. Second, the paths were sam-
pled to calculate the spatial envelopes for each vehicle.
Assuming that all the forklifts would start moving at the
same time, and defining the minimum and maximum desired
speed in the tunnels (vmin,vmax), we thus obtained a temporal
envelope for each vehicle. The SolveESTA() algorithm
was then invoked to generate a solution to the mission plan-
ning problem. As explained above, the algorithm identified
all the conflicts in space and time over the temporally and
spatially constrained polygons, and solved them by impos-
ing additional temporal constraints Tcol.

In this specific run, considering the initial temporal and
spacial envelopes for each single vehicle, the scheduler iden-
tified three groups of conflicting polygons (shaded in fig-
ure 3). Each conflict reflects the fact that, with only the tem-
poral constraints stemming from the desired vmin and vmax
of each vehicle along its nominal path, two or more vehicles
would be “allowed” to be in overlapping areas at the same
time, if they chose some particular velocity profiles.

The scheduler’s solution consisted of 13 temporal con-
straints. This resulted in revised bounds for each of the
spatio-temporal polygons such that in any consistent execu-
tion (e.g., the earliest start time, or fastest, execution) vehi-
cles yield to each other appropriately in order to avoid colli-
sions.

Extracting a specific trajectory for execution other than
the earliest and latest time trajectories takes about 250 mil-
liseconds. The total time required to generate the scheduled
trajectory envelopes was less than 40 seconds: the paths
were generated using the ARA∗ algorithm, with a cut-off
time of 5 seconds, and then used to grow a total of 140 poly-
gons for the 7 vehicles, while trajectory scheduling took less
than 34 seconds.

Quantitative Evaluation
To evaluate our approach in a more thorough and quan-
titative way, we generated a benchmark set of 900 tra-
jectory scheduling problems. On an obstacle free map of

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 50

Figure 3: A solution to a mission planning problem involving seven vehicles in an underground mine. Spatio-temporal polygons involved in
critical sets during trajectory scheduling are shaded.

width and length of 50 meters, we pre-defined 80 poses
{〈x1, y1, θ1〉, . . . , 〈x80, y80, θ80〉}, where the (x, y) coordi-
nates of each pose correspond to one of 10 points spatially
distributed on a circle, 40 meters in diameter, and where the
orientation θ is one of 8 pre-determined angles. Each pose
could be chosen as initial of final pose for a vehicle, with the
only constraint that the (x, y) coordinates of the two poses
should be different.

The experimental evaluation was performed by defining
9 test sets, each corresponding to an increasing number of
vehicles concurrently deployed in the environment, from 2
(the minimum number of vehicles whose spatial and tem-
poral envelopes could generate conflicts) to a maximum of
10. For each set, we performed 100 test runs, as follows. In
each run, we randomly chose initial and final poses for the
number of vehicles required, only avoiding that two or more
vehicles had the same starting or final (x, y) positions. Once
generated, the paths were used to obtain the spatial and tem-
poral envelopes with (vmin, vmax) = (0.05, 15) meters per
second. In order to make the problems difficult to solve for
the scheduler, we also added temporal constraints imposing
that the temporal distance between all initial spatio-temporal
polygons is zero, thus forcing all vehicles to start moving at
the same time. This, combined with a non-zero minimum
speed for all vehicles, is what allows some benchmark prob-
lems to be unsatisfiable.

Again, we focused on analyzing the trajectory scheduling
efficiency, so we measured the time required by the sched-
uler to find a conflict-free solution for each run, or to identify
the problem as unsolvable. The results are shown in figure 4.
As expected, scheduling time grows exponentially with the
number of vehicles involved.

Two features of these results are interesting. First, note
that problem difficulty in this benchmark is somewhat artifi-
cially inflated as all vehicles are constrained to operate in an
area which is 40-meter diameter circle at roughly the same

 1

 10

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

2 3 4 5 6 7 8 9 10

 100

S
ch

ed
u

li
n

g
 t

im
e

[m
se

c]

Number of vehicles

UNSAT

SAT

All

Figure 4: Quantitative evaluation of the trajectory scheduler.

time. Moreover, all vehicles are constrained to start moving
at the same time, as all starting spatio-temporal polygons
are constrained to occur at the same time and a minimum
velocity of zero is not possible. Even under these rather un-
likely circumstances, the average resolution time remains
under one second up to problems in which we deployed 8
vehicles. Second, recall that the solutions obtained through
the scheduling procedure represent a trajectory envelope for
each vehicle. Two single trajectories, the earliest time and
latest time trajectory, can be extracted for all vehicles in lin-
ear time (in the number of polygons). This is, even for the
most difficult problem, an operation which takes less than
10 milliseconds. Furthermore, even if one vehicle controller
decides it must stray from its current chosen trajectory, the
calculation of another trajectory for all other vehicles is also
a matter of milliseconds, as it can be done in cubic time.
Specifically the most challenging problem of our benchmark
contains 94 polygons, and we can extract a new trajectory

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 51

for all vehicles in less than 50 milliseconds.

Comparing heuristics. In a comparison against a random
choice variable and/or value ordering heuristic, the proposed
hvar and hval lead to dramatically better performance. We
have also compared hvar to a heuristic commonly used in
scheduling which employs only temporal features of the
constraint network to determine the most constrained vari-
able (Cesta, Oddi, and Smith, 2002). Our spatio-temporal
heuristic lead to better performance of the backtracking
search algorithm, although a complete comparison is nec-
essary to establish whether the effect is due to the particular
problem structure of the benchmark.

Conclusions and Future Work
This paper presents a new approach to multiple vehicle coor-
dination in industrial environments. The framework is com-
posed of four different modules for solving logistics problem
for AGVs. The modules progressively refine a constraint-
based representation of the overall problem, taking into ac-
count high-level task planning goals and temporal require-
ments to ultimately obtain commands for vehicle control.
Our approach is engineered in a way that single modules
can be used independently, thus providing the flexibility re-
quired in industrial settings.

We have focused on the two central modules of our frame-
work, namely trajectory planning and trajectory schedul-
ing. Our main contribution lies in multi-robot system coor-
dination: instead of relying on ad-hoc traffic rules, or pre-
defined priority levels, we used an on-line scheduler to syn-
chronize the movements of the AGVs. Our scheduler allows
maximum flexibility, as vehicle trajectories can be globally
adapted to exogenous events, control failures, or changed
mission requirements. The two modules are evaluated both
qualitatively and quantitatively, proving that our approach
can be used on-line, and that the results can be immediately
employed by low-level controllers.

Our future work will focus on the full development of the
remaining two modules, the task planner and a robust model
predictive controller, for one or more specific industrial set-
tings. Also, we will explore the use of different heuristics
for trajectory scheduling. Finally, we intend to test the full
framework and/or parts of it in real industrial scenarios to
demonstrate the benefit of our new paradigm in terms of de-
ployability and efficiency.

Acknowledgments. This work is supported by project
“Safe Autonomous Navigation” (SAUNA), funded by the
Swedish Knowledge Foundation (KKS). The Authors wish
to thank Dimiter Driankov, Dimitar Dimitrov and Simone
Fratini for their support and useful comments.

References
Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-

based method for project scheduling with time windows.
Journal of Heuristics 8(1):109–136.

Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1-3):61–95.

Desaraju, V., and How, J. 2011. Decentralized path plan-
ning for multi-agent teams in complex environments us-
ing rapidly-exploring random trees. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA).

Floyd, R. W. 1962. Algorithm 97: Shortest path. Communi-
cation of the ACM 5:345–348.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
4(2):100–107.

Kleiner, A.; Sun, D.; and Meyer-Delius, D. 2011. Armo:
Adaptive road map optimization for large robot teams. In
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS).

Knepper, R. A., and Kelly, A. 2006. High performance state
lattice planning using heuristic look-up tables. In Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS).

Larsson, J.; Appelgren, J.; and Marshall, J. 2010. Next
generation system for unmanned lhd operation in under-
ground mines. In Proc. of the Annual Meeting and Exhibi-
tion of the Society for Mining, Metallurgy & Exploration
(SME).

Likhachev, M.; Gordon, G.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. Ad-
vances in Neural Information Processing Systems 16.

Luna, R., and Bekris, K. 2011. Efficient and complete
centralized multi-robot path planning. In Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS).

Pivtoraiko, M.; Knepper, R. A.; and Kelly, A. 2009. Differ-
entially constrained mobile robot motion planning in state
lattices. Journal of Field Robotics 26(3):308–333.

Qin, S., and Badgwell, T. 2003. A survey of industrial model
predictive control technology. Control Engineering Prac-
tice 11:733–764.

ter Mors, A. 2011. Conflict-free route planning in dynamic
environments. In Proc. of the IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems (IROS).

Thomson, J., and Graham, A. 2011. Efficient scheduling
for multiple automated non-holonomic vehicles using a
coordinated path planner. In Proc. of the IEEE Int. Conf.
on Robotics and Automation (ICRA).

Tsang, E. 1993. Foundations of Constraint Satisfaction.
Academic Press, London and San Diego.

Urmson, C.; Anhalt, J.; et al. 2008. Autonomous driving in
urban environments: Boss and the urban challenge. Jour-
nal of Field Robotics 25(8):425–466.

Wagner, G., and Choset, H. 2011. M*: A complete multi-
robot path planning algorithm with performance bounds.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS).

2012 TAMPRA Workshop, June 26, 2012, Atibaia, São Paulo, Brazil 52

List of Authors

——/ A /——
Abdo, Nichola . 29

——/ B /——
Bidot, Julien . 13

——/ C /——
Cirillo, Marcello . 45

——/ D /——
da Silva Fonseca, João Paulo 37
de Sousa Ribeiro, Kauê . 37
de Sousa, Alexandre Rodrigues 37

——/ H /——
Hillenbrand, Ulrich . 13

——/ K /——
Karlsson, Lars .5, 13
Kretzschmar, Henrik . 29

——/ L /——
Lagriffoul, Fabien . 5, 13

Lin, Ming C. 1

——/ M /——
Manocha, Dinesh . 1

——/ N /——
Nogueira Cardoso, Rodrigo 37

——/ P /——
Pan, Jia . 1
Park, Chonhyon . 1
Pecora, Federico . 45
Pereira Guimarães, William Henrique 37
Plaku, Erion . 21

——/ S /——
Saffiotti, Alessandro . 5, 13
Schmidt, Florian . 13
Stachniss, Cyrill . 29

——/ Z /——
Zanlucchi de Souza Tavares, José Jean Paul . 37

	Preamble
	Cover
	Publishing informations
	Committee
	Introduction

	Workshop Program
	June 26
	Session 1: Combining motion and task planning for high DOF robots
	Simulating Human-like Motion in Constrained Dynamic Environments
	Ming C. Lin
	Jia Pan
	Chonhyon Park
	Dinesh Manocha

	Constraints on Intervals for Reducing the Search Space of Geometric Configurations
	Fabien Lagriffoul
	Lars Karlsson
	Alessandro Saffiotti

	Combining Task and Path Planning for a Humanoid Two-arm Robotic System
	Lars Karlsson
	Julien Bidot
	Fabien Lagriffoul
	Alessandro Saffiotti
	Ulrich Hillenbrand
	Florian Schmidt

	Session 2: Symbolic knowledge in task and motion planning
	Planning Robot Motions to Satisfy Linear Temporal Logic, Geometric, and Differential Constraints
	Erion Plaku

	From Low-Level Trajectory Demonstrations to Symbolic Actions for Planning
	Nichola Abdo
	Henrik Kretzschmar
	Cyrill Stachniss

	Session 3: Application scenarios
	Automated Planning and Real Systems Based on PLC: A Practical Application in a Didactic Bench of Manufacturing Automation
	João Paulo da Silva Fonseca
	Rodrigo Nogueira Cardoso
	William Henrique Pereira Guimarães
	Kauê de Sousa Ribeiro
	Alexandre Rodrigues de Sousa
	José Jean Paul Zanlucchi de Souza Tavares

	A Constraint-Based Approach for Multiple Non-Holonomic Vehicle Coordination in Industrial Scenarios
	Federico Pecora
	Marcello Cirillo

	List of Authors

