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Foreword 
 
 
Timelines are a very natural way of representing how the state of a physical system evolves with time. 
System evolution is represented via a set of concurrently evolving timelines. Each timeline represents 
the  evolution  of  a  specific  state  variable.  Each  variable may  have  a  finite,  discrete,  or  continuous 
domain of  values.  Each  variable may  evolve  in  a  discrete or  continuous way,  due  to  instantaneous 
events  occurring  at  some  times  or  due  to  natural  time  evolution.  Constraints  on  and  between 
timelines,  either  on  timeline  values  or  on  times  of  change,  represent  physical  limitations  or  user 
requirements on the concurrent system evolution. 
 
This representation is at the basis of many existing planning and scheduling systems, either specific or 
generic.  It  has  been widely  used  for  the  high‐level  control  of  fielded  systems,  that  is  for  planning, 
scheduling, and controlling activities of space, air, ground, or underwater mobile robots. As opposed 
to  other  classical  planning  systems which  focus  on  actions  and  their  durations,  preconditions,  and 
effects,  planning  and  scheduling  systems  that  are  based  on  timelines  focus  on  concurrent  system 
evolutions following actions and time evolution. 
 
The  short‐term  objective  of  the  workshop  is  to  gather  people  that  are  working  with  this  kind  of 
representation in order to take stock of what exists and of what remains to be done. The long‐term 
objective would be to reach an agreement on a common timeline representation framework and on a 
common  language,  on  top  of  which  different  algorithms  could  be  developed.  Mid‐term  realistic 
objectives would be the edition of a book or a special issue of a journal and the creation of a common 
Web  site  where  any  material  related  to  timeline‐based  planning  and  scheduling  systems  (articles, 
presentations, software, benchmarks . . . ) could be found. 
 
 
Gérard Verfaillie and Roman Barták 
PSTL 2012 Organizers 
June 2012
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EUROPA: A Platform for Timeline-based AI Planning, Scheduling, Constraint
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Abstract

EUROPA is a class library and tool set for building and ana-
lyzing planners within a Constraint-based Temporal Planning
paradigm. This paradigm has been successfully applied in a
wide range of practical planning problems and has a legacy
of success in NASA applications. EUROPA offers capabil-
ities in 3 key areas of problem solving: (1) Representation;
(2) Constraint-based Reasoning; and (3) Search. EUROPA

is a means to integrate advanced planning, scheduling and
constraint reasoning into an end-user application and is de-
signed to be open and extendable to accommodate diverse
and highly specialized problem solving techniques within a
common design framework and around a common technol-
ogy core. While EUROPA is a complete tool set, in this paper,
we will mostly concentrate on its timeline-based plan repre-
sentation and the least-commitment partial-order planning ap-
proach operates on top of that representation.

Introduction

EUROPA (Extensible Universal Remote Operations Plan-
ning Architecture) is a class library and tool set for build-
ing timeline-based planners (and/or schedulers) within a
Constraint-based Temporal Planning paradigm (Frank and
Jonsson 2003). Constraint-based Temporal Planning is a
paradigm of planning based on an explicit notion of time
and a deep commitment to a constraint-based formulation
of planning problems. This paradigm has been successfully
applied in a wide range of practical planning problems and
has a legacy of success in NASA applications.

As a complete Planning & Scheduling platform, EUROPA

offers capabilities in 3 key areas of problem solving:

1. Representation: Externally, EUROPA’s main input mod-
eling language is the New Domain Definition Language
(NDDL) (pronounced ‘noodle’). NDDL is a high-level
object-oriented modeling language that can describe a
number of concepts based on Variables and Constraints.
Internally, EUROPA allows a rich representation based on
durative tokens on timelines for actions, states, resources
and constraints that allows concise declarative descrip-
tions of problem domains and powerful expressions of
plan structure.

2. Constraint-based Reasoning: EUROPA’s main reason-
ing module contains constraint-processing and inference
algorithms to enforce domain rules/constraints and prop-
agate consequences as updates are made to the problem
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Figure 1: EUROPA Architecture

state. Specialized techniques for reasoning about temporal
quantities and relations included in EUROPA are particu-
larly useful to deal with real-life problem domains.

3. Search: by default, EUROPA supports chronological-
backtracking search with the ability to integrate heuristics
into the basic search algorithm and for developing new
customized search algorithms.

EUROPA is designed to be open and extendable to ac-
commodate diverse and highly specialized problem solving
techniques within a common design framework and around a
common technology core. Figure 1 shows the main compo-
nents of EUROPA and the hierarchical relationships between
them: through the Client API, applications can utilize or ex-
tend either the core components of the EUROPA kernel or
the built-in commonly used components that are extensions
of the kernel components. EUROPA is now at version 2.6
which embodies significant evolution from the original EU-

ROPA, which in turn was based upon HSTS (Muscettola et
al. 1998). It has been made available under an open-source
license. The source code and extensive documents on EU-

ROPA are available at: http://code.google.com/p/europapso/.
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Timeline-based Planning

Modeling: The NDDL input modeling language representa-
tion includes state and activity descriptions, as is common in
planners using traditional modeling languages like the Plan-
ning Domain Definition Language (PDDL) that support the
variable-value formalism. EUROPA thus takes its heritage
from planning formalisms like IxTeT and SAS+. The NDDL
models are parsed/translated into an internal representation
with the following core components:

• Timeline & Token: EUROPA state variables are repre-
sented using timelines, and the changing values on time-
lines represent sequences of states. Specifically, states
are represented as a set of temporally extended predicates
called tokens and the temporal and logical constraints be-
tween them. Each token consists of a proposition and a list
of parameters, which by default includes the start, end and
duration temporal variables. Timelines consist of totally
ordered sequences of connected tokens; hence, a timeline
can be in only one state at any instant. Note that while
tokens mostly represent temporally-extended predicates,
which resemble world-state, tokens also represent actions
in EUROPA and thus may not be on some particular time-
lines.

• Compatibility: The final component of NDDL model is
a set of compatibilities/rules that govern the legal arrange-
ments of states on, and across, timelines. These compati-
bilities are logical implications asserting that if a timeline
is in a state (represented by a given token), then other time-
lines must be in one of a set of compatible states. Compat-
ibilities can incorporate (1) explicit logical and arithmetic
constraints on the parameters of the states/tokens or (2)
temporal constraints between tokens. EUROPA provides
a library of such constraints (e.g., all of the Allen’s Tem-
poral Relations), and this library can be extended if new
constraints are needed.

Least-Commitment Partial Planning Refinement Search:
EUROPA follows the lifted plan-space refinement planning
approach. It uses a series of refinements to convert an ini-
tial partial plan into a final plan that is complete with re-
spect to the requirements of the planner. A partial plan
consists of a set of timelines containing a partially instan-
tiated and ordered set of tokens with the possible flaws of:
(1) unbound variables; (2) open condition; and (3) tempo-
ral threats. Flaws are resolved one at a time following user-
defined flaw filter and flaw selection strategy and a complete
plan is returned when there are no flaws. The main flaw types
and the resolution strategy for each of them are:

• Unbound Variable: a variable in the partial plan whose
domain is not a singleton. A unbound variable flaw is re-
solved by specifying a value from the domain of that vari-
able.

• Open Condition: when a new token is added to the
partial-plan, its status is inactive and it represents an open-
condition flaw. This type of flaw can be resolved by: (1)
merge with an existing active token; (2) activate and add
to timeline; or (3) reject (if this option is allowed for the
flawed token). When a token is “activated”, it can intro-
duce a new set of (inactive) slave tokens. For example,
if the activated token represents a durative action, then

(slave) tokens representing (pre)conditions and effects are
added as new inactive tokens (new open conditions).

• Threat: once a token has been placed in the partial plan it
may impact other tokens indirectly through possible over-
lapping requirements on objects, or by creating resource
oversubscription. Threats are resolved by imposing order-
ing constraints among tokens.

There are extendable built-in flaw-filter and flaw-selection
strategies to decide which flaw to be handled next. For
the built-in chronological backtracking (depth-first) search
solver, when a flaw is selected, it represents a branching
point in the search graph with the next child search node to
be selected/explored basing on the resolution-selection strat-
egy (which EUROPA also provides extendable built-in op-
tions). The flaw-resolution strategy is backed by strong con-
straint propagation routines with special emphasis on tem-
poral and resource reasoning.The search process stops when
there is no additional flaw to handle. The built-in solver is
only one of many search strategies that can be implemented
using EUROPA all of the solver components are designed
to allow the EUROPA user to implement other search algo-
rithms and heuristics as required by the problem domain be-
ing addressed.

Current State & Future Work
EUROPA and its supporting tools have been going through a
long period of development. Besides the core modeling and
reasoning capabilities, EUROPA also provides a streamlined
API to integrate with native client applications, Eclipse’s plu-
gins to help build and debug NDDL/ANML models, and vi-
sualization capabilities to support plan comprehension and
diagnosis. Overall, EUROPA’s current main strengths in-
clude: (1) proven track record of addressing real life plan-
ning and schedulingproblems; (2) expressive modeling ca-
pability; (3) flexible framework; (4) strong support for inte-
gration with other applications; (5) open-source license. It
has been used for a variety of missions, mission-oriented re-
search, and demonstrations, including: DS1: RAX Remote
Agent Experiment, Support for operation of the International
Space Station’s solar arrays, Bedrest study at Johnson Space
Center, MER Tactical Activity Planning, Advanced Space-
flight Training Systems Development, MBARI’s underwater
autonomous vehicle, and Willow Garage’s autonomous robot
navigation.

Nevertheless, we still have a long list of improvements for
EUROPA. The most important ones in our opinion are: sig-
nificant improvements for search (especially heuristic guid-
ance) and inference capabilities, support the ANML and
PDDL modeling languages, improve the visualization and
debugging tools and allow EUROPA extensions to be written
in other languages. Given that EUROPA is open-source soft-
ware, we welcome contributions from planning and schedul-
ing researchers and practitioners.

References
Frank, J., and Jonsson, A. K. 2003. Constraint-based attribute and
interval planning. Journal of Constraints Special Issue on Con-
straints and Planning 8(4).

Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998. Remote
agent: To boldly go where no ai system has gone before. Artificial
Intelligence 103:5–47.
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Abstract

The paper addresses to the current discussion aimed at reach-
ing an agreement for a common representation framework
and language for modeling problems with timelines. This pa-
per is grounded on the experience of the 10 years collabora-
tion between ISTC-CNR and ESA/ESOC for timelines-based
planning, scheduling and applications deployment. The pa-
per introduces the key concepts of our timeline modeliza-
tion called the TRF (Timeline Representation Framework)
and describes how the TRF is implemented in the ESA APSI
(Advanced Planning and Scheduling Initiative) software plat-
form.

Introduction
A solution of a planning and/or scheduling problem consists
not only of crisp algorithms, but rather entails the develop-
ment of a piece of software able to provide data structures
and services necessary to implement the algorithm and cre-
ate a comprehensive usable service. This software develop-
ment effort is involved both in applied and in experimental
research: in applied research the final goal is produce a piece
of software that is identified by the customer as a “system”,
in experimental research the need for good and competitive
results leads often to a significant effort in terms of deploy-
ment around the core algorithm that is the main objective of
the experimentation.

Timeline based algorithms are not an exception in this re-
spect. In fact the deployment and use of a timeline-based al-
gorithm for planning and/or scheduling usually requires the
representation and management of (at least): temporal infor-
mation, timelines, values of the timelines (often represented
as predicates of continuous and/or discrete parameters over
time intervals) and various high-level relationships among
temporal and value information (referred to as the domain
theory).

Pre-existing works, (Muscettola 1994; Frank and Jónsson
2003; Fratini, Pecora, and Cesta 2008; Verfaillie, Pralet, and
Lematre 2010), do not follow a standardized approach with
a consequent objective difficulty in spreading and re-using
information, software and languages across the community.
There has been a proliferation of platforms all aimed at pro-
viding a set of similar services to implement planning and
scheduling algorithms as well as complete “end-to-end” ap-
plications. Despite the fact these platforms have been us-

ing different underlying technologies, different modeling
assumptions and different languages for representing and
using the relevant information, they have in common that
they usually provides high-level support for (or for a sub-
set of): (1) Represent and Manage Domains and Timelines
(2) Model and Represent Domain Theories, Problems and
Solutions (3) Problem Solving with Timelines (4) Timeline
V&V and (5) Timeline Execution.

In our work we have synthesized a reference framework,
called TRF (Timeline Representation Framework), which
aims at providing the theoretical background for modeling
and solving generic problems with timelines. Additionally,
we have deployed an implementation of the TRF, namely the
APSI framework, for rapid prototyping of timeline-based
planning and scheduling solutions for space applications.

APSI’s design has been driven by the need of a fast and
easy integration of general, domain independent planning
and scheduling services with specific problem solving algo-
rithms, because very often in space domains there is the need
of modeling specific features not easy (or not worth being
pursued for efficiency reasons) to be handled with domain
independent P&S techniques. For this reason the APSI
framework (Cesta et al. 2011; Fratini, Pecora, and Cesta
2008) is an architecture designed to allow a decomposition
of the problem solving process in a hierarchy of interacting
solvers, each of them devoted to the solution of a specific
problem with timelines, and provides for a modeling lan-
guage designed for abstracting the problem of integrating
these solvers as a problem of timeline synchronization.

The software architecture and the modeling language of
the APSI framework are based on the TRF’s theoretical
background which provides, with the concepts oftimeline,
event, synchronizationandsolving step, the abstraction level
to entail this integration. This paper provides a theoretical
definition of these key concepts, a sketchy implementation
for them and an example of modeling.

Behaviors and Events Representation
The timelines-based approach inherits a lot from control the-
ory. In fact a common background among all systems based
on timelines is an underlying assumption that the world is
modeled as a set of entities whose properties can vary in
time (such as one or more physical subsystems) according
with some internal logic or as a consequence of external in-
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puts. The intrinsic property of these entities, namelycom-
ponentsin the TRF, is that they “evolve over time” and that
their evolutions can be affected by external inputs, namely
eventsin the TRF. The analogy with control theory can be
extended to conceive the problem solving with timelines as
a problem of controlling components with external inputs in
order to achieve a desired behavior.

Hence the assumption underlying the TRF theoretical
framework is that whatever is the specific problem to model
(planning, scheduling, execution or more specific tasks), it
is generically casted as a problem of identifying a set of
inputs and relations among them that, once applied to the
components modeling a domain with a given initial set of
possible temporal evolutions, namelybehaviorsin the TRF,
will lead to a set of final behaviors that satisfy some prop-
erties (for instance feasible sequences of states, or feasible
resource consumption, as well as more complex properties).

In the TRF a behaviorσ for a componentC is a piecewise
function defined in an intervalH1 by means of a finite set
of samples ofH and values in a setDC associated to them.
Hence we model a behaviorσ for a componentC as a tuple
〈Tσ, Nσ〉 whereTσ is finite set of ordered time instant inH2

andNσ ∈ D
|Tσ|
C is an assignment of values to the time in-

stants inTσ. An evente is a pair〈τe, νe〉whereτe is the time
frame of the event, i.e. a sub-set ofH, andνe is its value.
We denote asVC the set of values for the events applicable
to a componentC, hence we haveνe ∈ VC , and we assume
VC be a set where is defined a composition operator⊕3.

In the APSI framework, an implementation of the TRF
theoretical framework, behaviors are restricted to be piece-
wise constant functions, where a sample in〈ti ∈ Tσ, vi ∈
Nσ〉 represents the constant value of the behavior in
[ti, ti+1), or piecewise linear functions, where the behav-
ior is linear between two consecutive samples. Further-
more time frames for events are restricted to be intervals
in H, hence an event is a pair〈[ts, te), v ∈ VC〉 with
ts, te ∈ H, ts > te.

The APSI framework provides for the implementation of
components for domain independent planning and schedul-
ing, includingstate variables(Muscettola 1994) and vari-
ous types of resource (defined below), as well as provides
for specialized components implemented during various de-
ployments for ESA (implemented from scratch to model spe-
cific features of the domain, like rechargeable batteries for
instance, or wrapping pre-existing domain specific applica-
tions conceptually based on timelines, for efficiency reasons
or to preserve legacy software).

State variables. A state variable is defined in the APSI
framework as a componentCSV taking piecewise constant
behaviors over a set of symbolic valuesDCSV

. The co-

1H = [t0, tH) ⊆ R, with t0, tH ∈ R, tH > t0.
2Tσ = {ti|ti ∈ H}. We assume,|Tσ| ≥ 2, t0 = tO, t|Tσ| =

tH andti < t(i+1).
3The operator⊕ is provided to define the combined effect of

two eventsei = 〈τ, νi〉 andej = 〈τ, νj〉 on the same time frameτ .
We denote asei⊕ej the evente such thatτe = τ andνe = νi⊕νj .

domainDCSV
of the behaviors for a state variable is rep-

resented by means of a tuple〈S,D,V〉 where:

• S = {s1, . . . , sn} is a finite set of symbols;

• Dv = {D1, . . . ,Dn} is finite set of parameter domains;

• V = {v1, . . . , vn} is a finite set of states. A statusv ∈ V
is a pair〈sv ∈ S,Xv = 〈xv

1, . . . , x
v
m〉〉. X(v) is the set of

parameters of a statusv, D(x) ∈ Dv is the domain of the
parameterx.

We use bounded integer parameters and enumerated param-
eters, constituted by a finite set of symbols. We define
DCSV

≡ Vg, whereVg is the set of all the possible groun-
dization of values inV4.

For a state variable only some transitions between the
states are allowed and there is a minimal and maximal al-
lowed temporal duration for each status (see also Figure 1).
Valid behaviors for a state variable components are defined
by means of a tuple〈T ,W,D〉 where:

• T ⊆ S × S is the transition function that denotes legal
transitions between pair of states;

• W : T → R is the function that associates to possi-
ble transitions between states, sets of relations among the
parameters of the states. Being〈vi = 〈si, Xi〉, vj =
〈sj , Xj〉〉 a transition such that〈si, sj〉 ∈ T andX =
Xi ∪ Xj the union ofvi andvj variables, we have∀r ∈
R, r ⊆ D(x0)× · · · × D(x|X|);

• D : S → N × N is the value duration function, i.e. a
function that specifies the allowed duration of values inV
(as an interval[lb, ub]);

P(?x)
[1,3]

R(?z)
[3,5]

Q(?y)
[2,8 ]

x=y

x≠y

z=x+1

x>z

Figure 1: State Variable

Events applicable to a state variable component model
choices of values over time intervals (as done in similar ar-
chitectures as EUROPA and HSTS, where a “token” is con-
ceptually similar to an event for a state variable component).
Hence for a state variable component,VCSV

≡ 2DCSV .
The operator⊕ is defined forVC as the set intersection∩
among the disjunctions of values of the state variable ac-
cording with the semantic that the combined effect of a set
of events stating a disjunction of values allowed in an inter-
val of time is the intersection of the allowed values. Suppos-
ing for instance a state variable with three possible values
{v1, v2, v3} and two eventse1 = 〈τ, ν1 = v1 ∨ v2〉 and

4vg = 〈s,X = 〈x0 ∈ D(x0), . . . , xn ∈ D(xn)〉 ∈ Vg

denotes a groundization of a state variable valuev = 〈s,X =
〈x0, . . . , xn〉〉 ∈ V.
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e2 = 〈τ, ν2 = v2 ∨ v3〉, we haveν1 ⊕ ν2 = {v2}. In this
case the combined effect ofe1 and e2 would be an event
〈τ, ν = v2〉.

Resources. Regarding resources, a common sense for
what a resource is is any physical or virtual entity of limited
availability needed for something that can generate compe-
tition. This concept can be captured by a component whose
behaviors are numerical functions of time, piecewise, lin-
ear, exponential or even more complex, depending on the
accuracy of the model. Each behavior represents a differ-
ent profile of resource allocation in time. Given that in the
APSI framework are currently available resources imple-
mented as components taking piecewise constant numeric
behaviors. The concept of limited availability is defined by
means of minimum and maximum availability bounds: a
temporal function representing a behavior of a resource is
a consistent behavior if it is always between allowed bounds
in the interval of planning and scheduling. There are two
classes of resources modeled as two different components:
reusable resource componentCR and consumable resource
componentCC . The difference stems in the type of event
applicable. In both cases an event capture the concept of
resource usage, but for a reusable resource an event repre-
sents an amount of resource booked on a temporal interval
while for a reusable resource an event is an amount produced
or consumed in a time instant. Given that a generic event
for a reusable resource is defined over an interval and can
take values inN (this is basically an activity that states a
resource usage over the time frame) while a generic event
for a consumable resource is defined in a time instant and
takes values inZ, affecting the resource allocation profile
from that point to the horizon (negative events are consid-
ered consumptions). The operator⊕ is defined as simple
algebraic sum, being the cumulative effects of bookings and
production/consumptions the algebraic sum of the amounts
booked or produced/consumed.

An example. As an illustrative example of the concepts
introduced so far, we will sketch here a model designed for
a robotic scenario5. The goal of the experiment was to con-
trol the rover to take a set of pictures, store them on board
and dump the pictures when a communication channel was
available.

The first step of the experiment was to model the system
to be controlled. The rover is equipped with a pan-tilt unit,
two stereo cameras (mounted on top of the pan-tilt unit), a
communication facility and a limited memory to store pic-
tures6. The rover is able to autonomously navigate the envi-

5The model was designed for an experiment done at LAAS-
CNRS in the context of the ESA GOAC project (Goal Oriented Au-
tonomous Controller). The target platform was DALA, an iRobot
ATRV rover that has been successfully used to show an autonomy
operation experiment. See (Fratini et al. 2011) for a detailed de-
scription of the specific domain models. The on-board experiment
has been performed using an APSI domain independent planner
integrated with an executive layer.

6Memory was not in the original GOAC model, it has been

ronment, move the pan-tilt, take pictures and communicate
images to a remote orbiter. Hence we consider, for this ex-
periment, as interesting sub-systems to model the rover: a
mobility systemMS, a pan-tilt unitPTU, a cameraCAM, a
communication systemCOMM and a memoryMEM.

We consider in the model the rover able to move between
two points in space given their coordinates〈x, y〉, taking into
account that the rover may get stuck in between two points.
Hence the mobility system can be modeled as a state variable
taking the following values:AT(?x, ?y) when the rover is
standing in〈x, y〉, GOTO(?x, ?y) when the rover is moving
toward〈x, y〉 andSTUCKAT(?x, ?y) when the rover is stuck
in 〈x, y〉. We assume that a transitionGOTO(?x, ?y) →
AT(?x, ?y) denotes a successful move to〈x, y〉, while a tran-
sition GOTO(?x, ?y) → STUCKAT(?x′, ?y′), with ?x 6=?x′

or ?y 6=?y′ denotes an unsuccessful move to〈x, y〉 with the
rover stuck in〈x′, y′〉while moving. A transitionAT(?x, ?y)
→ GOTO(?x′, ?y′) denotes the rover starting to move from
a point〈x, y〉 to a point〈x′, y′〉.

The rover pan-tilt unit can be pointing a given angle〈α, β〉
or can be moving from two angles. Hence the unit can be
modeled with a state variable taking the following values:
POINTINGAT(?pan, ?tilt) when the unit is pointing an angle
〈α =?pan, β =?tilt〉 and MOVINGTO(?pan, ?tilt) when
the unit is moving toward an angle〈α =?pan, β =?tilt〉.

The rover camera can take pictures with the pan-tilt unit
(in the current position of the rover) and store the picture on
an on-board memory with a given file id. Hence the camera
can be modeled with a state variable taking the following
values:CAM IDLE(), when the camera is not taking pictures
andTAKEPIC(?file id) when the unit is taking a picture that
will be stored in a file with id =?file id.

The communication system can dump a file with a given
id. Hence it can be modeled with a state variable taking
the following values: COMMIDLE(), the idle status, and
DUMP(?file id) when the unit is dumping a picture stored
in a file with id =?file id.

The memory has a fix amount of cells available to store
pictures. A cell is occupied when a picture is stored and
freed when a picture is transmitted to the orbiter. Hence
it can be modeled with a consumable resource with unary
consumption and production events.

The second step was to model the controller to operate the
rover. Interesting user goals were (among the others): (1) to
take a picture in a given position〈x, y〉 with the pan-tilt unit
in 〈α, β〉, storing it with a given file id and dump it when the
orbiter is visible for some periods and (2) to drive the rover
in a given position〈x, y〉. Hence we modeled the controller
using two more state variables: a mission timeline state vari-
ableMT and a visibility dump window state variableVW.

The mission timeline state variable can take the values
TAKEPICTURE(?x, ?y, ?pan, ?tilt, ?file id), to model the
goal of taking a picture in〈?x, ?y〉, with the pan-tilt unit
pointing to 〈?pan, ?tilt〉, store the picture in a file with
the id ?file id and dump it as soon as possible, the value
GOTO(?x, ?y) to model the goal of just moving the rover to
〈?x, ?y〉 andIDLE() (an idle status).

added here to show an example of resource modeling.
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The visibility window state variable models the tempo-
ral windows where the communication channel is available.
For the sake of simplicity, we modeled a binary state vari-
able with only two values:AVAILABLE () and NOTAVAIL -
ABLE(). This component was anuncontrollablefeature, i.e.
not subject to planning. In fact the orbiter visibility was
computed in advance and ingested as a component with an
already completely specified behavior.

Timelines and Timeline Extraction Procedures
The relation between component behaviors and events that
influence them is modeled by means oftimelinesandtime-
line extraction procedures. A timeline in the TRF is a finite
set of variables representing ordered points in a temporal in-
tervalH and variables representing values related to them.
Formally, a timelineT L for a componentC over a temporal
intervalH is a tuple〈T ,V, T,N〉 where:

• T is a finite, ordered set of variables ranging inH;

• V is a set of variables ranging inDC such that|V| = |T |;

• T ⊆ H|T | is a set of possible temporal occurrence assign-
ment to variables inT such that〈T , T 〉 defines a frag-
mentation7 ofH;

• N ⊆ V |T | is a set of possible assignment of values inV
to variables inT .

A timeline T L = 〈T ,V, T,N〉 for a componentC defines
a set of partitions ofH into intervalsτi = [ti, ti+1) and
associated valuesν(τi), one for each assignment of variables
in T andV, and we denote that as〈τi, ν(τi)〉 ∈ T L. These
partitions define an envelope ofC ’s behaviors, havingT L =
{σi = 〈Tσ, Nσ〉|Tσ ∈ T ∧Nσ ∈ N}.

A timeline extraction procedure defines the effects of en-
velopes of events on envelopes of component behaviors.
An envelope of eventsEv for a componentC is a tuple
〈E , N, T 〉, whereE is a set of variablesǫ = 〈τǫ, νǫ〉 rang-
ing over the set of events applicable forC, T ⊆ (2H)|E| is a
set of temporal occurrences assignments to the time frames
of the variables inE andN ⊆ V |E|

C is a set of possible as-
signments to the values of variables inE .

The definition of a timeline extraction procedures is based
on the principle oftemporal fragmentation. A set of time
frames{τ1, . . . , τn} is a fragmentationof a time frameτ ′ if
τ ′ =

⋃
τi. We denote asF(τ ′) = {τ1, . . . , τn} the frag-

mentation ofτ ′. A timelineT L defines a fragmentation of
a time frameτ ′ if T L defines a partition ofH into a set of
time frames{τ1, . . . , τn} and it exists a subset of it that is
a fragmentation ofτ ′. A timeline T L′ defines a fragmen-
tation of a timelineT L if, being {τ1, . . . , τn} the partition
of H defined byT L, for eachτi in {τ1, . . . , τn}, T L

′ de-
fines a fragmentation ofτi. Figure 2 gives an idea of the
fragmentation principle. In the figureT L′ is a fragmenta-
tion of a timelineT L (with two fragments having valuesν1
andν2) and a fragmentation of the temporal occurrences of

7〈T , T 〉 is a fragmentation of an intervalH = [t0, tH) if, for
each assignmentt = 〈t0, . . . , ti, . . . , tH〉 ∈ T , t0 = 0, tH = H
andti < tj , ∀i < j.

two eventsǫ1 andǫ2 (with valuesνǫ1 andνǫ2). T L′ has 8
fragments. The figure shows also the fragmentation ofǫ1.

Figure 2: Temporal Fragmentation

A timeline extraction procedure models the effects of an en-
velopes of events over an envelope of component behav-
iors. Given a timelineT L modeling an envelope of com-
ponent behaviors and an envelope of eventsEv, in the TRF
Extr(T L, Ev) denotes the effect of the events inEv over the
behaviors inT L. Extr(T L, Ev) is a timeline such that:

1. Extr(T L, Ev) is a fragmentation ofT L;

2. ∀ǫ ∈ Ev, Extr(T L, Ev) is a fragmentation ofτǫ;

3. ∀〈τi, ν(τi)〉 ∈ Extr(T L, Ev), ν(τi) = fC(ν(τ),⊕νǫj ),
whereτ is the fragment of ifT L such thatτi ∈ F(τ) and
ǫj are the events inEv such thatτi ∈ F(τǫj ).

The functionfC : 2DC × 2VC → 2DC denotes, for a com-
ponentC, the effects of an event over a component behavior
in the time frame of occurrence of the event.

Timelines in APSI. In the case of state variable compo-
nents implemented in the APSI framework for instance, the
function fCSV

is defined as a set intersection. Supposing
for instance a fragment〈τ, {v1, v2}〉 of a timeline for a state
variable and an eventǫ = 〈τ ′, ν1 = v2 ∨ v3〉. The timeline
extracted will take the valuefCSV

({v1, v2}, v2∨v3) = {v2}
in any fragment that belongs to the fragmentation ofτ and
τ ′. The functionalsfCR

andfCC
for reusable and consum-

able resource components are defined as algebraic sums. For
a reusable resource, the effect of an eventǫ occurring in an
intervalτ is to decrease the resource level in any fragment of
the timeline that is part of the fragmentation ofτ , while for a
consumable resource the effect of a production/consumption
is to increase/decrease the resource level in any fragment of
the timeline that is part of the fragmentation of the interval
occurring from the time of the event occurrence till the plan-
ning horizon.

The APSI framework provides for an implementation of
flexible multi-valued timelines. A flexible multi-valued time-
line is a TRF timeline 〈T ,V, T,N〉 where variables inT
are time points of a Simple Temporal Problem with speci-
fied minimal and maximal distance between two consecu-
tive points. Any solution of the STP satisfying the distance
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constraints between two consecutive points is a valid assign-
ment of temporal occurrences to variables inT , henceT is
defined as the set of solutions of the STP.

Envelopes of events over a time intervalH are imple-
mented as set of event variable with time frames that are
either time points of an STP or intervals with starting and
ending time points of an STP. Temporal relationships among
them are defined via a quantified Allen interval algebra di-
rectly translatable into STP temporal constraints.

Value variables assigned to time points in a timeline or
to time frames of events in an envelope and the set of valid
assignments of values to the variables are defined trough a
CSP over enumerated or numerical parameters. Timelines of
state variables assign to time points states of the state vari-
able possibly with constraints among parameters (see Figure
3), while resource timelines assigns to time points integer
parameters, possibly with linear constraints among them.

Figure 3: State Variable Timeline

The timeline extraction procedure implemented in the APSI
framework allows to: (1) test if it is possible to extract the
timeline, (2) identify subsets of the timeline and events tem-
poral assignments to make possible a timeline extraction and
(3) calculateExtr(T L, Ev).

Regarding the first point, a timeline can be extracted from
a timelineT L and an envelope of eventsEv if the times
points of the STP underlying the timeline and the envelope
of events are completelyranked, i.e., supposing available
from the solution of the STP the distancesd

ij
min anddijmax

between any pair of time points (this requires an All Pair
Shortest Path propagation of the temporal network), a set of
time points is ranked if it does not exist any pair of pointsti
andtj in the set such thatdijmin < 0 anddijmax > 0.

If the time points of the STP underlying the timeline and
the envelope of events are not ranked, a scheduling proce-
dure is necessary to enforce an order among them to allow
the extraction of the timeline. Hence a timeline extraction
procedure first schedules the time points by adding prece-
dence constraints to the STP, then extract the timeline.

To extract the timeline, the time points are classified on
the basis of their reciprocal distance: two time points be-
longing to the same class have a null distance to each other,
while time points belonging to a class with a given index
have a positive distance with respect to any time point be-
longing to a class with a smaller index. Formally a classi-
fication of time points inton classesO = 〈O1, . . . ,On〉,
such that havingti ∈ On andtj ∈ Om, n = m ↔ d

ij
min =

dijmax = 0 andn > m ↔ d
ij
min ≥ 0. O defines a fragmen-

tation of the planning horizonH into |O| fragments, that is
also a fragmentation of all the events in the envelope and a
fragmentation of the timelineT L. In fact all the timeline
transition points and all the time points that define the time
frames of the event belong to the sets inO. A setOi is part
of the fragmentation of an interval based event if its start-
ing point belongs to a setOj , j ≤ i and its ending point
belongs to a setOk, k > i. A setOi is part of the fragmen-
tation of the timeline fragment starting at a transition pointt
if it contains the time point representingt or if t belongs to
Oj , j < i and does not exist any transition point in any set
Ok, j < k < i. To take a representative time point for each
set inO and to associate it the composition of the values of
the events and timeline fragments of which it is part of the
fragmentation, defineExtr(T L, Ev).

Domain Theory, Problems and Solutions
Modeling

More than a component in isolation, what is needed for mod-
eling is a set of components synchronously evolving over the
same temporal intervalH. When we use TRF components to
model a real domain they cannot be considered as recipro-
cally decoupled, rather we need to take into account the fact
that they influence each other’s behavior. Hence the need of
defining tuples of component behaviors acceptable consid-
ering the fact they represent the evolution of a whole system
once put all together.

Last but not least when modeling a system it is usually
needed to specify also how events have to be synchronized,
because in fact physical and technical constraints influence
also the type of input that can be provided to the system.
Hence the need of defining also valid patterns for the events
that can be applied to modify the behavior of the system.

Domain Theory. A way for practically defining valid pat-
terns of applicable events and/or valid combination of be-
haviors (namely a definition of thedomain theorythat spec-
ifies what the system is and how it can be used) is by means
of temporal propertieson timelines and envelopes of events.

A temporal propertyρ is a pair〈πτ , πν〉whereπτ : 2H →
{⊤,⊥} is a boolean function on time frames ofH andπρ :
V → {⊤,⊥} is a boolean function on a set of valuesV.

The semantic of a temporal property depends on to what
πν is related to: (1) it can define a property on timeline frag-
ments and values associated to them or (2) it can define a
property on the time frames of occurrence and values of
events in an envelope. LetT (ρ, T L) the set of fragments
of a timelineT L that verifyπτ and whose associated values
verify πν

8. Similarly, letE(ρ, Ev) be the set of events in an
envelopeEv whose frames of occurrence verifyπτ and as-
sociated values verifyπν

9. We say that a temporal property
ρ is pertinentto a timelineT L (or to an envelope of events
Ev) if T (ρ, T L) 6= ∅ (or E(ρ, Ev) 6= ∅). We define a predi-
catePert(ρ, T L) (orPert(ρ, Ev)) that is true if and only if

8T (ρ, T L) = {〈τ, ν〉 ∈ T L|πτ (τ) ∧ πν(ν(τ))}.
9E(ρ, Ev) = {ǫ ∈ Ev|πτ (τǫ) ∧ πν(νǫ)}.
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a temporal property is pertinent to a timeline or an envelope
of events.

Temporal properties are the building blocks ofsynchro-
nizations. A synchronization is a conditional statement that
links in a cause-effect relationship sets of temporal proper-
ties on timelines and envelopes of events.

A synchronizationγ is a statementρr → 〈S,Rτ ,Rν〉
whereρr is a temporal property called “reference”,S =
{ρSi } is a set of temporal properties called “supports”,
Rτ = {rτ (ρ1, . . . , ρn) : (2H)n → {⊤,⊥}} is a set of n-
ary relations on time frames related to temporal properties
ρi ∈ S ∪ {ρ

r} andRν = {rν(ρ1, . . . , ρn) : V
n → {⊤,⊥}}

is a set of n-ary relations on timeline values or event values
related to temporal propertiesρi ∈ S ∪ {ρr}.

A synchronization is a rule with areference(that triggers
the application of the synchronization), somesupportsand
some n-ary relations on time frames and timelines and/or
event values (that describe the consequence triggered by the
reference). Two concepts have to be formalized to define
how a synchronization is applied: when it isapplicableto a
timeline or to an envelope of events and when it issatisfied
by a timeline and an envelope of events.

Intuitively the idea is that a synchronization is applica-
ble when a timeline or an envelope of events contains frag-
ments or events that verify the temporal property of the syn-
chronization reference and it is satisfied by a timeline and
an envelope of events if they contain fragments and sym-
bolic events that verify the supporting temporal properties
as well as the n-ary relations between them and the frag-
ments or events that verify the reference. Formally the
definitions are based on the pertinence of temporal prop-
erties: a synchronizationγ = ρr → 〈S,Rτ ,Rν〉 is ap-
plicable to a timelineT L or to an envelope of eventsEv
if Pert(ρr, T L) or Pert(ρr, Ev). We define a predicate
App(γ, T L, Ev)↔ Pert(ρr, T L) ∨ Pert(ρr, Ev).

A synchronizationγ = ρr → 〈S,Rτ ,Rν〉 applicable to
a timelineT L or to an envelope of eventsEv is satisfiedby
T L andEv if it exists, for each assignmentA(ρr, 〈τ, ν〉)
of time frames and values pertinent to the reference10, an as-
signmentA(ρSi , 〈τi, νi〉) of time frames and values pertinent
to each support, such that:

• ∀rτ (ρ1, . . . , ρn) ∈ Rτ , rτ (τ0, . . . , τn) = ⊤, τi =
A(ρi, 〈τi, νi〉);

• ∀rν(ρ1, . . . , ρn) ∈ Rτ , rν(ν0, . . . , νn) = ⊤, νi =
A(ρi, 〈τi, νi〉).

We define a predicateSat(γ, T L, Ev) = ⊤ if and only if it
exists an assignment that verifies the above properties.

The definition of domain theory is based on the defini-
tions of applicability and satisfiability of synchronizations.
A domain theoryDT for a domain constituted by a set of
components is a setΓ of synchronizations. A set of time-
lines T L for D and an envelope of eventsEv for D sat-
isfy a domain theoryDT if any applicable synchronization

10An assignmentA(ρ, 〈τ, ν〉) of pertinent time frames and val-
ues to a temporal propertyρ is a pair〈ρ, 〈τ, ν〉 ∈ T (ρ, T L)〉 if
ρ is a temporal property on a timeline, or a pair〈ρ, 〈τǫ, νǫ〉, ǫ ∈
E(ρ, Ev)〉 if ρ is a property on an envelope of events.

in DT is satisfied byT L andEv. We define a predicate
Sat(DT , T L, Ev) = ⊤ ↔ ∀γ ∈ Γ,App(γ, T L, Ev) →
Sat(γ, T L, Ev).

Problems and Solutions. A problem can be defined in
general by stating (1) an envelope of behaviors that describe
(by means of a set of timelinesT L0) the initial status of
the system, (2) an envelope of behaviors and events that
describe (by means of a pair〈T Lg, Evg〉) the goal condi-
tion, in terms of behaviors considered acceptable and events
that have to be allocated in a solution of the problem and
(3) a domain theoryDT specifying the temporal properties
required for valid timelines and events applied to the sys-
tem. Formally AproblemP in a TRF domain is a tuple
〈DT , T L0, Evg, T Lg〉 where:

• DT is a domain theory;

• T L0 is an initial timeline;

• Evg is a goal envelope of events;

• T Lg is a goal timeline.

The goal of a TRF solver is to identify an envelope of events
Evs containing at least one instantiation of all the events in
the envelopeEvg such that (1) allows an extraction of a time-
line fromT L0, the timeline extractedT Ls describes a sub-
set of acceptable behaviorsT Lg and 〈T Ls, Evs〉 satisfies
the domain theory. Formally asolutionSol(P) of a prob-
lemP is a tuple〈T Ls, Evs〉 where:

• Evg ⊆ Evs
11;

• T Ls = Extr(T L0, Evs);

• T Ls ⊆ T Lg;

• Sat(DT , T Ls, Evs).

General definitions of domain theory, problem and solu-
tions can be instantiated to derive specific definitions for
planning with state variables, scheduling with resources
and integrated planning and scheduling problems with state
variables and resources. For instance, a timeline based
planning problem with state variables (Muscettola 1994;
Frank and J́onsson 2003) can be defined for a domain with
a set of state variable components by defining synchroniza-
tions among values taken by fragments of the state variables
timelines and specifying a goal timelineT Lg where in some
intervals the value taken by the state variable is specified
while in other intervals there is no specified value (this time-
line does not satisfy the domain theory, because some in-
tervals are not specified). A solution to a timeline based
planning problem with state variables can be provided as a
timelineT Ls that satisfy the domain theory and that is com-
pliant with the fragment specified in the problem (this prop-
erty is guaranteed by the fact thatT Ls ⊆ T Lg). Goal of the
planner in this case would be to find the proper set of events
to narrow the values taken by the timeline in unspecified in-
tervals till a timeline that satisfies all the synchronizations
among the values is found.

11Ev = 〈E , T,N〉 ⊆ Ev′ = 〈E ′, T ′, N ′〉 ↔ E ⊆ E ′ and the
projections ofT ′, N ′ over elements inE are subsets ofT andN .
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A scheduling problem can be defined for a domain with
a set of resource components by specifying an initial avail-
ability profile for the resources as a timeline and an enve-
lope of events containing the activities to schedule or the
production/consumptions to schedule as a goal condition. A
solution to a timeline based scheduling problem would be
the temporal relations added to the envelope of activities to
be scheduled in order to eliminate any overlap among their
frames of occurrence that can lead to fragments of the re-
sulting profile timeline where there is an overconsumption.

An example. Giving back to the rover domain introduced
above, we can provide some examples of synchronizations.
In fact there are some constraints that had to be satisfied in
order to correctly use the rover. The first one (C1) was that
when the rover is taking a picture, it must be stable at a given
location. The second (C2) was that when the rover is mov-
ing, the pan-tilt unit must be in a “rest” position (i.e., at an-
gle 〈0, 0〉). We have modeled these requirements stating the
following constraints:

CAM.TAKEPIC(?file id) DURING MS.AT(?x, ?y) (C1)
MS.GOTO(?x, ?y) DURING PTU.POINTINGAT(0, 0) (C2)

The goal TAKEPICTURE(?x, ?y, ?pan, ?tilt, ?file id)
can be achieved by the rover by: (a) taking a picture with
id = ?file id, with the rover in〈?x, ?y〉 and the pan-tilt unit
pointing to 〈?pan, ?tilt〉 and (b) dumping the picture. To
take a picture on a given position and pan-tilt unit orienta-
tion, can be achieved by (a.1) moving the rover to〈?x, ?y〉,
(a.2) moving the pan tilt unit to〈?pan, ?tilt〉 (a.3) taking a
picture with the camera with an id =?file id. To dump a
picture with a given id can be achieved by (b.1) dumping the
picture when the dump window is available. Hence we add
to the model the following synchronization:

MT.TAKEPICTURE(?x, ?y, ?pan, ?tilt, ?file id)
CONTAINS

〈 CAM.TAKEPIC(?file id) BEFORE COMM.DUMP(?file id),
CAM.TAKEPIC(?file id) DURING MS.AT(?x, ?y),

CAM.TAKEPIC(?file id) DURING
PTU.POINTINGAT(?pan, ?tilt),

COMM.DUMP(?file id) DURING VW.AVAILABLE () 〉

The goalGOTO(?x, ?y) can be achieved by driving the
rover to〈?x, ?y〉. Hence we need to add to the model just
the following synchronization:

MT.GOTO(?x, ?y) MEETS MS.AT(?x, ?y)

The memory management is specified by means of syn-
chronizations between the actions of taking a picture (which
consume memory) and the action of dumping a picture
(which free the memory):

CAM.TAKEPIC(?file id) START-AT MEM .CONSUME(1)
COMM.DUMP(?file id) END-AT MEM .PRODUCE(1)

Figure 4 shows a graphical representation of the synchro-
nizations involved in the action to take a picture. In this do-
main a problem is stated by specifying the initial value for
the component timelines and an envelope of events stating
the goals to be achieved. Figure 5 shows a problem where
the initial conditions describe a rover in a rest position in

〈0, 0〉 and two goals to be achieved: (1) to take a picture in
a position〈2, 3〉 with the pan-tilt unit in〈−35,−45〉 and a
picture id “pic1” and (2) to go in〈0, 0〉 after having taken
the picture. Figure 6 shows a solution for the problem.

Figure 4: Synchronization

Figure 5: Problem

Figure 6: Solution

Problem Solving with Timelines
Problem solving in the TRF can be described as a process of
identifying flaws, i.e. problems on timelines and envelopes
of events regarding the satisfiability of the domain theory,
the extractability of the timelines or the compliance with
goal conditions, andsolving steps, i.e. proper actions to re-
move flaws.

PSTL 2012: Proceedings of the Workshop on Planning and Scheduling with Timelines

14



We define, given a set of timelinesT L, an envelope of
eventsEv and a domain theoryDT , three types of flaws:
a domain theory flawφDT is a tuple〈γ, T L, Ev〉 where
γ ∈ DT is a synchronization such thatApp(γ, T L, Ev) ∧
¬Sat(γ, T L, Ev). A timeline extraction flawφTL is a tuple
〈T L, Ev〉 such thatExtr(T L, Ev) does not exist. Agoal
condition flawφGC is a tuple〈T L, Ev, T L′, Ev′〉 such that
T L 6⊆ T L′ ∨ Ev 6⊆ Ev′.

The timeline based solver can remove a flaw by modifying
the envelope of events that influences the behaviors of the
system and re-extracting the timeline that describe the new
set of behaviors in order to obtain a new envelope and a new
timeline without the flaw. We define a generic solving step
as a function of a flaw and an envelope of events. Formally
given a flawφ and an envelope of eventsEv, asolving step
Ω for φ in Ev is a functionΩ(φ, Ev) = Ev′.

Depending on the type of action taken, a solving step can
be ascheduling stepif it only adds relations among exist-
ing events or aplanning stepif it also adds events to the
envelope. Depending on the type of flaw, different types of
solving steps are appropriate to remove the flaw.

A domain theory flawφDT = 〈γ, T L, Ev〉 can be re-
moved by adding events toEv or by adding relations among
the events inEv in order to either makeγ not applicable
to 〈T L, Ev〉 or to make it satisfied by〈T L, Ev〉. Hence ei-
ther a planning or a scheduling step are appropriate for this
type of flaw. A timeline extraction flawφTL = 〈T L, Ev〉
can be removed only by adding relations among the events
in Ev in order to narrow their time frames of occurrence to
allow their fragmentation. Hence a scheduling step is ap-
propriate for this type of flaw. A goal condition flawφGC =
〈T L, Ev, T L′, Ev′〉 can be removed either by adding events
to Ev in order to directly meet goal conditions specified as
events inEv′ missing inEv or in order to generate fragments
in T L′ missing inT L trough the timeline extraction process
or by adding relations to the envelope of events in order to
cut instantiations of events or timeline frames that violate
the goal conditions. Hence either a scheduling or a planning
step can be appropriate to solve this type of flaw.

A general solving process with timelines is an iterative
process of timeline extraction, flaw collection and planning
or scheduling steps based on (1) aCollectF laws procedure
that analyzes the current status of the timelines and the enve-
lope of events against the goal condition and the domain the-
ory and produces a list of flaws; (2) aChooseF law heuristic
procedure that analyzes the flaws and choose which one has
to be resolved first and (3) aChooseSolvingStep proce-
dure that on the basis of the flaw and the status of the time-
lines and envelope of events select a planning or scheduling
step to be applied in order to remove the flaw.
The building blocks of the solving algorithms can be de-
signed for being general, domain independent (up to a given
extent) and reusable with different configurations of the
components in a domain (an example of implementation for
state variable and resource components is the OMPS plan-
ner described in (Fratini, Pecora, and Cesta 2008)) or can
be designed on purpose for a specific problem modeled with
timelines and synchronizations among them.

Function solve(P = 〈DT , T L0, Evg, T Lg〉)

1 T L = T L0;
2 Ev = null;
3 Φ = CollectF laws(T L, Ev,DT , Evg, T Lg);
4 while Φ 6= ∅ do
5 φ← ChooseF law(Φ);
6 Ω← ChooseSolvingStep(φ, T L, Ev);
7 Ev ← Ω(φ, Ev);
8 T L ← Extr(T L, Ev);
9 Φ = CollectF laws(T L, Ev,DT , Evg, T Lg);

10 end
11 return 〈T L, Ev〉;

Conclusions
The formulation presented in this paper, although at a very
high level, aims at identifying building blocks of the gen-
eral process of modeling and solving a generic problem with
timelines by means of planning and scheduling steps. The
lack of standardization of the timeline-based approach has
lead to an objective difficulty in spreading and re-using in-
formation, software and languages, but such a standardiza-
tion has to be grounded on a widely accepted definition of
basic concepts like “timeline”, “domain theory”, “problem”
and “solution of a problem”. Without this agreement, it is
impossible to design a general language to compare differ-
ent planners or to analyze similarities and differences among
different architectures. This paper describes and formalizes
how timelines are represented and used in the ESA APSI
software platform, with the aim of specifying requirements
for a future standardization that would be compatible with
the algorithms and architectures that we have been propos-
ing over time.
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Abstract

Throughout the history of space exploration, the complexity
of missions has dramatically increased, from Sputnik in 1957
to MSL, a Mars rover mission launched in November 2011
with advanced autonomous capabilities. As a result, the mis-
sion plan that governs a spacecraft has also grown in com-
plexity, pushing to the limit the capability of human operators
to understand and manage it.

However, the effective representation of large plans with mul-
tiple goals and constraints still represents a problem. In this
paper, a novel approach to address this problem is presented.
We propose a new planning paradigm named HTLN, in-
tended to provide a compact and understandable representa-
tion of complex plans and goals based on Timeline planning
and Hierarchical Temporal Networks. We also present the de-
sign of a planner based on HTLN, which enables new plan-
ning approaches that can improve the performance of present
real-world domains.

1 Introduction

In the past decades Automated Planning & Scheduling
(P&S) has become a well studied field. Nevertheless, there is
an important gap between academic and real-world systems
that needs to be continuously bridged in both directions to
make planning theory aware of the complexity of real-world
problems and to transfer innovations in theory to applied
planners. In this paper we consider the planetary rover as an
example of a real-world problem dealing with critical oper-
ations, uncertainty and complex systems and goals that can
be easily generalized to many other real scenarios on Space
and Earth like rescue robots or autonomous vehicles.

The scope of this work is to define a new timeline plan-
ning paradigm for real-world scenarios such as the rover-
world problem, aimed to manage temporal problems with
uncertainty. The objective is to create a Planning & Schedul-
ing System able to generate robust plans for execution, or
more specifically, responsive to the uncertainty and dynam-
ics of the environment. A second objective is to produce
more understandable plans for human experts.

Regarding its design, the system must retain sufficient
generality in order to be used to design a knowledge-based,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

domain-independent timeline planner which can take advan-
tages from different planning techniques such as HTN, CSP
or MC.

After studying the problem, we have identified a num-
ber of key planning technologies from both the academic
and applied worlds that represent the ingredients of a new
planning paradigm called Hierarchical Timeline Networks
(HTLN). It is based on hierarchical hypergraphs to represent
the structure of problems, where complex goals in the upper
layers of the hierarchy are decomposed in more specific sub-
goals, grouped together in sub-hypergraphs in lower level
layers.

The paper is organized as follows: first, the planetary
rover problem is described, then the proposed approach is
discussed and the mathematical background of HTLN is
introduced. Next, the design of a planner based on HTLN
paradigm is presented. The paper concludes with some final
remarks and a discussion of future work.

2 Planning for Autonomous Rover Missions

The planetary rover is a type of robot equipped with a loco-
motion system, typically wheeled, to move across hazardous
terrain. Its hardware is divided between payload and plat-
form. The former includes all the instrumentation dedicated
to perform science, while the remaining sub-systems in sup-
port of these activities are considered the platform. They can
serve different purposes both on Earth and space, such as
rescue missions, surveillance or planetary exploration.

We use as a reference a planetary rover scenario with a
single robot that must perform a traverse through uneven,
unknown terrain towards a target, which can be a rock or
geographical feature. The rover then performs a number of
scientific activities such as taking pictures or studying the
chemical composition of samples extracted with a driller.

This scenario shares with other problems in the robotic
domain a number of specific characteristics, listed in Ta-
ble 1, making it very hard from a planning point of view.

In this context, additional effort is required in the man-
agement of the plan complexity for two reasons. First, as
the complexity of plans increases, the capability of humans
to understand and manage them decreases. However, hu-
man operators need to understand the outcome of the plan-
ners and the reasons leading to generate it. This problem
can be addressed by making the planner goal-based (Dvo-
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Property Description Field

Uncertainty - Dynamic
environment

The environment can spontaneously change its state due to ex-
ternal events

Both

Uncertainty - Partial
observability

Some aspects of the state of the world are unknown. It has three
consequences: Planning based in a complete understanding of
the world is not feasible, some of the assumptions considered
during planning might be wrong and new relevant information
for the plan might be discovered only during execution time

Both

Uncertainty - Non de-
terminism

Not possible to estimate with precision the outcome of the robot
actions

Both

Hw/Sw/Problem com-
plexity

The complexity of space missions has increased exponentially
(Dvorak 2009; Bajracharya, Maimone, and Helmick 2008)

Both

Highly constrained Robotic operations required highly constrained models to avoid
malfunctions

Both

Restricted communica-
tions

Some scenarios do not allow continuous or real-time commu-
nications with the robot. For example, the round trip of a radio
signal from Earth to Mars can take more than forty minutes

Both

Low CPU performance Space-oriented processors have much lower performance than
those integrated in conventional computers (Berger 2009)

Space

Failure recovery The possibilities to recover a mission in case of a spacecraft
failure are very limited. Therefore, safety and V&V play a major
roll in space missions

Space

Table 1: Properties of autonomous robots exploration on
space and Earth

rak, Amador, and Starbird 2008), where goals are organized
in a hierarchical structure that contains different levels of
abstraction (Ghallab, Nau, and Traverso 2004). Navigating
deeper in the structure allows the operator to learn how
complex goals decompose in sub-tasks. Second, algorithms
might be also benefited, as it is easier to isolate and fix parts
of the plan that fail as a group. Different techniques such as
intelligent backtracking and fast-forwarding can be used in
this context.

A higher level of autonomy is crucial to increase the sci-
ence return and decrease mission costs at the same time
(Muscettola et al. 1998; Chien et al. 2006). However, au-
tonomy comes at a price: the higher the level of autonomy
desired, the higher the complexity of the system and level of
detail in the knowledge to be added. The problem is that dur-
ing the design of a planning system, part of the knowledge of
the human experts is not captured. For this reason the plan-
ner should be able to collaborate with experts in a mixed-
initiative strategy (Bresina et al. 2003), where humans can
manually add new elements to the problem and force the
planner to satisfy them.

Finally, it must be possible to express the temporal evo-
lution of events and actions. Temporal planners combined
with CSP techniques have demonstrated to be very ef-
fective for problems involving dynamic environments and
have become the main technology in the space domain
(Frank and Jónsson 2003; Fratini, Pecora, and Cesta 2008;
Ghallab and Laruelle 1994). In order to increase the robust-
ness at execution-time, a number of techniques like tempo-
ral flexible plans or continuous replanning are applied. As a
consequence, the planner should be able to generate partially
defined plans to be further completed once the information
required is available, possibly at execution time, based on
the least commitment principle.

3 Related work in AI Planning

Even though the techniques mentioned before are suitable to
address some of the problems presented in Table 1, none of

them completely satisfies all the characteristics and require-
ments described above. In the specific case of space robotics,
the high cost of a mission plus the fear of losing the space-
craft due to software malfunctions have so far prevented a
deeper integration of these technologies with the exception
of two notorious attempts: Deep Space 1 (Muscettola et al.
1998; Jonsson et al. 2000) and Earth Observation 1 (Chien
et al. 2004).

Significant work has been conducted in the field of
CSP planning, where different versions of arc and path-
consistency algorithms have been used in several plan-
ners (Mackworth 1977; Bessière 1994; Singh 1995). Even
though stating the planetary rover as a pure CSP problem is
possible, this is not straightforward and can result in a com-
plex representation. For this reason, alternative techniques
should be taken under consideration to represent time, un-
certainty or goal decomposition.

With respect to hierarchical task networks, HTN (Erol,
Hendler, and Nau ) planners have been successfully ap-
plied in real problems (Wilkins and desJardins 2000) such as
SIPE-2 (Wilkins et al. 1995) or O-Plan (Tate, Drabble, and
Kirby 1994) but they show some limitations in dealing with
uncertainty as well as temporal domains and do not allow
interaction with human experts. Even though SIPE-2 can de-
fine vagueness with respect to interval relations in terms of
minimum and maximum duration, our objective is to have a
more powerful mechanism to represent partial plans.

Regarding timeline planners, there are several examples
that have been used in the space sector, such as Aspen
(Chien et al. 1997; Fukunaga et al. 1997), Europa (Frank
and Jónsson 2003) or IxTet (Ghallab and Laruelle 1994),
but they are not completely oriented to uncertainty or do not
provide hierarchical task representation.

For planning under uncertainty two techniques have been
widely used: Markov Decision Processes (MDP) (Cassan-
dra, Kaelbling, and Littman 1994) and Model Checking
(MC) (Clarke, Long, and McMillan 1989; Bertoli et al.
2001). The rover problem presents uncertainty in all its pos-
sible dimensions (Table 1) making it a crucial aspect of the
planner design. By assigning costs and rewards, it is pos-
sible to represent desires about goals, while non determin-
ism is expressed by means of probabilities assigned to the
different choices available to achieve a goal. However, in
MDP the policies (pairs states-actions) are defined before-
hand, which do not represent a good approximation for real
scenarios where the number of states might be infinite. It
seems better to provide a model of the system and let the
planner calculate how to achieve a specific state, taking into
account the model in a similar way to MC, where policies
only contain the states involved in transitions to achieve the
goals.

4 Theoretical background
HTLN relies on the idea of merging timeline planning and
HTN (Erol, Hendler, and Nau ) techniques. With respect to
timeline planning, HTLN is based on the formalism of APSI
(Fratini, Pecora, and Cesta 2008). Regarding HTN, we have
used cyclic hypergraph structures to represent the hierarchi-
cal decomposition of goals into sub-goals (Figure 2).
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4.1 Timeline planning principles

In APSI, a planner requires two inputs: model and problem
and produce one output, the plan. The model contains a for-
mal description of all the systems which activities must be
planned. Each system is modeled as an automaton (named
component in APSI) composed of states (component de-
cisions (cd) in APSI) and relations (rlt) between the cd’s,
which represent a super-set of the classical transitions in au-
tomata theory. Each component has related a timeline that
represents a more or less flexible sequence of cd’s that rep-
resent the plan.

Figure 1: Component Camera automaton

A problem is represented as a decision network (dn), that
is, a graph that contains a set of initial conditions ic repre-
senting facts that the planner does not need to justify, and
goals, which the planner must justify using the model. Both
ic’s and goals are represented as sets of cd’s (the nodes)
and/or rlt’s (the edges) of the graph.

In case all goals are satisfied, the result is a fully supported
dn called plan from which the timelines are extracted.

4.2 Hypergraph theory

Hypergraphs have been widely studied and applied in differ-
ent areas such as the definition of complex data structures
or optimization (Berge 1990; Gallo et al. 1993). They com-
bine graph and set theories (Rugg 1983): a hypergraph is
a generalization of a graph where a hyperedge can connect
any number of nodes; it can be also considered as a set of
hyperedges, where each hyperedge is itself a set which el-
ements are the nodes it connects. It is formally defined as
H = (N,E), where N is the set of nodes/hypernodes and E
is the set of hyperedges. The model of hypergraph used here
diverges from the traditional as it contains in addition a sec-
ond way for grouping nodes (besides the hyperedge) called
hypernode (Damaschke 2009). While hyperedges are used
to specify relations (such temporal or parameter relations)
between nodes, a hypernode is used to represent the group
of nodes in which a complex goal is decomposed. Therefore,
a hypernode can be managed by the planner as a single node
(seen as a black box) or as a sub-problem.

HTLN structure is organized horizontally with nested hy-
pergraphs and vertically by mean of directed hierarchical hy-
pergraphs.

The former are used to represent the decomposition of
a complex element (problem or goal) in sub-elements. A
super-hypergraph can contain several sub-hypergraphs and
so forth until all the elements of each sub-hypergraph are

simple. The idea behind this structure is to help the plan-
ner to manage all types of element (complex or simple) in
a common way. However, this structure is not sufficient to
represent the evolution of a problem. During the planning
process, each complex goal is replaced by one of its possi-
ble decompositions (sub-goals). It is important to keep track
of this process to backtrack in case the planner finds no solu-
tion. To represent this relation, a tree data structure seems to
be more appropriate than nesting hypergraphs. Nevertheless,
a tree can be generalized as a directed hypergraph removing
the constraints by which nodes must have at most one parent
and no cycles allowed. The resulting structure is a directed
hierarchical set of hypergraphs. Each hypergraph has a set
of parents (except the root) and children (except the leaves),
where a parent represents a less evolved version of the child.

Figure 2 represents the hierarchical hypergraph structure.
Ellipses represent problems and sub-problems while cir-
cles represent goals. Arrows represent the decomposition of
goals into sub-goals while lines represent binary relations
(temporal and parameter). For the sake of simplicity, there
is no relation involving more than two nodes. The nomen-
clature used (represented as labels in the figure) is the fol-
lowing:

- pi and pi+1: Problem at level i and its decomposition

- cds: Simple node (definition in Section 5)

- cdc: Complex node (definition in Section 5)

- d↑ and d↓: Node to be decomposed (parent) and
its decomposition (child). Formally: d↑(to) = d↓ ∧
d↓(from) = d↑(to)

- dnsup and dnsub: super − dn and one of its sub− dn’s

- rdec: Decomposition relation, where the source is a cdc

and the target is a sub − dn. Even though a cdc can be
decomposed in different sub − dn’s, just one is used in
the problem, being the rest inactive d↓

- rtemp, rparam: Temporal and parameter relations respec-
tively

Figure 2: HTLN structure

Following section will present the novelties of HTLN and
some formal definitions.

5 Hierarchical Timeline Networks (HTLN)

HTLN extends the APSI formalism in the following areas:
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• Uses a HTN approach, allowing the definition of complex
goals and its decomposition in sub-plans. HTLN defines
three types of decisions which organization is displayed
in the tree bellow:

- cds: Simple component decision that can be directly
“executed”. It is represented as a node of the graph that
cannot be further decomposed

- cdc: Complex component decision that must be decom-
posed in order to be “executable”. It is represented as a
node of the graph, that is, a node with a set of decom-
position relations

- dn: A decision network represents a special type of de-
cision represented as a hypernode

• Common representation for all relation types, extended as
n-ary relations between sets of cd’s

• HTLN allows partially defined, partially ordered plans in
order to handle uncertainty (see Section 6)

D

CD

cds cdc

DN

dn

5.1 Component Decision (cd)

A cd on a component defines that a state of the component
automaton holds for a given interval of time and can be used
to express goals and constraints. It is formally defined as
follows:

cd =
〈

id, type, {values} , {rlts} , {props}
〉

(1)

where:

- id: Identifies uniquely the cd

- type: Type of cd as defined in Section 5

- {values}: Each state has associated a value defined over a
qualitative or quantitative domain. Notice that the same cd
representation is used to represent actions of a component
or consumption/production of certain resource

- {rlts}: Set of relations that affect this cd

- {props}: A cd can have specific properties such as rel-
evance, uncertainty, parameters, etc. which values are
assigned or retrieved via specific functions, formally:
fproperty(cd)

Like in dn’s, a cd can be added or deleted by the planner
or human user.

dn’s as cd’s
A decision network dn

↓
1 that represents a decomposition of a

goal d
↑
1 ∈ CDc inherits the values, relations and properties

of d
↑
1.

As a consequence, a planner can apply its normal opera-
tors over a set of cd’s viewed as a special node called hy-
pernode represented by the dn. This approximation makes
the planner more powerful, as it can perform planning over
groups of cd’s, and simpler, as no special code is required to
handle dn’s.

Type Constraint Directed Arity

Parameter Yes No n-ary

Temporal Yes No n-ary

Decomposition No Yes n-ary

Table 2: Relations in HTLN

5.2 Relation (rlt)

A relation is used to describe a common property between
some cd’s. It is represented as a hyperedge that joins together
the cd’s involved in the relation. A constraint is a special
type of relation that limits the possible states in which a
component can be and the duration of this status. All rlt’s in
HTLN are n-ary in order to construct more understandable
problems and plans for humans (Little and Ghafoor 1990).

A relation is formally defined as follows:

rlt =
〈

id, type, {elements} , {props}
〉

(2)

where:

- id: Identifies uniquely the rlt

- type: The relations supported by HTLN are showed in
Table 2

- {elements}: A relation contains a number of elements
ei | 0 < i ≤ n. A n-ary relation is applied itera-
tively to each consecutive pair of elements in the fol-

lowing way: rlt =
〈

id, type, {ei, ei+1} , {props}
〉

∈

[0, n). An element is formally described as follows: ei =
〈

cd, {values} , {constraints}
〉

- cd: Component decision affected by the relation. It can
be a cdc, cds or dn

- {values}: Similar to the cd′s, this field is used to de-
fine a domain of values that the relation can assume.
Depending on the type of relation, these values can be:

∗ Parameter: Qualitative or quantitative domain that de-
limits the value of the parameter

∗ Temporal: Define an interval [l, u] of real values that
delimit the duration of the relation

∗ Decomposition: Not applicable (see Section 5.2)

- {constraints}: Each relation might have appended
some constraints

- {props}: A rlt, as a cd, can have specific properties, for-
mally: fproperty(rlt)

Each of the relations are introduced in detail below.

Parameter (fparam). A parameter relation is used to con-
straint the value between the parameters of different cd’s of
the dn. It is represented as a n-ary non-directional constraint.
Formally

rlt =
〈

id, fparam, {elements}, {props}
〉

(3)

where:

- fparam: There are two type of relations: fparam ∈ (=, 6=)

- {elements}: List of parameters involved in the constraint
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Temporal (ftemp). In HTLN, temporal constraints repre-
sent a superset covering other types of constraints like tran-
sitions in conventional automata theory or synchronizations
between components (Muscettola 1994). Temporal relations
can be applied to any kind of node, that is, to dn’s, cdc’s and
cds’s.

A temporal constraint is represented as a n-ary, non-
directional constraint. Formally:

rlt =
〈

id, ftemp, {elements} , {props}
〉

(4)

where:

- ftemp: HTLN uses the set of Allen temporal relations:
Equals, Before [l, u], Meets, Starts [l, u], Ends [l, u],
Overlaps [l, u] and Contains [l1, u1] , [l2, u2], being
[l, u] a time interval, where l is the lower bound and u the
upper bound. In the special case of Contains, the first in-
terval defines the time relation between the starting points
and the second the relation between the ending points

- elements: List of elements involved in the constraint

Decomposition (fdec). It represents a relation that is ap-
plied not only to decisions d ∈ D, but also to other relations
in order to generate a more evolved version of the problem.
It is represented as a 1 : n directional relation from a de-
cision n1 ∈ D to a set of decisions {n2}. The type of n2

depends on the type of n1 as follows:

- n1 ∈ CDs ⇒ n2 ∈ CDs: All simple elements are just
copied in the evolved version of the problem

- n1 ∈ CDc ∪ DN ⇒ n2 ∈ DN : A complex element,
either a cdc or dn will be decomposed as a dn

The decomposition relation is formally represented as fol-
lows:

rlt =
〈

id, fprop, {{from}, {to}}, {props}
〉

(5)

The decomposition function relies in some supporting
functions that are presented bellow:

- n1(from): Returns the list of parents of n1

- n1(to): Returns the list of children of n1

- n1(active): Indicates whether the decision n1 is active or
not

- fsup(n1): Returns the list of super − dn of n1

- fsub(n1): Returns the list of sub− dn of n1

- x(nodes): List of nodes of x, where x might be a relation
or decision network

- d(edges): List of relations of a decision d ∈ D

- d(params): List of parameters of the decision d

- fdec: Decomposition function (which follows the rules
defined before)

- fStarts
temp (n1, n2): Defines a Start Start temporal relation

between two decisions

- fEnds
temp (n1, n2): Defines an End End temporal relation

between two decisions

- fsearch(domain, n1): Return the decomposition dn’s for
n1

- x
+
= y: Addition of the element y to the list {x}

- x = y: Assigns to x the value of y

In addition to the elements presented in Section 4.2, two
more are used:

- domain: Model of the system containing a description of
all components, its simple decisions cds ∈ CDs, complex
decisions cdc ∈ CDc, decompositions dn ∈ DN and
relations rlt ∈ R

- χ(rlt): Log that stores all the decompositions performed
during planning in support of backtracking in case the
planner cannot find a solution

The following algorithms are in charge of decomposing a
dn into a more evolved version. This decomposition repre-
sents an extra move of the planner in order to transform a
problem into a plan.

Algorithm 1: fdecNode(d
↑, domain)

begin

d↓(active) = true

fcreateDec(d
↑, d↓)

dn↑ = fsup(d
↑)

if dn↑ 6= null then

dn↓ = dn↑(to)

dn↓(nodes)
+
= d↓

else

dn↓ = d↓

if d↑ ∈ DN then

∀d ∈ d↑(nodes), d ∈ D ⇒ fdecNode(d, domain)

∀fr ∈ d↑(edges), fr ∈ {Rparam, Rtemp} ⇒
fdecRel(fr)

Decompose a decision d↑ ∈ D in d↓ ∈ D. The algorithm
is illustrated in Figure 3.

Figure 3: Decomposition of a dn

The algorithm receives as inputs the node to be decom-
posed (d↑) and the decomposition node (d↓), which will be
selected in different ways depending on the type of d↑ (see
5.2:
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- d↑ ∈ CDs (simple decision): d↓ contains a copy of d↑

- d↑ ∈ CDc (complex decision): A list of dn candidates
to decompose d↑ is retrieved from domain. One dn is
heuristically selected from this list

- d↑ ∈ DN (decision network): A new dn is created to
store the decomposition elements of d↑

The decision d↓ selected for the decomposition is marked
as active to distinguish it from the rest of options in which
d↑ could be decomposed. Then a decomposition relation be-
tween d↑ and d↓ is defined. Following, the super − dn’s of
d↑ and d↓, named dn↑ and dn↓ respectively, are identified.
Notice that d↑ represents the problem pi in case it has no
super − dn. In this case, d↓ has been previously initialized
to a new dn which represents the evolution of the problem
called pi+1. In case dn↑ 6= null, then d↓ is added to dn↓,
that means, the decomposition node of d↑ is added to a prob-
lem that represents an evolution of the problem in which d↑

is defined. In case d↑ represents a dn, we further decompose
each of its cd’s and rlt’s.

Algorithm 2: fdecRel(f
↑
r )

begin

new f↓
r ∈ R

∀d↑ ∈ f↑
r (nodes)

begin

d↓ = d↑(to)

f↓
r (nodes)

+
= d↓

dn↓(edges)
+
= f↓

r

Decompose a relation f↑
r ∈ R. The algorithm is illus-

trated in Figure 4.

Figure 4: Decomposition of a relation

First, a new relation f↓
r is created of the same type as f↑

r .
For each node d↑ involved in f↑

r we search its decomposition
node d↓ in dn↓ and assign it to f↓

r . Once f↓
r contains all the

decomposition nodes of f↑
r (nodes), the relation f↓

r is added
to the list of relations of dn↓.

Regarding parameter relations, the decomposition of f↑
r

in f↓
r is very simple as d

↓
2 will inherit the parameters of d

↑
2.

With respect to temporal relations (see Algorithm 4), the de-

composition of f↑
r in f↓

r is equally simple, as d
↓
2 will inherit

the temporal relations (including the temporal duration) of

d
↑
2.

Propagate a relation fr ∈ {Rparam, Rtemp}. During
planning, two more algorithms will be required to propa-
gate parameter and temporal relations between a dn and its
cd’s. In order to study how they propagate consider, without
loss of generality, a relation like f↑

r in Figure 4 involving
two elements, one of which is a cdc. The generalization of
this example to n-ary relations involving different cds’s and
cdc’s is straightforward.

Algorithm 3: fpropParamRel(dn
sup, dnew)

begin
∀pari ∈ dnew(params) : ∃parj ∈ dnsup∧pari = parj
begin

new fequals
param ∈ Rparam

fequals
param(from) = pari

fequals
param(to) = parj

dn↓(edges)
+
= fequals

param

The propagation of parameter relations is presented in Al-
gorithm 3. In case there is a parameter pari in the new cd
equal to a parameter parj of the dn (for example, both re-
fer to the speed of the rover), an equal parameter relation
is created between them and added to the set of relations of
dnsup.

Regarding temporal relations, in order to maintain the

consistency between d
↓
2 and its cd’s, the temporal relation

must be propagated any time a new element is added to d
↓
2.

Algorithm 4 takes care of it.

Algorithm 4: fpropTempRel(dn
sup, dnew)

begin
if dnsup(order) change to ¬fullyOrdered then

dnsup(edges)
−
=

{fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast)}
dummy1, dummy2 = new cd ∈ CDs

dnsup(nodes)
+
= {dummy1, dummy2}

fStarts
temp (dnsup, dummy1)

fEnds
temp (dn

sup, dummy2)

dnsup(edges)
+
=

{fStarts
temp (dnsup, dummy1), f

Ends
temp (dn

sup, dummy2)}

else if dnsup(order) change to fullyOrdered then

dnsup(edges)
−
=

{fStarts
temp (dnsup, dummy1), f

Ends
temp (dn

sup, dummy2)}

dnsup(nodes)
−
= {dummy1, dummy2}

fStarts
temp (dnsup, nfirst)

fEnds
temp (dn

sup, nlast)

dnsup(edges)
+
=

{fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast)}

In case a new element is added to dnsup, the status of
dnsup is checked. If it has changed to ¬fullyOrdered (see
Section 6), the temporal relations between the first/last cd
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and dnsup are removed and two dummy cds’s are created to
enforce the temporal relations between dnsup and its cd’s:

- fStarts
temp (dnsup, dummy1): Indicates that dnsup will start

at the same time as the first of its cd’s

- fEnds
temp (dn

sup, dummy2): Indicates that dnsup will end at
the same time as the last of its cd’s

If the status of dnsup has changed to fullyOrdered,
the dummy cd’s are replaced by the first
and last cd of dnsup and the new relations
fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast) are added
to the list of edges of dnsup.

5.3 Decision Network (dn)

A dn is represented as a hypergraph which nodes are a set
of cd’s and edges are the set of rlt’s. In order to allow the
definition of hierarchical structures, it can be decomposed in
two different ways (see Figure 2):

- Vertical (level of abstraction): A parent dn (dn↑) repre-
sents a less evolved version of the child (dn↓), that is, dn↓

contains at least the decomposition of one dn↑ complex
goal. Each dn can have several parents, as two dn↓ can be
unified in one single dn, and several children, because a
dn might be decomposed in different ways. There is one
single dn at the highest level in the hierarchical structure,
called problem0, which represents the root of the struc-
ture, and several dn’s at the lowest level, called problemi

(where i is the level in the hierarchy) which represents the
leaves of the structure. In case the planner finds a solution,
it will be in any of the leaves of the structure

- Horizontal (nesting): A super − dn (dnsup) can be de-
composed in an unlimited number of sub− dn’s (dnsub),
nested in different levels. At the same time, each dn can
belong to several dnsup, as different dnsup can share com-
mon goals. There is one single dn at the highest nest-
ing level, called problemi, where i represents the hier-
archical level and several dn’s at the lowest level, called
sub−problemij , where j represents the nesting depth. A
dn represents itself a complex goal that can be managed
as any other goal by the planner

It is formally defined as follows:

dn =
〈

id, {values} , {interval} ,

{nodes} , {edges} , {props}
〉 (6)

where:

- {values}: Values associated to the dn inherited from its
parent d↑, in case dn represents the decomposition of a
cdc with value

- {interval}: Indicates the range of minimum and maxi-
mum time that the execution of this dn should take. It is
either defined by the user (for the initial dn that represents
the problem) or derived from its parent d↑ as depicted bel-
low in Algorithm 4

- {nodes}: Set of cd’s and dnsub’s involved in the dn

- {edges}: Set of rlt’s in which either the dn or any of its
elements are involved

- {props}: A dn inherits the properties of cd’s. The value
of each property is assigned or retrieved with a specific
function, formally defined as follows: fproperty(dn)

A dn is partially ordered in case any of its cd’s are not
ordered by means of temporal relations with a predecessor
and successor. The predecessor of the first element and the
successor of the last element is their dn, related by means of
Starts and Ends temporal relations respectively (see Al-
gorithm 4). During the specification of a problem or during
planning time, a dn can be added or deleted by the planner
or human user.

6 Design of a planner based on HTLN

In this section we summarize the guidelines we identified
in order to exploit the HTLN paradigm. Traditional timeline
planners search for fully justified plans, which are complete,
fully ordered and valid:

• Complete: All variables are grounded. The plan always
specifies how to proceed (the timelines have no gaps)

• Fully ordered: All the decisions are sequenced

• Valid: All the constraints are satisfied

This definition might represent an unachievable condition
for real-world P&S systems. In order to deal with non de-
terministic, dynamic and partially observable environments,
more flexibility is required. Our PSS is based on the con-
cept of Sufficient Plan, defined as follows: All variables and
relations are sufficiently grounded, all fully grounded rela-
tions are satisfied, all sub-plans are sufficiently decomposed
and all the mandatory goals can be achieved for at least one
specific instantiation of the sufficient plan.

The underlying concepts of this definition are:

- Sufficiently grounded: All decisions d ∈ D and relations
r ∈ R that appear as goals in the problem must spec-
ify whether they should be grounded or not at planning
time. A cd is grounded when its value and parameters
are grounded; a relation is grounded when all its elements
are grounded. A partially grounded relation has two im-
portant consequences: (1) the relation cannot be satisfied,
(2) in case of temporal relations, the resulting dn is par-
tially ordered

- Sufficiently decomposed: A cdc should also specify
whether it must be or not fully decomposed. A cdc is fully
decomposed if all its sub−cd’s are fully decomposed and
partially decomposed in other case

- Valid plan: If there is one instantiation of the partial plan
where every decision and relation can be grounded, all
constraints satisfied, all sub-plans can be fully decom-
posed and all mandatory goals are achieved

This represents an extension of the definition provided in
(Frank and Jónsson 2003), where a partial plan is fully de-
fined up to a certain point called plan horizon, ignoring ac-
tivities that fall outside it. In our case, any goal, decision or
constraint might be partially defined according to an initial
definition, giving the responsibility to the executive to fill in
the gaps prior to the execution.
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During the plan expansion, the planner has to add (and
eventually delete) cd’s in order to justify the already existing
goals in the network. As dn’s are managed in HTLN like
cd’s, the planner can reason over groups of goals. In fact,
the planner can add sub − dn’s stored in the KB using the
same methods applied to cd’s.

By reasoning over the underlying graph of an HTLN
problem, it is possible to identify separate sub-problems, al-
lowing the use of parallel planning. As explained in (Dechter
and Pearl 1987), a graph G = (V,E) has a separation vertex
v if there exist vertices a and b, a 6= v, b 6= v such that all
the paths connecting a and b pass through v. A graph that
has a separation vertex is called separable. Let V ′ ⊆ V , the
induced subgraph G′ = (V ′, E′) is called a non-separable
component if G′ is non-separable and if for every larger V ′′,
V ′ ⊆ V ′′ ⊆ V , the induced subgraph G′′ = (V ′′, E′′) is
separable. An efficient algorithm to generate valid temporal
plans (not considering resource consumption) and comput-
ing the minimal network is to first find the non-separable
components C1..Cm and then solve each one of them in-
dependently. If all components are valid, then the entire
network is valid and the minimal networks of the individ-
ual components coincide with the overall minimal network.
Taking advantage of HTLN structure, we can use this tech-
nique to isolate independent sub-problems dnsub and per-
form parallel planning, where each planner takes care of a
different independent sub-problem.

6.1 Planner design

In classical planning, two types of operators are used to build
a solution from a partial plan: expansion (horizontally) of the
partial plan and fixing flaws. However, in HTLN a plan is a
hierarchical structure which divides the problem in different
levels of abstraction. In order to generate a valid plan, the
planner must generate a valid dn at each level of abstraction.
Therefore, a planner for HTLN should have a third type of
procedure, the decomposition, which expands the plan ver-
tically.

At the same time, the planner requires the following
properties for the cd’s: fisSGround(cd), fisSDec(cd), which
specify whether the cd is sufficiently grounded or decom-
posed, respectively, and factive(cd), that specifies which cd
is active between a set of exclusive cd’s. With respect to
rlt’s, fisSatisfied(rlt) indicates whether the relation is sat-
isfied or not.

Given a problem and model as inputs to the planner (pre-
sented in Algorithm 5), it first divides the problem in inde-
pendent sub-problems by means of the separation vertices.
Each sub-problem is then evolved in parallel and added to
the plan, which is refined while taking into consideration all
the partial modifications.

The strategy to evolve a problem consists of two steps.
First, the flaws (threads or open-goals) at one level of the
problem are computed and fixed (if possible). Once the layer
is valid, the problem is evolved to the next level decompos-
ing a complex goal in subgoals. This task is undertaken by
the vDecomposition method shown in Algorithm 6, which
decomposes cd’s and rlt’s using the algorithms shown in
Section 5.2.

Algorithm 5: HTLNPlanner(problem, domain, time)

begin
while (time) do

subdns = calcSeparationV ertex(problem)
[parallel]

plan
+
= evolveP (subdnsi, domain, time)

refineP lan(plan)
if (plan.score > best.score) then

best← plan

if (¬best) then
return fail

return solution

Algorithm 6: evolveP(problem, domain, time)

begin
while (time) do

flaws = computeF laws(problem, domain)
fixF laws(problem, domain, flaws, time)
if (flaws 6= ∅) then

return fail

fdecNode(problem, domain)
if (¬problem.isSDec ∨ ¬problem.isSGround)
then

return fail

return problem

return fail

7 Conclusions and Future Work

Real-world problems, and particularly space robotics, man-
age complex and critical systems that present important di-
vergences with respect to theoretical problems. In order to
introduce automated P&S systems in this area, the experts
need to understand and trust the outcomes of the planners.
At the same time, we have to increase the flexibility of plan-
ners and plans in order to increase its robustness during plan
execution in uncertain environments with noise information.
Finally, it is becoming crucial to provide instruments to rep-
resent and store the knowledge that will lead the planner
through NP-complete search-spaces where completeness or
soundness cannot be guaranteed. We consider that the way
problems and plans are defined and represented constitutes a
major concern that might help to address these issues. This
is the reason that motivated the conception of HTLN as a
new paradigm that defines complex goals as the building
blocks of problems and provide advanced features to define
and connect them. In the future, we are planning to extend
the HTLN paradigm in order to include fuzzy temporal inter-
vals and relations as a complementary tool to represent un-
certainty in execution. A planner which exploits the HTLN
paradigm and follows the guidelines presented in Section 6
is also under development.
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Abstract

In this paper we propose a method of propagating
quantitative Allen interval constraints on sets of inter-
vals defined by polygons in a two dimensional space.
The method is used to solve the problem of inferring
timelines of human activities from timelines represent-
ing traces of sensor data. The main advantage of this
method over others is that it allows a more general
description of the events that the intervals are taken
to reflect during inference. This paper deals with the
algorithmic issues underlying the timeline recognition
process. In this context, we compare the performance
of our method to that of a state of the art approach
based on classical temporal constraint reasoning tech-
niques (Dousson and Maigat, 2007).

Introduction

In this paper we provide a new way of performing context
recognition from sensory data given as intervals on a set of
timelines. We apply this technique to the problem of infer-
ring human activities from data coming from a set of hetero-
geneous sensors in an apartment. Our goal is to construct a
system for inferring context based on a given model of how
this context correlates to sensor traces. An example use of
such a system is to infer human activities from a set of sen-
sors located throughout an apartment. This and other appli-
cations benefit from the ability to specify the model based on
which context is inferred in a flexible and compact way. An
easily specifiable model would allow, for instance, to easily
configure a context recognition system to infer human ac-
tivities and situations on a per-user and environment basis.
Furthermore, the system should be able to be configured by
a person without extensive knowledge of the underlying al-
gorithm.

For this purpose we have found it useful to represent the
states of the sensors and the inferred activities as intervals
on different timelines. The model that describes the causal
relationships between the states of the sensors and the in-
ferred activities is provided as a set of quantitative Allen’s
interval algebra constraints. These constraints are posted be-
tween intervals representing sensor readings. This approach
was first described by Ullberg, Loutfi, and Pecora (2009) and

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

then subsequently extended by Pecora et al. (2012). How-
ever, in this prior work, we found that although constraints
taken from Allen’s interval algebra are a convenient way
to describe such relations, they are also very brittle in the
sense that small deviations in how the raw sensory data is
interpreted and placed on the timelines can prevent activities
from being inferred. One possible way of overcoming this is
through the use of fuzzy Allen’s interval constraints (Man-
souri, 2011). In this work, constraint violations are allowed
to some degree, thus allowing activities to be inferred with
a “low likelihood” in case the model is not fully supported
by the sensor readings. This approach, however, introduces
problems when interpreting the inferred activities. Specifi-
cally, one has to provide a threshold on the likelihood of an
inferred activity in order to be able to act in response to it,
and this choice seems to lack rationale.

In this paper we tackle the problem of brittle inference
in the opposite way, that is, by using non-fuzzy, quantified
Allen interval constraints, but instead admitting many inter-
pretations of sensor timelines. This is achieved by perform-
ing temporal inference on multiple intervals contextually.
That is to say, each sensor reading is represented as a set of
flexible temporal intervals rather only one. In order to assess
whether temporal constraints hold among sets of intervals,
we define a new temporal constraint propagation algorithm.
This algorithm constitutes the basis of an abductive infer-
ence system which decides the overall context recognition
problem.

The paper is organized as follows. First, we introduce the
context recognition problem and the overall abductive infer-
ence procedure. We then describe the theory behind tempo-
ral constraint propagation with multiple intervals. We focus
first on how to represent multiple intervals, and provide a
semantics for quantified Allen’s interval constraints among
multiple intervals. We then detail the how these intervals
are filtered using an arc consistency algorithm. We conclude
with a comparison of the resulting system for context recog-
nition with a state of the art technique based on similar ab-
ductive process but which uses classical temporal inference.

Problem statement

We illustrate the context recognition problem by giving a
simple example of how inference is done by Pecora et al.
(2012). In this work, intervals are generated from rich sen-
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Kitchen

Stove

Cooking

Figure 1: An example of a pattern in the sensory data that
allows an activity to be inferred.

sory data that is provided by several sensors in a home envi-
ronment. The goal is to provide a higher-level representation
of what is happening in the world that is rich enough to rea-
son about, but is unencumbered by unnecessary detail. Each
of the generated intervals represents a fact that holds true
during a limited period of time, for instance that the humid-
ity in the bathroom was high between 14:00 and 14:15.

In order to infer context, the generated set of intervals
are combined with a model consisting of rules of the form:
Cooking Equals Stove ∧ Cooking During Kitchen.
Such rules define how context, in this case the activity of
Cooking, can be inferred from intervals representing sensed
data. These rules define abstract patterns of constraints in
Allen’s interval algebra (Allen, 1983) that should be satisfied
in order for an activity to be recognized. The inference itself
is done by iteratively trying to constrain a Simple Temporal
Problem (STP) (Dechter, Meiri, and Pearl, 1991) in which
the intervals representing sensed data and inferred activities
are managed as pairs of timepoints, representing the start
and end time of the interval in question.

The high level Allen interval constraints are represented
as simple distance constraints between timepoints in the
STP. In the example above, the two constraints reference 6
timepoints in the STP; the start and end times of the three
intervals Stove, Kitchen and Cooking. A constraint such
as Cooking Equals Stove, is represented by two simple
distance constraints in the STP that constrain the start and
end times of the Cooking and Stove intervals so that they
can only take on the same values. During inference, each
combination of intervals that are referenced by such a pat-
tern must be tried or pruned away by a search procedure.
For instance the Stove might have been turned on several
times in the past, and the person has been in the Kitchen
at multiple times in the past. In this case, each combina-
tion of choices from these two groups of intervals have to be
evaluated. Each such possible combination is tried by prop-
agating a STP, and if the STP has a consistent solution the
pattern is considered satisfied, and the Cooking activity is
thus inferred.

Figure 1 and Figure 2 show two potential scenarios that
could unfold, in the former the Cooking activity is success-
fully recognized and in the latter it cannot be recognized due
to the introduced discontinuity in the Kitchen timeline. The
key point is that even though these two scenarios are visu-
ally similar, they are very different from the point of view
of the constraint-based inference. Clearly, the rule is writ-
ten with the scenario that unfolds in Figure 1 in mind, and
small deviations from the optimal scenario can prevent us

Kitchen

Stove

Cooking

Kitchen

Figure 2: An example of a pattern in the sensory data that
prevents an activity from being inferred.

IR data:

Interpretation #1:

Interpretation #2:

1 2 3

0

Figure 3: Two timeline representations of the same sensory
data.

from recognizing the activity.
This example is inspired by a real world deployment of

sensors in an apartment and could easily arise when using a
Passive Infrared (PIR) sensor for instance (a motion sensor
often used in burglar alarms). This sensor is characterized
by the fact that it emits a Boolean reading at regular inter-
vals reflecting if movement has been sensed or not. When
forming intervals out of these readings, we must interpret
them to reflect if a person is in a room or not. This can be
done, for instance, by allowing a fixed temporal window of
discontinuities among consecutive readings indicating that
movement has been registered. This situation is illustrated in
Figure 3, which shows a set of Boolean readings indicating
movement, and also two timelines that have been formed out
of this data but with different thresholds of allowed discon-
tinuity. In Interpretation #1, the translation of the discrete
readings into intervals is quite strict so that discontinuities
are easily introduced, whereas Interpretation #2 is resilient
enough to only create one interval out of these readings.

The problem illustrated in Figure 2 could possibly be
overcome by altering the rule so that Cooking is required to
be Overlapped-By Kitchen rather than occur During
Kitchen. This constraint would however not be satisfied if
being in the Kitchen is first sensed after the Stove is turned
on.

In order to overcome this problem we want to use a wider
range of possible intervals as support for the constraint-
based context inference procedure. For instance, we might
wish to use an interval (generated by a relaxed interpretation
of the sensory data, biased towards generating large continu-
ous intervals rather than introducing discontinuities) and all
of its sub-intervals as support for the inference. Thus, we
would like to be able to reason on multiple interpretations
of the same sensory data, each providing additional support
for inferring an activity.

Formal problem statement

Our context recognition problem can be described as a con-
straint satisfaction problem (CSP) Tsang (1993) of the form
〈V,CA〉. Here, V = {v0, . . . , vl} is a set of variables, each
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representing the timeline of a sensor or of one inferred ac-
tivity. The domain of each variable, v = {i0, . . . , im}, is a
set of (possibly overlapping) temporal intervals of the form
i = [s, e], where s is the start time of the interval and e its
end time. Each such interval either denotes that a sensed fact
holds true, or that an activity was performed as the interval’s
time-span states (not during, but precisely starting at time s
and ending at time e).
CA = {c0, . . . , cn} is a set of constraints on the

variables in V of the form cj = {(v0 AllenC v1) ∧
(v0 AllenC v2) ∧ . . .}, where each c constrains the do-
mains of two variables. v0 is a variable representing the
timeline of an inferred activity, and vi 6=0 is either a variable
representing the timeline of a sensor or of another inferred
activity. Note that this implies a dependency graph among
timelines of inferred activities which has no loops, i.e., a
tree. AllenC is a quantitative binary Allen constraint of the
form va CONSTRAINT [l, u] vb. These constraints defines
temporal relations between the variables that should hold in
order for an activity to be inferred.

A solution to the problem 〈V,CA〉 is an assignment of
values (i.e., sets of intervals) to variables (i.e., activity and
sensor timelines). A solution to the context recognition prob-
lem is the projection of a solution to the CSP on the variable
representing the inferred activity. In other words we are not
interested in the interpretations of sensors readings neces-
sary to support inferred activities.

In the CSP, we maintain only one variable representing an
activity to be inferred. The reason has to do with constraint
propagation. Let an activity to be inferred be A. Propagating
the constraints in the CSP may reduce the domain of a vari-
able representing a sensor, S, which is necessary to support
A. However, this reduction only reflects the fact that some
intervals in the domain of S are not relevant for inferring
A, and not that they represent incorrect knowledge about the
sensor readings. The intervals filtered out due to the require-
ments of A could be used to infer another activity B. This is
not possible if the CSP contains variables representing both
A and B.

In the following sections we present a geometric repre-
sentation of the domains of the variables in V . This repre-
sentation allows us to define a propagation algorithm which
achieves arc-consistency. As we will see, arc-consistency
is complete under certain assumptions because of the tree
structure mentioned above.

Representing multiple intervals
In order to increase the number of activities that we can
successfully identify it makes sense to perform temporal in-
ference on batches of interpretations contextually, or even
more useful, on an entire spectrum of interpretations includ-
ing these. In a naı̈ve way, the former could be accomplished
by admitting several overlapping intervals on the same time-
line. For instance, by merging Interpretation #1 and #2 in
Figure 3. This would however only work to a limited ex-
tent since it would also increase the complexity of searching
for matching patterns in the data. This problem affects all
approaches to context recognition which rely on an explicit
representation of each interval in memory.

S

E

3

0 2

1

Figure 4: A 2 dimensional representation of a set of enumer-
ated intervals.

A more intelligent strategy is to propagate constraints
on a spectrum of interpretations contextually. This requires
changing the way in which we represent sets of intervals.
The most straightforward way of representing a set of inter-
vals would be to interpret an interval as a single point in a 2
dimensional graph as in Figure 4. Each of the 4 points (inter-
vals) in this figure corresponds to one of the intervals in Fig-
ure 3. In this figure, each point’s projection onto the x-axis
defines the interval’s start-time, and its projection onto the
y-axis the end time. Naturally, an interval is not permitted
to end before it has started, therefore no interval is allowed
to reside in the lower-right part of this figure. Interpreting
intervals as points in a 2-dimensional space was first done
by Rit (1986), who described how qualitative Allen Inter-
val constraints could be used and propagated on such rep-
resentations1 This representation was later discussed by Pu-
jari, Kumari, and Sattar (2000) and has subsequently only
been briefly mentioned in other work (Duftschmid, Miksch,
and Gall, 2002; Aigner and Miksch, 2006). The reason for
this lack of attention is most likely because of the introduc-
tion of alternative problem formulations such as the STP,
TCSP (Dechter, Meiri, and Pearl, 1991) and DTP (Stergiou
and Koubarakis, 1998). However, in our problem the con-
straint networks are relatively simple compared to the ones
in most contemporary work, whereas the sets of intervals
that we want to reason about is large. Thus there is reason to
believe that this representation is better suited for our partic-
ular problem.

Representing intervals as points in a two dimensional
space not only serves as a visual aid, but more importantly,
this representation can also be used to “generalize away” the
usage of enumerated sets of intervals and instead consider
groups of intervals. Figure 5 visualizes such a set of inter-
vals. Specifically, the gray triangular area protruding from
the diagonal in this figure corresponds to the set of all inter-
vals that are Contained within Interval 0 in Figure 3. For

1The problem identified by Rit (1986) was named Sets of Pos-
sible Occurrences (SOPOS).
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Figure 5: The set of intervals that occurs During interval 0
in Figure 4.

S
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0

Figure 6: The set of intervals that occurs During interval 0
in Figure 4, excluding all intervals contained within the two
“gaps” in the timeline.

an interval to be contained within another, the requirement is
that the interval starts after and ends before the “containing”
interval. These two requirements corresponds to the bounds
of the gray area in the figure. Thus, this area contains all the
intervals found in Figure 4.

By looking at Figure 3 and Figure 4 we can also notice
that it might be meaningful to reason about the set of in-
tervals that are fully contained within Interval 0, with the
exception of the sub-intervals that are contained in the two
“gaps”, during which we received no indication of this be-
ing true. Figure 6 illustrates the mentioned set. The rationale
behind this might be that we want to be more general in our
description of the state of the world and use facts such as
“The person was in the kitchen between 13:00 and 14:00”
(contained in interval 0, arbitrary picked time not illustrated
in any figure) or “between 13:00 and 13:15” (contained in
interval 1), but not “between 13:20 and 13:25” (if this cor-
responds to the gap between Interval 1 and 2). Thus, this

representation allows temporal constraints to be supported
by general descriptions of the events, i.e., the person was
mostly in the kitchen between 13:00 and 14:00, but not by
more precise queries that we have reasons to doubt, e.g., be-
ing in the kitchen between 13:20 and 13:25.

Constraints among multiple intervals
The representation introduced above would be useless un-
less it was also possible to propagate temporal constraints
on the intervals defined by these sets. Fortunately this can
be done, although under certain assumptions as we will see.
We can directly outline the admissible set of intervals B that
a single interval i allows given a constraint as illustrated in
Figure 7. This figure shows one single interval i along with

i
b

[l, u]

Bi

S

E

l
u

Figure 7: A (Starts ∨ Started-By) [l, u] constraint.

the set of intervals B that satisfies the temporal constraint
i (Starts ∨ Started-By) [l, u] b, so that any interval b
in B starts at least l and at most u time units after i. Note
that since this constraint does not limit the allowed end time
of any interval in B, the set of allowed intervals stretches up
towards infinity in the figure. For mixed constraints, i.e., con-
straints in which one interval’s start time constrains another
interval’s end time or vice-versa, the geometric representa-
tion involves a projection onto the diagonal. An example of
this is illustrated in Figure 8, the semantics here is that the
end time of an interval i constrains the start time of another
interval b. Thus, the start time of i is projected onto the di-
agonal to translate it into an end-time. The diagonal inter-
section is then used to constrain B in a similar way as in
Figure 7.

Furthermore, Figure 9 illustrates a constraint that involves
more than a single timepoint in the STP, i.e., the start or the
end time, taken from each of the intervals. Here, the start
time of i limits the possible time of occurrence of the end
time of B. The distinguishing factor here is that the start
time of any b is also limited to occur after the start time of i.
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Figure 8: An After[l, u] constraint.
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Figure 9: The Overlaps[l, u] constraint.

Propagation

The propagation algorithm that is used to solve the con-
text recognition problem is basically a reimplementation of
the AC-3 algorithm (Mackworth, 1977), that is adapted to
work on geometric sets of intervals. Like AC-3, the algo-
rithm keeps a work list containing the arcs in the constraint
network that should be propagated. This set is initialized
to contain all the variables in the domain. Similarly, during
propagation, arcs are removed from this list and processed.
If this reduces the domain of a variable, arcs involving this
variable are reintroduced into the list.

Algorithm 1 shows how we propagate one arc, A
c
←− B,

in the constraint network, i.e., how the algorithm removes

Algorithm 1

1: function propagate arc(A, c,B)
2: P ← ∅
3: Aconvex ← convex subsets (A)
4: for p in Aconvex do
5: I ← ∅
6: for i in p do
7: I ← I ∪ evaluate (i, c)
8: end for
9: p← convex hull (I)

10: P ← P ∪ p
11: end for
12: B ← B ∩ P
13: end function

values from the domain of a variable B with the help of the
constraint c and the values in the domain of variable A. Tra-
ditionally, this is done by checking each value in the domain
of B and searching for a variable in the domain of A that
satisfies the constraint. If one exists, the value in B is kept,
otherwise it is filtered. In our case, this is not possible since
we do not maintain an explicit representations of the inter-
vals in the domains of the variables. Instead, given A and c,
we calculate all possible values of B. This is done by calcu-
lating the Minkowski Sum (de Berg et al., 1997) of the inter-
val A and (dynamically) each convex set of intervals that are
formed by evaluating the constraint on the vertex intervals
in A. We will refer to this set as the convolution of A given
c, and we will use it to geometrically intersect the previous
domain of B in order to remove inconsistent values. This is
done as shown in Algorithm 1.

Algorithm 1 calculates A
c
←− B and takes as an argument

two variables, A and B, and a constraint c. It starts by ini-
tializing a new empty set of polygons (line 2) that will be
used to store the convolution of A.

The next step in the algorithm is to calculate a convex
decomposition Aconvex of the polygons defining the set of
intervals in A with the function convex subsets (line 3).
This function takes as input a set of possibly non-convex
polygons and returns a larger (or equally sized) set of convex
polygons that defines the same regions (line 4). This kind of
decomposition is handled using an algorithm such as the one
by Keil (1985). Note that optimal decomposition of a simple
polygon can be done in O

(

r2n2
)

time (Keil, 1985), where n
is the total number of vertices and r is the number of notches
(reflex angles). Note also that we can do this in O (nlog(n))
time Hertel and Mehlhorn (1985) with a guarantee that we
do not get more than four times more convex pieces than the
optimum.

The convolution itself is driven by solving a small STP
containing two intervals (i.e., four timepoints). In the STP,
these timepoints are initially constrained to each other with
simple distance constraints reflecting the Allen interval con-
straint defined by c. Furthermore, one pair of timepoints are
constrained to the start and end time of interval i respec-
tively. The STP is then propagated with the Floyd–Warshall
all pairs shortest path algorithm (Floyd, 1962), which re-
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duces the temporal domain of the remaining pair of time-
points.

At this stage, the mutual temporal relationship between
the second pair of timepoints in the STP reflects the set of
intervals that are admissible given the constraint c and the
interval i. This corresponds to the situation illustrated in Fig-
ures 7–9. In these figures, the pair of timepoints that are ini-
tially constrained represent the start and end time of i, and
after propagation the remaining temporal flexibility in the
second pair defines area B. The admissible region for B ac-
cording to the interval i and the constraint c is then extracted
by analyzing the remaining temporal flexibility of the sec-
ond pair of timepoints. Each such convolution of a single
interval i generates four new intervals (i.e., the vertices of
the admissible area of B in Figure 9). This process is done
for each interval representing a vertex of A, and for each
convex sub-polygon of A a set of intervals I is formed. This
situation is shown in Figure 10.

S

E

A

Figure 10: The individual convolutions of the intervals de-
fined by region A with the constraints shown in Figure 9.

Redundant (interior) intervals are then removed from each
I by taking the set’s convex hull. This creates a (convex)
polygon p (line 9) that defines the convolution of the convex
subset of A, Aconvex, with respect to the constraint c such as
the one illustrated in Figure 11. The convex hull is retrieved
with a Graham scan Graham (1972) which has a complexity
of O (nlog (n)) where n is the number of intervals (vertices)
in I .

Finally, all such convex polygons form one set of poly-
gons P that completely define the admissible values of B
with respect to A and the constraint c. This set is then used
to intersect the previous domain of B (line 12), which effec-
tively removes values from B that cannot be satisfied with
respect to A and the constraint c. Like the union, the inter-
section is calculated with a clipping algorithm such as the
one outlined by Greiner and Hormann (1998), which has a
complexity of O (mn), where m and n are the number of
vertices (i.e., intervals) in two polygons. However, in prac-
tice, this can usually be done much faster if some sort of
partitioning scheme is used.

S

E

A

B

Figure 11: The convex hull of the individual convolutions
shown in Figure 10.

Finally, just like in AC-3, when the domain of one vari-
able is reduced, all of its outgoing arcs are reasserted in the
work list. Furthermore, when the work list becomes empty
the constraint network has been fully propagated. The al-
gorithm outlined here provides the necessary functionality
to propagate Allen’s interval constraints in a network where
the domains of the variables are sets of temporal intervals
defined by polygons.

Experimental evaluation

In this section of the paper we compare the performance and
quality of the inference of the geometric approach against
the results that can be obtained using the chronicle recogni-
tion system suggested by Dousson and Maigat (2007). The
data used for this evaluation was collected in the home of a
researcher during a two-week long period with the help of
a few wireless sensors. The sensors provide samples mea-
suring movement, humidity, illumination and the usage of
furniture such as the couch and the bed.

In the approach originally describe by Dousson and
Maigat (2007), dubbed chronicle recognition, so-called pat-
terns of sensor events, called chronicles, are recognized. In
our approach, as well as other constraint based approaches
to context recognition (Pecora et al., 2012), sensor readings
and inferred activities are represented as intervals, i.e., pairs
of timepoints. Nevertheless, the chronicle recognition tech-
nique can be easily extended to deal with intervals. Such an
extension is what we are comparing against — which effec-
tively makes chronicle recognition functionally identical to
the approach described by Pecora et al. (2012).

The scenario used for this evaluation consisted of in-
ferring an activity WatchingTV from two sensors whose
data is taken to reflect if someone is InLivingroom
and InCouch. Furthermore the requirement for inferring
WatchingTV is {WatchingTV Contains InCouch ∧
WatchingTV During InLivingroom}. Finally, any in-
terval in the domain of the InLivingroom variable is re-
quired to have a duration of at least 5 minutes.
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The data used to construct the InCouch timeline con-
sisted of 120,581 samples from a pressure sensor mounted
underneath a couch, and the InLivingroom timeline was
constructed from 50,133 samples from a PIR sensor.

In the experiment we used a simple discretization method
to generate intervals out of the raw data coming from a
sensor. The discretization method used consisted of find-
ing all intervals in which the mean of the samples is above
a predefined threshold. Specifically, given a set of sam-
ples s0, . . . , sn for a sensor s, the samples’ respective time
t0, . . . , tn and a threshold T , we formed a set Is containing
all the intervals [ti, tj ] where

j
∑

x=i

si (tx − tx−1)

tj − ti
≥ T.

Furthermore, any interval that could be fully contained in
another was discarded.

When applied to the samples, the discretization method
generated 3,186 intervals for the InLivingroom variable and
4,764 intervals for the InCouch variable. In the case of the
chronicle recognition, we inferred activities from these sets
of intervals as they were. However, when inferring from
these sets with the geometric approach, we used the con-
vex hull of each cluster of overlapping intervals in Is. The
idea is that the convex hull provides us with a more general
description of the data that does not contain unnecessary de-
tail, a description that is difficult to obtain for an approach
that uses enumerated sets of intervals as input. The sets cre-
ated for the InLivingroom and InCouch variable consisted
of 1,036 intervals in 175 polygons and 170 intervals in 26
polygons respectively.

During inference, the geometric approach took 2.6 s to
finish propagating its network. In the chronicle recognition
system, the corresponding operation took 154.4 s (average of
10 runs). After propagation, the domain WatchingTV, was
defined by 1,086 intervals in 174 polygons. In contrast, the
chronicle recognition system recognized the pattern 101,615
times (each one using a unique combination of intervals in
the input data as support).

Clearly, the chronicle recognition system is not conceived
to deal with input data representing alternative views of the
sensor readings, and forcing it to do so obviously affects per-
formance heavily. However, this comparison is intended to
show the difference in the quality of the inference. Figure 12
shows the solutions to the context recognition problem ob-
tained with the geometric approach and the chronicle recog-
nition system. In this figure, the filled areas show the pos-
sible intervals in the domain of the WatchingTV variable
inferred using the geometric approach. The dots that are far-
thest from the diagonal show 799 unique “earliest start time,
latest end time” solutions obtained by the chronicle recogni-
tion system. I.e., since a solution to the STP contains flexi-
bility in the timepoints, we have extracted the earliest possi-
ble start time and the latest possible end time of each interval
recognized by the chronicle recognition system2. Similarly,

2Note that these solutions are however not guaranteed to be a
valid in the general case.

Figure 12: Comparison of the sets of intervals in the domain
of WatchingTV that were recognized with the chronicle
recognition system and the geometric approach. The green
areas show the set of possible intervals obtained by the geo-
metric approach and the red and blue dots show the earliest
start-/latest end-time and earliest start-/earliest end-time so-
lutions of the chronicle recognition approach.

1,675 earliest start/end time solutions were extracted and are
represented by the dots in the figure closest to the diago-
nal. Overall, the dots represent two sets of unique solutions
obtainable with the chronicle recognition approach. We can
further interpret the result of the chronicle recognition sys-
tem to encompass a continuum of intervals between the two
sets of dots. These intervals would be most likely supported
by the input data. Note, though, that our approach, which
can reason in terms of implicitly defined sets of intervals,
achieves a result that is by far more informative. The geo-
metric approach provides a result that is comparable to the
chronicle recognition system’s result, but is less brittle. Fur-
thermore, note that there are two distinct sets of intervals
(slightly to the right of the middle in the figure) that the ge-
ometric approach recognizes but the chronicle recognition
fails to find.

As the propagated domain of the activity variable is repre-
sented in a two-dimensional space, one cannot directly use
the domain of the activity variable to visualize the occur-
rences of events on a “traditional” timeline. This difficulty
is, however, not exclusive to the geometrical approach. Note
in fact that, since patterns matched with Allen interval con-
straints often contain residual flexibility, one timeline only
offers a partial representation of the state of the world. The
typical solution to this is to extract the earliest start-/ earliest
end-time solution and take this to represent the precise oc-
currence of activities. This can of course be done also with
the two-dimensional results of the our approach, however
note that we would be discarding much more information:
not only is it necessary to choose the bounds of intervals to
represent on the timeline, but also the intervals themselves.
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Conclusion

In this paper we have shown how quantitative Allen inter-
val constraints can be propagated onto sets of intervals de-
fined by polygons in a two dimensional space. This approach
was described in detail and also evaluated against the chron-
icle recognition system proposed by Dousson and Maigat
(2007). In the evaluation we found that the quality of the
inferred intervals is comparable, but the inference is much
more efficient with the geometric approach proposed here.

Future work will evaluate the quality of the inferred ac-
tivities with respect to real-world activity recognition prob-
lems. Furthermore, we intend to investigate the possibility
of using more advanced clustering methods for the genera-
tion of intervals from sensory data. This could provide better
descriptions of the real world events on which inference is
performed, and thus increase the adherence of the obtained
timelines to reality.

Also, the formal properties of the algorithm described
here remain to be analyzed, and the possible usages of
this representation should be evaluated in different contexts.
Here we have focused on activity recognition, but the tech-
nique is applicable in other contexts where temporal con-
straint reasoning over multiple intervals is useful. As noted,
we are also interested in exploring how timelines should be
extracted from the geometric representation, as this adds the
issue of interval selection to the process of extracting a time-
line.
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Abstract

Real world planning applications typically involve mak-
ing decisions that consumes limited resources, which
requires both planning and scheduling. In this paper
we propose a new approach that bridges the gap be-
tween planning and scheduling by explicitly modeling
the problem in terms of resources, state variables and
actions. We show that it is an intuitive way to formulate
real world problems with complex constraints, and that
solutions can be found by compiling the problem into a
constraint satisfaction problem.

Introduction
Real world planning problems typically involve actions with
complex temporal constraint, where different consequences
of the action come to effect at different phases of the same
actions. Consider the example of the turning of a spacecraft
in order to point at a target as described in (Smith, 2003).
The reaction control system (RCS), must fire the thrusters
to provide angular velocity, then the spacecraft coasts until
it points to the destination target, then the RCS thrusters are
fired again to stop the angular motion of the spacecraft. It
means the firing of the thrusters happens in the beginning
and the end, and is controlled by the controller. Each time
the thrusters are fired, propellants are consumed and it cre-
ates vibrations which may prevent some other operation on
the spacecraft. It is a complex action that has influences on
various domain objects at different times. A challenge for
the automated planning research is to create formalisms that
efficiently model and solve problems involving such actions.

The main representation language for the planning com-
munity are PDDL and its variants (AIPS-98 Planning Com-
petition Committee, 1998; Fox and Long, 2003). In gen-
eral, the planning models are based on a description of the
world in terms of propositional and numeric variables, a
set of functions that defined over them, and a set of ac-
tions that changes the state of the world. Although PDDL
is widely used in the planning research community and is
Turing-Complete, it is difficult to use it to model many prac-
tical problems due to its lack of support for modeling dif-
ferent kind of resources and temporal constraints that oc-
cur in many real world settings. In particular, as argued in

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Smith, 2003), complex actions that have intermediate ef-
fects are particularly difficult.

Alternatively, one can represent the problem as a schedul-
ing problem in terms of the available resources and the du-
rative activities that have different requirements over these
resources. Alternative options to achieve the goals are repre-
sented by different modes of action execution. However, the
scheduling approach lacks a high-level representation lan-
guage, and in-depth domain knowledge is needed to model
the problems.

In this paper, we aim to bridge the gap between plan-
ning and scheduling. Our approach is to frame a planning-
scheduling problem in terms of resources, state-variables
and actions over a timeline. The actions describe how the
resources and state variables evolve over time. Throughout
the paper we use a manufacturing setting to illustrate our
approach. We show that our approach is an easier way of
modeling a planning problems with complex constraints that
appear in typical industry-related problems; provides a sim-
ple and intuitive semantics for actions and state transitions;
and one can encode the problem as a constraint satisfaction
problem (CSP) in a straight forward manner.

The work in this paper can be considered as extension of
of (Banerjee, 2009), where the former work describes mod-
eling temporal planning problems using actions and tran-
sitions. The approach in this paper explicitly models re-
sources, and creates an action representation to allow for
delayed effects. The constraint model for resource transi-
tion in our paper is related to the support-link scheduling
described in (Banerjee and Haslum, 2011). The main con-
tribution of this paper is to show that everything can fit to-
gether under a unifying framework that allow us to model
resource-based planning problems, and we empirically eval-
uate our approach with a new solver for such problems.

Our approach is related to the ANML language, where
both approaches describe a planning problem in terms of ac-
tions and multi-valued state variables. The key difference
being that ANML provides temporal qualifiers to repre-
sent expressive actions, whereas we represent actions by a
set of transitions. Although this restricts our representation
from describing more expressive actions effects in ANML,
it helps us to develop an efficient and straight forward way to
encode and solve real world, resource-based planning prob-
lems as constraint satisfaction problems.
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Figure 1: Illustration of a factory with 3 cutting machines
(CM), 2 painting machines (PM), 2 dryers (DR) and 2 as-
sembly areas(ABS)

The Setting

We consider the class of planning problem that require the
manipulation of some scarce resource. A problem is a tuple
< R,S,A,H, I,G >, where R denotes the resources in-
volved in the problem, S the set of state variables, A the set
of actions, H the planning horizon, I the initial state, and
G the set of goal states. We will illustrate our modeling ap-
proach through the following example in a practical setting.

Example

Consider a simple manufacturing plant with 4 areas: cutting,
painting, drying and assembly. In the cutting area there are a
number of cutting machines that are used to produce a fixed
type of parts from raw materials; the painting area has some
painting machines to paint the parts with a specific color; the
drying area has some drying units to dry the recently painted
parts; and finally the assembly area where the parts are being
assembled together on a number of assembly desks. Cutting
area, painting area and assembly areas of factory floors are
connected via conveyor belts, each part after being cut in the
cutting machine, travels via these conveyor belts from one
location to other location. Each order (o) consists of a num-
ber of different order-parts (op), each of which that needs to
be cut, painted, dried and assembled with other parts. Auto-
mated conveyor-belts move the order parts from one area to
another. An order is completed if all its parts are assembled.

The cutting machines are used to cut the raw material into
parts. The machine has its own configuration time and of-
fload time, where it needs a worker to configure it before it
can cut a part, and a worker to offload the part and send it
to the painting machines once it is done. The cutting oper-
ation also produces some waste byproducts, which must be
cleaned after some iterations.

Each painting machine in the painting area is capable of
painting a part with a color. If a machine has to change the
color of its paint, it would require some set up time to wash
the nozzles depending on what the next color would be.
Setup times for changing a color from other color is given.

After the part is painted, it must be sent to the drying area
to be dried. A drying unit, while it is running, can dry an
unlimited number of parts. However, it may only be in con-
tinuous operation for a certain length of time, after which

they would need to be switched off to be cooled for a fixed
period before it can be switched back on again.

After all the parts of an order are cut, painted and dried,
they are sent to an assembly desk where they are put to-
gether by a number of workers. Once it is done, the order
is completed. Workers are needed in cutting area to config-
ure machines and offloading parts when they are processed.
They are also needed in the assembly areas to complete or-
ders. For a worker going from one location to other takes
time.

Resource

In our approach, at the center of the problem representation
are resources. In essence, resources are domain objects in
the planning world that has a finite capacity, and that they
are required in order for an action to be executed. The avail-
ability of a resource is also reflected on the timeline, where
at any instant in time we have both the amount of the re-
source available and its maximum capacity.

We divide resources in two broad categories: Reservoir
Resources (RSR), which are either consumed or produced by
an action; and Reusable Resources (RUR), which are bor-
rowed by an action at the beginning of its execution, and
returned when the action is completed. So in our example,
RSRs are raw materials and waste by products in the plant,
and RURs are factory machines and worker pool.

A given resource r has the following attributes:

• capacity(r): an integer that denotes the maximum
amount of resource units;

• type(r): the type of the resource, being either Reservoir
or Reusable;

• level(r, t): the amount of resource used at time t, with the
constraint 0 ≤ level(r, t) ≤ capacity(r);

• freeSpace(r, t): the amount of resource remain available
at time t.

In our example, we have the following resources with
their associated capacities:

• Reservoir Resources:

– CuttingMachinWaste: capacity = X (cleaning inter-
val)

• Reusable Resources:

– CuttingMachine: capacity = 1

– WorkersPool capacity = Y (number of the workers)

– PaintMachine capacity = 1

State Variables

State variables are the domain objects in the planning world
that can be in one of many finitely possible states at any
given point in time. In contrast to resources, they do not have
a capacity. However, they may still be conditions for which
actions may be executed.

A state variable sv has the following attributes:

• dom(sv): the set of possible domain values of sv;

• state(sv, t): the domain value of sv that holds at time t.

PSTL 2012: Proceedings of the Workshop on Planning and Scheduling with Timelines

34



In our example, there are a number of orders to complete,
each of which consists of multiple order parts. For each or-
der (o), order part (op), drying unit (du), we have the fol-
lowing state variables with the associated domain values to
denote their status:

• OrderStatus(o): {incomplete, completed}

• OrderPart(op): {uncut, cut,painted,dried,assembled}

• DryingUnit(du): {on, off}

We view state variables and resources as timelines as de-
scribed in control-based modeling of planning and schedul-
ing problems. That means by timelines of state variable and
resource we will mean their evolution over time in terms of
states and resource availability.

Actions and Transitions

Actions are the components that manipulate both resources
and state variables. In our approach, we break down an ac-
tion into the individual effects of an action on either a re-
source or a state variable, each with its start time and dura-
tion on the timeline. We call such individual effect a Tran-
sition, which may be interpreted as a temporal constraint
on a specific domain object. Hence, we represent an action
as a set of transitions, which is a set of synchronized dura-
tive effects with different durations. This is in contrast to the
PDDL-based representation where each action has its dura-
tions and all effects takes place either at the beginning or the
end of the action. Our approach allows s to intuitively model
actions with multiple delayed effect, which is ubiquitous in
real world applications.

A transition T has the following attributes:

• act(T ): the action that T is a part of;

• req(T ): the requirement for T to commence execution;

• dur(T ): the duration of T ;

• start(T ): the start time of T ;

• end(T ): the end time of T ;

• offset(T ): the time delay between the start of action and
the start of transition.

A transition involves only a single domain object, being
either a state variable or a resource. It is typed according
to its effect on the domain object. If the transition involves
a state variable, it can be of either an EFFECT transition,
one that changes the assignment of the variable from one
value to another; or a PREVAIL transition, one that preserves
the assigned value of a state variable for its duration. If the
transition involves a resource, then it can either BORROW
a certain amount of resource at the start and return it at the
end; CONSUME the resource or PRODUCE the resource. In
the following section we will describe in detail each type of
transitions.

EFFECT Transitions For a given EFFECT transition on
state variable sv, written as TE

sv , req(TE
sv) is a tuple <

sfrom, sto >, sfrom, sto ∈ dom(sv). The requirement de-
notes the value of sv before and after the transition. More
specifically, for the transition TE

sv be valid, the following
constraints must be satisfied:

1. sv must be assigned to sstart at the start of the transition;

state(sv, start(TE
sv)) = sstart (1)

2. sv must be assigned to send at the end of the transition;

state(sv, end(TE
sv)) = send (2)

3. sv must be undefined between the start and the end of the
transition.

∀t | start(TE
sv) < t < end(TE

sv) : state(sv, t) = ∅ (3)

Given an EFFECT transition TE
sv on a state vari-

able, pre(TE
sv) denotes the pre-condition,i.e pre(TE

sv) =
sfrom and post(TE

sv) denotes the post-condition of TE
sv ,

i.e post(TE
sv) = sto. We say the TE

sv achieves the state
post(TE

sv) from the state pre(TE
sv).

PREVAIL Transitions For a given PREVAIL transition
on state variable sv, written as TP

sv , req(TP
sv) is a tuple

< sp >, sp ∈ dom(sv). The requirement denotes that sv
must remain sp for the entire duration of the transition. More

specifically, for TP
sv be valid, the following must constraints

be satisfied:

∀t | start(TP
sv) ≤ t ≤ end(TP

sv) : state(sv, t) = sp (4)

Note that for a PREVAIL transition pre- and post-
conditions are the same, i.e. pre(TE

sv) = post(TP
sv) = sp.

PRODUCE Transition A PRODUCE transition on re-
source r, written as TR

r , reserves the amount of free-space
as described by req(TR

r ) at the beginning of its execution
start(TR

r ) for its entire duration, and produces req(TR
r )

amount of resource when it is completed at time point
end(TR

r ). The free-space is consumed at the end of the tran-
sition.

CONSUME Transition A CONSUME transition on re-
source r, written as TC

r , is the complement of a PRODUCE
transition. It consumes req(TC

r ) amount of resource levels at
at the beginning of its execution start(TC

r ), while reserves
the same amount of free-space. It releases the free-space at
the end of its execution.

BORROW Transition A BORROW transition TB
r on a

reusable resource r uses the resource for its duration, and at
the end gives back the resource. It may be interpreted as a
CONSUME transition, but returns the resource at the end of
its execution.

Actions in the Example Our manufacturing example con-
tain many actions. They include cutting, painting and dry-
ing the order parts, assembling the parts together for an or-
der, clean a cutting machine, and switch on and off a dryer.
Here we will describe the specific actions to illustrate our
approach.

• CutOrderPart(order, part, cutting machine): Cutting a part
for an order on the cutting machine CM. It has 5 main
transitions (Fig. 2)

– Transition-1: A BORROW transition on the resource
”Worker” for the time it takes to configure part on the
cutting machine
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Figure 2: Action CutOrderPart( o, op, cm ) and its transi-
tions.

Figure 3: Transitions on order and dryer

– Transition-2: After configuration time, it has an EF-
FECT transition on the state variable ”Order-Part”
where it changes its state from uncut to cut for the du-
ration when cutting machine cut the part.

– Transition-3: After cutting machine finishes the pro-
cessing, it has a BORROW transition on the resource
”Worker” for them it takes to offload the part from the
machine.

– Transition-4: During the whole time, it has a BORROW
transition on the resource cutting machine

– Transition-5: During the time of processing it has
a PRODUCE transition on the resource CuttingMa-
chineWaste, where it produced 1 unit of waste.

• ColorOrderPart(order, part): The color part action 2 tran-
sitions: one BORROW transition on the resource paint-
ing machine, and an EFFECT transition on the state vari-
able ”Order-Part” where it changes state the state cut to
painted.

• DryOrderPart(order, part): This action has 2 state vari-
able transitions: one PREVAIL transition on the state vari-
able ”DryingUnit”, that needs the state on, and an EF-
FECT transition on the state variable ”Order-Part” where
it changes the state painted to dried.

Other actions for which we would not elaborate here
include: AssembleOrderPart(order, asb desk), Clean-
CuttingMachine(machine), SwitchOnDryer(dryer) and

SwitchOffDryer(dryer). Figure. 3 describes how actions
changes the assigned values of state variables.

Modeling Setup Constraints

Setup constraints that defines how much time must elapsed
between two consecutive tasks. For a transition T , Setup(T )
denotes the setup state of the transition. In our example,
there are three scenarios where setup constraints apply; first
between any two painting task of different color in a painting
machine, second for each worker moving from one location
to other, and thirdly between cutting and painting, painting
and drying, and drying to assembly tasks of a part as it has
to travel via conveyer belts from one area to other. To model
setup constraints, we add a setup matrix to each state vari-
able and resource, and assign a setup state to each transi-
tion. Setup matrices describes the time delay between pair
of setup states. For example, we add a color setup matrix to
each painting machine resource. If there are 3 different col-
ors, C1 to C3, then the color setup matrix defines the time
needed to change color from a pair of colors. Each resource
transition on the painting machine must have a setup state
among C1 to C3. For example, each ColorOrderPart(order,
part, PM) action has a transition on the resource PM. If the
color needed for the part is C1, then the setup state of the
transition must be C1.In addition to the color matrix added
to the painting machines, in the running example we add a
distance location matrix to the resource ”WorkerPool” that
defines the time needed for each worker to travel from one
location to other. All transitions on the resource ”Worker-
Pool” must have one of the locations (locations of individual
machines ) as the setup state. A distance matrix is added to
the state variable ”OrderPart” that defines the time to travel
from one area to other area via conveyor belt for a part,
all transitions on the state variable must one of the areas
:cutting, painting, drying, assembly as setup state.

Initial State, Goal State and Planning Horizon

Similar to PDDL, a planning problem contain the descrip-
tion the initial state, which denote the state of the world we
start in; and the goal state, the things that we want to be true.
It may also contain the description of a planning horizon,
which is the maximum time we allow the plan to reach the
goal state. Abusing the notation, we would also say that the
value a particular domain object (state variable or resource)
is in the initial/goal state, if the value assignment is part of
the description of the initial/goal state.

The Solution to a Planning Problem

In our setting, the solution to a planning problem is a valid
flexible plan, which denotes the set of actions to be executed
from an initial state to reach a goal state, and maintaining
that no constraint is violated at any time during its execution.

Flexible Plan A flexible plan is simply a set of tuples
(a, [X,Y ]), where a is an action, and [X,Y ] is a time in-
terval where X and Y are specific time points, which that
denotes the range of the possible starting time of action a.

In executing a flexible plan, the agent chooses a starting
time from the specified time interval of each action. When

PSTL 2012: Proceedings of the Workshop on Planning and Scheduling with Timelines

36



all the starting time of the actions are specified, the resulting
plan is a realization of the flexible plan.

Schedule A realization of a flexible plan creates a sched-
ule for every state variable and resource, where a schedule
is a sequence of transitions with fixed start time. A schedule
of a state variable is ’em valid, if and only if the precondi-
tions of the first EFFECT transition is in the initial state, the
postconditions of the last EFFECT transition is in the goal
state, and the following holds at any given time:

• If an EFFECT transition is in execution, then no other
transitions are in execution on this state variable;

• If a PREVAIL transition is in execution, then other PRE-
VAIL transitions in execution on this variable must also
require the same state.

A schedule of a resource is valid if and only if the follow-
ing holds:

• At any time, there exists no set of transitions in execu-
tion such that the total resource requirement of the set is
greater than the capacity of the resource;

• Immediately after the execution of all the transitions that
starts at the initial time point, the level of resource must
be less than or equal to the initial level of the resource;

• at the end of the planning horizon the amount of resource
in r is within the range defined in the goal state.

Hence, we say that a realization is valid, if and only if it
creates a valid schedule for every state variable and resource,
and a flexible plan is valid if and only if every possible real-
ization of the plan is a valid realization.

Encoding the Problem as a CSP

In our approach, the search for the solution of a planning
problem is to find a valid flexible plan, which represents a
set of valid schedules for every state variable and resource.
This corresponds to a set of temporal constraints on every
domain object. Therefore, it is natural to model the planning
problem as a Constraint Satisfaction Problem (CSP) on the
domain objects.

The constraint model for each state variable can be
thought of as the constraints for causal-links between
pairs of state variable transitions. First introduced in
Partial-Order-Planning (McAllester and Rosenblitt, 1991), a
causal-link a[p]a′, represents the fact that action a achieves
the pre-condition p for action a′. In our approach, a causal
link on a state variable sv, written as Tsv[s]T

′

sv , denotes the
precedence relation between two transitions. Tsv is an EF-
FECT transition that make the precondition of the latter tran-
sition T ′

sv true. Solving the constraint problem on every state
variable is analogous to deciding which causal links hold in
the final plan, where all the precedence constraints between
those pair of transitions are satisfied.

The constraint model for each resource is based on de-
ciding the support-links between pairs of transitions on the
resource. On a resource r, a support-link, Tr[δ]T

′

r, denotes
that transition Tr provides δ amount of resource towards the
requirement of T ′

r. If δ = 0, it means Tr does not provide
any support to T ′

r. If δ > 0, then the support link implies

Figure 4: Additional states and actions

a precedence relation between Tr and T ′

r. By deciding how
transitions provide support to other transitions, i.e. creating
support links, we build a schedule on each resource.

Each causal and support link implies a precedence or or-
dering relation between a pair of transitions. A precedence
relation between two transitions T → T ′ means that T ′

starts after T finishes its execution. Since each transition is
non-preemptive, and the start times of transitions and their
corresponding actions are synchronized, each precedence
constraint implies a precedence relation between the actions
of the transitions. The constraint model for actions maintains
the transitive closure of these precedence relations.

Preprocessing

We first introduce a preprocessing step before encoding the
problem as a CSP. It introduces new states, actions and tran-
sitions such that it allows the resulting CSP to be solved in a
more efficient manner.

Additional States for State Variables For each state vari-
able sv ∈ SV we add two additional states to its domain of
possible states: startsv and endsv .

Dummy Start and End actions We add two dummy ac-
tions Start and End into the set of actions A, where Start
and End mark the achievement of the initial state and goal
respectively. The Start action is constrained to appear at the
beginning of the plan, before any other action in the plan,
and the End action is constrained to appear at the end of
the plan, after every other action. Introducing these dummy
Start and End actions is a standard practice in modeling
partial order causal link (POCL) planning (McAllester and
Rosenblitt, 1991). Note that all transitions of all dummy ac-
tions, Start, End and other dummy actions that we intro-
duce below, have duration 0.

On each state variable sv ∈ SV , the Start action has
an EFFECT transition T start

sv that changes the state of sv
from the dummy startsv state to the initial state init(sv),
representing the achievement of the initial state of sv. The
End action has an EFFECT transition T end

sv on each state
variable sv that changes its state form either the goal state to
the endsv state (Fig. 4).

Similar to state variables, on each resource r ∈ Rreserve∪
Rreuse, the Start action has a resource transition T start

r , and
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the End action has a resource transition T end
r .

The DUMMY start action’s transitions will be referred as
initial transitions and the DUMMY end actions’ transitions
will be referred as goal transitions in the following sections.

CSP Variables and Domains

To formulate the problem as a CSP we create the following
CSP variables:

• next[T]: For each state variable transition T , except for
the goal transitions, the CSP variable next[T] represents
which EFFECT transition immediately follows T. Do-
main of next[T] contains all EFFECT transitions that can
immediately follow T. That is, domain of next[T] con-
tains all state variable transitions T′ such that post(T ) =
pre(T ′). Note that for a transition T , all transition in the
next[T] domain are the transitions on the same state vari-
able as T .

• previous[T]: For each transition T , except for the initial
transitions, previous[T] represents which EFFECT tran-
sition is immediately before T. Domain of previous[T] is
the set of EFFECT transitions that can appear immedi-
ately before T. That is, domain of previous[T] contains all
T′ such that pre(T ) = post(T ′) where both T and T ′ are
on the same state variable.

• inplan[A]: For each action A, inplan[A] represents if the
action A is in the plan or not. There are two possible val-
ues for inplan[A], true or false.

• support[Tr,T ′

r]: For each pair of resource transitions
< Tr, T

′

r >, where Tr and T ′

r are on the same resource
and Tr is not a goal transition and T ′

r is not an initial
transition, the variable support(Tr, T

′

r) represents the
amount of resource (a non-negative integer) Tr provides
to T ′

r. Note, on a reservoir resource, there can be two
types of transitions: PRODUCE transitions and CON-
SUME transitions. A PRODUCE transition Tp produces
req(Tp) amount of resource at the end, and a CONSUME
transition Tc consumes req(Tc) amount of resource
at the start. For this reason we say that a PRODUCE
transition can only provide support to a CONSUME
transition and vice versa. Note that both PRODUCE
and CONSUME transition can provide support to goal
transitions on resources. So what all this means is the
for each support(Tr, T

′

r) variable we define, if Tr is a
PRODUCE transition, then T ′

r must either a CONSUME
transition or goal transition, and if Tr is a CONSUME
transition then T ′

r must be a PRODUCE transition or
goal transition. If δTr,T ′

r

denotes the maximum amount

of resource that Tr can provide to T ′

r, then

δTr,T ′

r

= min (req(Tr), req(T
′

r))

The domain of each support(Tr, T
′

r) is the interval
[0, δTr,T ′

r

], where 0 indicates that Tr does not support T ′

r.

Note, that although either the next or the previous variables
alone are sufficient for the encoding, using both provides an
opportunity for better propagation. Each assignment of the
next and previous variable creates a causal-link, and assign-
ment of support variables represents a support-link.

There are two additional variables for each transition T:
start[T], which represents the start time of T, and end[T]
representing the end time of T. Similarly, for each action A,
a variable start[A] represents the start time of A and end[A]
represents the end time of the action.

We maintain two sets for each transition T , before(T) and
after(T) to represent precedence relations between transi-
tions on the same domain object, where before(T) contains
all the transitions T ′ where T ′ → T holds, and similarly, af-
ter(T) contains all the transitions T ′′ where T → T ′′ holds.

For each pair of actions A and B, we maintain a variable
dist(A,B) that represents the distance in time from start of A
to start of B, i.e. dist(A,B) = Start(B) - Start(A).

The next[T] and previous[T] variables can be assigned to
a not-in-plan value ⊥, which will denote that the transition
T will not be part of the final plan.

Constraints

1. EFFECT Position Constraints: If an EFFECT transi-
tion T appears before another EFFECT transition T ′, then
T ′ must appear after T and vice versa, i.e. ∀T ′, T ′ ∈
EFFECT

previous[T ′] = T ⇔ next[T ] = T ′

2. PREVAIL Position Constraints: The following con-
straints holds for all PREVAIL transition Tp that can ap-
pear next to Te and before Ta, where Te and Ta are EF-
FECT transitions.

previous[Tp] = Te ∧ next[Tp] = Ta ⇒ next[Te] = Ta

previous[Tp] = Te ∧ next[Te] = Ta ⇒ next[Tp] = Ta

next[Tp] = Ta ∧ next[Te] = Ta ⇒ previous[Tp] = Te

Note that all next and previous variables’ domains are
consists of only EFFECT transitions, not PREVAIL tran-
sitions. This is case because PREVAIL transitions do not
change a state, so they can’t appear in the left side of the
causal link T [s]T ′. The next and previous variables model
the causal links.

3. Action Synchronization Constraints: If an action is in
the plan then all the transitions caused by the action must
also be in the plan and vice versa, i.e for all action A,

inplan[A] = true ⇔ ∀T.act=AT : ¬(next[T ] = ⊥).

Note that this constraint is bi-directional, i.e. if ⊥ is re-
moved from a next variable then it implies that the corre-
sponding action is included in the plan.

4. Transition Exclusion Constraint: If a transition T is ex-
cluded from the plan, then no transition can appear before
or after it, i.e. for all transition T 1,

next[T ] = ⊥ ⇔ previous[T] = ⊥.

5. Action Time Synchronization Constraints: Start times
of transitions must be consistent with the start time of
their corresponding actions and vice versa.

start[A] = ∀act(T )=AT : start[T ]− offset(T )

1both EFFECT and PREVAIL transitions
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Similarly, each action’s end time is must be equal to the
maximum of the end times of its transitions.

end[A] = max{∀act(T )=AT : end[T ]}

6. Support Constraints: Each assignment of a next variable
implies a precedence constraint between the transitions.

next[T ] = T ′ ⇒ T → T ′

Similarly, each assignment of the support variables also
implied a precedence constraint between the transiitions.

support[T, T ′] > 0 ⇒ T → T ′

7. Temporal Position Constraints: For each precedence
constraint T → T ′ we post the following temporal con-
straints

inplan[T ] ⇒ dist(act(T ), act(T ′)) ≥
dur(T ) + offset(T )− offset(T ′) +
setuptime(Setup(T ), Setup(T ′))

Recall that dist(act(T ), act(T ′)) represents the distance
between the starlings of the two actions: start(act(T ′))−
start(act(T ), and the setuptime(Setup(T ), Setup(T ′))
denotes the time delay needed between the given setup
states.

8. Non-preemptive Transition Constraints: Since transi-
tions are non-preemptive, the following condition must
hold for all transition T .

end[T ]− start[T ] = T.duration

In additions to these constraints we maintain the transitive
closure of the precedence relations conditioned on the in-
clusion of transitions. That means, for transitions T , T ′ and
T ′′, if T → T ′ and T ′ → T ′′, we only post the precedence
relation T → T ′′ if and only if inplan[T ′]= true.

Preliminary Evaluations

We implemented a simple constraint solver to solve such
planning problems in C++. As we are not aware of any pub-
lic available planning benchmarks with complex temporal
constraints on resources, nor solvers readily available to eas-
ily model and solve such problems, we evaluated our own
solver with a set of randomly generated benchmark rep-
resenting completing orders in the factory depicted in the
example in Fig. 1. Our solver ran on servers with AMD
Opteron(TM) Processor 6272 at 2.4GHz. We enforce a time
limit of 30 minutes and memory limit of 2GB per instance.

We tested our factory setting with 5, 10, 15 and 20 orders
at 50 instances each. The table in Fig. 5 reports the num-
ber of transitions, the average cpu time for the solved in-
stances, and the number of unsolved instances. Fig.6 shows
the performance of our solver against cpu time. The problem
is solved almost instantaneously for small instances, and the
difficulty of the problem increases with its size. We note that
our solver is still under development, and its performance
should improve once more powerful propagators are used.

orders transitions avg cpu time failure

5 188.44 2.37 0/50
10 347 32.69 0/50
15 649.95 133.54 8/50
20 855.87 299.87 4/50

Figure 5: Solver statistics for factory with 5 to 20 orders.

Figure 6: Number of solved instances against CPU time.

Summary

We proposed a new approach to model and solve planning
problems with resources. Our approach extends an action-
based planning planning domain description that provides an
easy and direct way to model practical problems with com-
plex temporal constraints. It concisely compiles the planning
problem as a constraint satisfaction problem, and provides
an interesting alternative to the current state of the art in
modeling a wide ranges of possible planning applications.
Possible future work includes improving the solver perfor-
mance by improving the efficiency of constraint encoding
and propagation, and evaluate our solver against other exist-
ing solvers on a set of expressive benchmark problems.
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Abstract

Timelines allow to represent temporally-rich informa-
tion about plans as well as the current execution status
of plans. Recent work has addressed the related issue
of inferring timelines representing contextual informa-
tion — often useful for informing planning and/or plan
execution monitoring processes. The present article ad-
dresses the particular issue of inferring context from
given models of how observations relate to context,
and representing this context on timelines. We strive to
abandon assumptions currently made on context recog-
nition, namely that hypotheses are either confirmed or
disproved. We propose a technique which allows to ac-
cept the inferred context on a timeline with a degree of
possibility. The approach is based on fuzzy constraint
reasoning, and captures two sources of uncertainty: un-
certainty in the model that is used to infer context, and
uncertainty in the observations. We also formulate the
problem of searching for the most likely timeline as a
Constraint Optimization Problem.

Introduction

The concept of timeline is central to many planning
and scheduling approaches. Timelines allow to represent
temporally-rich information about plans as well as the cur-
rent execution status of plans. Recently, several continuous
planning approaches have been proposed which use time-
lines to maintain the on-going state of the domain as it
is observed by sensors. This allows the planner to infer
courses of action which are contextual to the current sta-
tus of the world. Applications in which the temporal con-
text is used in a closed loop with planning include domes-
tic activity management (Pecora et al., 2012) and unmanned
aerial vehicles (Doherty, Kvarnström, and Heintz, 2010). In
these works, plan generation and execution depends in non-
trivial ways on the temporal relationships among observa-
tions. These relationships are modeled in languages based on
temporal constraints, and the algorithms which allow to in-
fer the timelines representing context are based on temporal
constraint propagation techniques. Examples of these algo-
rithms include chronicle recognition (Dousson and Maigat,

Copyright c© 2012, Association for the Advancement of Artificial
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2007) and abductive temporal inference (Pecora and Cir-
illo, 2009). The present article addresses this particular is-
sue, namely inferring context from given models of how ob-
servations relate to context, and representing this context on
timelines.

Timeline generation and maintenance can take into ac-
count some degree of uncertainty in the temporal placement
of values. This is typically achieved by means of tempo-
ral constraint reasoning techniques (e.g., Simple Temporal
Problems, STP (Dechter, Meiri, and Pearl, 1991)) which are
capable of maintaining temporal bounds on observations and
inferred values on the timeline. However, current approaches
to context inference lack the ability to account for two im-
portant sources of uncertainty, namely uncertainty in the
model that is used to infer timelines that represent context,
and uncertainty in the observations. To motivate why this
is useful let us begin with an example. Suppose we have the
ability to observe the location of a person at home, as well as
the current state of the kitchen stove. We wish to recognize
the occurrence of the observed person being in the context of
“Cooking”. We employ for this purpose a model which as-
serts that the user is cooking if the stove is on while he/she
is in the kitchen. Now, suppose the scenario unfolds as fol-
lows: the user enters the kitchen and turns on the stove; after
a while, he turns off the stove before leaving the kitchen. The
stove state sensor is based on temperature: when the temper-
ature goes below a certain threshold, the stove is considered
to be off. Therefore, the sensor observations associated to the
stove will indicate that it is still on after the user has left the
kitchen. This situation falls outside the model stated above.
The failure to recognize the cooking activity is not due only
to sensor imprecision; it is also a consequence of the fact that
model cannot anticipate all the possible states which can oc-
cur in a real situation. In other words, this failure is caused
by the incapability of the inference process to deal with un-
certainty in the model. Similarly, we may want to take into
account the fact that the sensor providing the location ob-
servations gives uncertain readings. It may be the case, for
instance, that its image processing algorithm returns an un-
certain estimate of the person being in the kitchen, and that
we want to factor this information into the context recog-
nition process in order to provide a degree of belief of the
cooking situation.

Two strategies can be adopted in order to extend the ap-
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plicability of a model under uncertainty. First, to replace the
modeling language with one that can explicitly include mea-
sures of uncertainty; second, to measure the applicability of
a crisp model to the current situation using an underlying
theory of uncertainty. In this work, we follow the latter ap-
proach. By doing so, we maintain the ability to use a sim-
ple model to represent domain knowlege, and we accommo-
date uncertainty by modifying the inference process. We use
techniques based on fuzzy logic to measure the similarity
between the situation reported by the sensor readings and
the situation described in the model. We leverage fuzzy con-
straint based reasoning in an abductive reasoning process to
recognize a context on the basis of a set of heterogeneous
sensor readings, which may contain uncertainty. Note that
we are not interested in how the uncertainty in the sensor
readings is computed: we assume that sensors come with an
appropriate sensor model. The use of fuzzy temporal infer-
ence techniques may result in general in the generation of
multiple timelines which are compatible, to some degree, to
the sensor data. Accordingly, in the last part of this paper we
present an approach to extract a unique, most likely timeline.

This paper is organized as follows. First, the overall con-
text recognition algorithm is explained. This algorithm relies
on two constraint-based inference processes, namely propa-
gation in a fuzzy value constraint network and in a fuzzy
temporal constraint network. After detailing these constraint
reasoning procedures, we investigate two important prob-
lems caused by accommodating uncertainty in the inference
process, namely (1) that of determining quantified temporal
bounds for the inferred context, and (2) that of determining
the most likely timeline.

Constraint-based Context Modeling
In this work, we leverage a context inference algorithm sim-
ilar to the one described by Pecora et al. (2012). A con-
text is an inferred value (e.g., activity of a human) which
is the result of inference based on the observable properties
in an environment (e.g., sensor readings). Both observable
properties and inferred values are represented as state vari-
ables. For instance, a state variable Human can represent the
current activity of a user, e.g., {Cooking, Eating, Relaxing,
Sleeping}, or model the possible values of observable prop-
erties of the environment. We refer to these values as sensor
readings e.g., a state variable can represent a Stove whose
values can be {On, Off}.

Correlations among the values of state variables are de-
fined in a model in terms of two dimensions of knowledge.
One is the value dimension, which refers to the possible val-
ues a state variable can assume (e.g., Human = Cooking).
The other dimension is the temporal dimension, which is
formulated as relations in Allen’s Interval Algebra (Allen,
1984). These relations are qualitative, and model the rela-
tive placement in time of state variables values (e.g., Human
= Cooking During Stove = On). In this example, a “=” rela-
tion is imposed on the values of both the Human and Stove
state variables. Note that similar approaches (Pecora et al.,
2012; Dousson and Maigat, 2007) implicitly assume an “=”
relation on values. In our approach, we admit the “6=” re-
lation as well, e.g., it is possible to assert in the model that

Cooking depends on Location 6= Bedroom.
The collection of temporal and value relations constitutes

the model based on which context inference occurs. Rela-
tions which assert the same value on a state variable that
represents an inferred property of the environment (e.g., Hu-
man) are collected into so-called rules. These rules are from
a domain model. For instance, the following rule describes
one possible condition under which the human activity of
Cooking can be inferred:

(Human = Cooking) During (Location = Kitchen) ∧
(Human = Cooking) Contains (Stove = On)

Given a rule like the one above, we call head of the rule, the
value of the state variable representing the inferred property
(e.g., Human = Cooking), and we call requirements the re-
lations and values of the other state variables involved in the
rule.

The entire inference process is an abductive reasoning
process, whereby observed or previously inferred values are
explained by hypothesizing the occurrence of specific values
and testing these hypotheses repeatedly by using the rules in
the model. Abductive reasoning imposes the requirements
of a rule as constraints between an interval h, which rep-
resents a hypothesis of the head of the rule occurring, and
other intervals representing sensor readings as they have
been observed. Intervals representing sensor readings are
maintained in a so-called Sensor Constraint Network (SCN,
Figure 1). The SCN contains all sensor readings and the re-
lations among them as they are observed. The resulting set
of constraints is propagated in order to decide whether the
hypothesis is admissible.

Context inference with uncertainty

The context inference is done through the abductive reason-
ing process on patterns of sensor observations and places
these patterns and temporal relations together with the
model in a constraint network. Temporal constraint propaga-
tion ascertains whether what is hypothesized has occurred.
However, in current approaches inference has a Boolean re-
sult: either the hypothesis is confirmed or it is disproved.
These approaches would fail to recognize an activity like
cooking in a real world scenario (see the example in Intro-
duction). As mentioned, the lack of flexibility in the model
is what caused the failure. One way to tackle this problem
is to have a much larger set of rules that captures many
occurrences of sensor patterns. This approach has impor-
tant disadvantages. One is that it is cumbersome to model
a collection of rules that are able to anticipate all the pos-
sible relative temporal relations among the sensor reading
patterns. More importantly, increasing the number of rules
enlarges the search space in an abductive reasoning process
in which each single rule should be hypothesized and prop-
agated within a constraint network. In our approach, we fol-
low a different strategy to have a conservative extension of
the crisp case, namely we employ uncertain inference to re-
lax the model. Specifically, we employ the notion of fuzzy
constrain satisfaction problem (Dubois, Fargier, and Prade,
1996). We replace crisp temporal constraints with fuzzy
temporal constraints, therefore, computing a possibility de-
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Figure 1: A rule models temporal and value relations that ex-
ist between sensor readings and inferred context expressed
as sets of temporal and value constraints between state vari-
able values.

gree of temporal admissibility. In addition to the temporal
facet of the model, we include a fuzzy CSP for the values
of state variables, so as to compute a possibility degree with
respect to the value aspect.

Overall, we employ two constraint reasoning procedures,
one for temporal inference and one for value inference. The
former occurs in what we call fuzzy value constrain network,
the latter in a fuzzy temporal constraint network. The steps
of the fuzzy inference process are:

• Create a hypothesis which is the head of a rule, and con-
straint the required values in SCN.

• Compute the value consistency and the temporal consis-
tency of the hypothesis by:

– performing arc consistency (AC) on the fuzzy value
constraint network (due to the structure of the fuzzy
value constraint network, AC is sufficient to obtain the
maximum value consistency (Mansouri, 2011)),

– performing a fuzzified version of Allen’s algorithm
(path consistency) on the the fuzzy temporal constraint
network and obtaining an optimal solution through
backtracking.

• Estimate the temporal bounds of the hypothesis for the
purpose of generating a timeline by:

– creating a STP from the optimal solution of temporal
constraint network,

– propagating the STP with the Floyd-Warshall algo-
rithm (Floyd, 1962) to obtain temporal bounds of the
hypothesis interval.

Inference in the fuzzy value and temporal networks is ex-
plained in the following sections. Note that once an over-
all possibility degree for a hypothesis is obtained, we are
left with the task of deciding temporal bounds for the in-
ferred hypothesis. This requires the use of quantitative tem-
poral constraints, which we propagate in a STP to obtain
the bounds of inferred hypotheses according to their most
likely temporal placement. This latter procedure yields time-
lines, each of which has an associated possibility degree.
The problem of finding the timeline which has the maxi-
mum possibility degree, therefore the timeline representing
the most likely overall sequence of inferred context, can be
cast as a constraint optimization problem. This last aspect of
our work is currently being investigated, and therefore we
limit the description of the search of the most likely timeline
to problem definition.

Fuzzy Value Constraint Network

A fuzzy constraint network (fuzzy CN) is a triple 〈X,D,C〉
where X and D are a finite set of variables and their do-
mains, and C is a set of fuzzy constraints. The fuzzy value
constraint network which is built for the purpose of this
work includes two categories of variables. One consists of
the variables which model the value requirements of a hy-
pothesis, and the other represents sensor readings. The do-
mains D of all variables are the symbols representing pos-
sible states (e.g., {On, Off} for the variable representing the
Stove). A fuzzy constraint is a fuzzy relation R on a set of
variables V ⊆ X which is denoted as RV . This relation, that
is a fuzzy set of tuples, is defined by a membership function
µRV

(Klir and Folger, 1988). Each tuple tV ∈ RV is a as-
signment of values to the variables in V , and the member-
ship function assigns a degree of possibility in [0, 1] to each
tuple. Notice that possibility degrees do not need to add to
one: for example, the void constraint over the values of V is
represented by µRV

(tV ) = 1 for all tV . The projection of
a tuple t over a sequence of variables V is denoted by t[V ].
A solution of a fuzzy CN is a complete assignment for all
variables in X with satisfaction degree greater than 0. The
satisfaction degree of a complete assignment t is

deg(t) = min
RV ∈C

µRV
(t[V ])

The optimal solution t̂ of a fuzzy CN is the complete as-
signment whose membership degree is maximum over all
complete assignments (Ruttkay, 1994), that is,

t̂ = argmaxt∈
∏

xi∈X
Di

deg(t)

Sensor processes continuously add to the SCN new vari-
ables which represent perceived sensor values. The degree
of belief of a particular value is modeled as a soft unary
constraint. For example, the belief that the stove is on with
possibility α1 and off with possibility α2 is modeled with
a unary constraint whose membership function imposes α1

and α2 on the values On and Off, respectively. A possibility
degree of 0 or 1 is also assigned to each value of the state
variables which model the value requirement. As shown in
Figure 2 for instance, the variable “Stove2”, representing the
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Figure 2: A fuzzy CSP with two state variables, three con-
straints (Soft unary constraint {c1, c3}, Hard binary con-
straint c2) and domain {On, Off}. 0.4 for On and 1.0 for Off
are data obtained from sensor

perceived state of the stove, is constrained to assume values
On = 0.4 and Off = 1.0. Another variable “Stove1” is used
to represent the value requirement of a rule asserting that
the stove should be on. If X = {x1, ..., xk} is a finite set
of k variables, the membership function for the unary fuzzy
constraints imposed on every variable xi ∈ X is expressed
as

µRxi
(t) → [0, 1] t ∈ Di

Binary constrains of the fuzzy value constraint network are
hard constraints. This is because binary constraints represent
the equality and inequality requirements of a rule (e.g., we
want the Stove = On). For example, a tuple (a, a) which is
a possible assignment for two variables, is assigned to the
value 1 in case of an “=” constraint, and to value 0 for the
case of the inequality constraint. The membership function
for a binary hard constraint over variables wij = {xi, xj 6=i}
is defined as

µRwij
(t) → {0, 1} t ∈ Di ×Dj

In the example shown in Figure 2, a binary constraint is used
to enforce that the value requirement “Stove1” is equal to the
perceived state represented by variable “Stove2”.

In order to obtain a maximum possibility degree of the
fuzzy constraint network, arc consistency and search are per-
formed. Since the structure of the network in this specific ap-
plication is a tree, the problem of finding the maximum sat-
isfaction degree can be solved in polynomial time (Dechter,
2003). In fact, the structure of the network follows the se-
mantics of unification, in which there is a value relation (=
or 6=) obtained from a rule between the variable modeling
the value requirement and the variable modeling a sensor
reading, therefore, the structure is always a tree.

The maximum possibility degree of the network shown
in Figure 2 is 0.4. If the binary constraint stated in the rule
had been an inequality, the value possibility of the network
would have been 1.0. The semantics of inequality are omit-
ted here and explained in more detail by Mansouri (2011).

Figure 3: The Allen relations and their membership
grades with respect to the relation Equals. In this fig-
ure, Allen’s relations are defined as follows: Meets(m),
During(d), Before(<), Overlaps(o), FinishedBy(fi), Con-
tains(di), StartedBy(si), Equals(=), Starts(s), Finishes(f),
OverlappedBy(oi), MetBy(mi), After(>). (Adapted from
Guesgen (2002).)

Fuzzy Temporal Constraint Network

In the previous section, we addressed how to check the
value eligibility. In addition to the value constraints, we have
to consider the temporal requirements in the rules. As ex-
plained in the section ”Constraint-based Context Modeling”,
the temporal constraint network is created by imposing tem-
poral requirements of the hypothesis on SCN. We call this
network, ”original temporal constraint network”. The objec-
tive is to find the consistent temporal constraint network that
is closest to the original one. If the original temporal con-
strains network is not consistent, we find the closest con-
sistent temporal constraint network through introducing un-
certainty to the original network. The notion of flexibility
and uncertainty for the temporal aspect of the model are
provided by fuzzifying Allen relations (Guesgen, 2002). A
fuzzy Allen relation is represented as a set of crisp Allen re-
lations with an associated possibility degree. To define the
membership grade, the notion of conceptual neighborhood
is leveraged (Freksa, 1992). For instance, assume that two
intervals I1 and I2, are in relation Equals, then by allowing
the duration of the intervals to vary, we can change this re-
lation to During or Contains. In this case, to make a fuzzy
set including a pair of all thirteen Allen relations, we assign
the membership grade 1 to the relation Equals and a mem-
bership grade less than 1 for the others. The membership
grades are defined for each relation based on the closeness
to the Equals relation. Figure 3 illustrates this example in
the topological view of conceptual neighborhood with the
membership grades, 1 = α0 ≥ α1 ≥ α2 ≥ ... ≥ 0

We divide Allen relations in the temporal constraint net-
work into two categories. The first category belongs to the
relations imposed from a rule and the second is for the re-
lations capturing the relative position in time of the sensor
readings. Since we want to determine the degree of possi-
bility of a rule in the model given existing sensory patterns,
we fuzzify the relations of the first category in the way ex-
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plained earlier. As for the second category, Allen relations
remain as crisp constraints. In other words, for Allen rela-
tions that are responsible for placing sensor readings in time,
the initial relation is assigned to 1, while the membership
grade of the others is 0.

In order to have an optimal solution for the fuzzy Allen
network (i.e., a crisp, consistent temporal constraint network
that is closest to the original temporal constraint network),
we use a generalization of the classical backtracking algo-
rithm with incremental path consistency to the fuzzy frame-
work (Badaloni and Giacomin, 2000). More precisely, by
applying a fuzzy extension of Allen’s algorithm, we obtain
the maximum temporal possibility degree as well as the sets
of complete assignments with the highest possibility degree.
The maximum temporal possibility is calculated by taking
the minimum over the maximum membership degree of each
edge in the propagated fuzzy temporal constraint network.

In crisp temporal constraint reasoning, finding a feasible
solution to the interval constraint problem is solved with
a combination of constraint propagation (path consistency)
and search. The complexity of the fuzzy extension to Allen’s
propagation algorithm is augmented at most by a factor
equal to the number of levels of preferences used to define
the fuzzy Allen network (Badaloni and Giacomin, 2000). In
our work, there are as many levels of preference as there are
conceptual neighbors.

An example of fuzzy temporal reasoning is shown in Fig-
ure 4. With respect to Figure 4(a), the relation During* is
fuzzified as follows:1 {(Before, 0.2), (Meets, 0.4), (Over-
laps, 0.6), (FinishedBy, 0.4), (Contains, 0.6), (StartedBy,
0.4), (Equals, 0.8), (Starts, 0.8), (During, 1), (Finishes, 0.8),
(OverlappedBy, 0.6), (MetBy, 0.4), (After, 0.2)} and the rela-
tion During** is a crisp relation with the membership degree
of 1 for During and 0 for the rest of Allen’s relations. By ap-
plying propagation on the fuzzy temporal network depicted
in Figure 4(a), these membership degrees are updated. The
optimal solution is built through the search process. In this
example, we obtain the maximum possibility degree of 1 as
a result of taking minimum over membership degrees of the
relations in the optimal solution. Having maximum possibil-
ity degree of 1 indicates that this network is temporally con-
sistent. Clearly, in this case, the closest temporal constraint
network is the original one.

Suppose the case that the Allen relation During** which
models the temporal relation of sensor reading patterns is
replaced by an OverlappedBy relation. This case is com-
patible with the Cooking scenario explained in Introduction
Section, in which the network was not temporally consistent
(see Figure 4(b)). By fuzzifying this network and propagat-
ing the resulting network, we obtain a maximum possibility
degree of 0.6. Several selections of Allen’s relations entail
this possibility degree. One of them is represented in Fig-
ure 4(c). In other words, the network shown in Figure 4(c)
represents the “closest interpretation” of the temporal rela-
tions among sensor readings that would make the rule con-
sistent. The “similarity” between this interpretation and the

1Different choices of the αi membership values can be used to
reflect how far from the model we are willing to stray.

one required by the rule is 0.6.

(a)

(b)

(c)

Figure 4: Fuzzy Temporal constraint networks correspond-
ing to the values of stove and location state variable
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Determining the Overall Possibility Degree

We explained two fuzzy constraint networks which ascertain
temporal satisfiability and value satisfiability. Now, to obtain
an overall possibility degree of an inferred value from the
two individual degrees, we are facing to the problem of multi
criteria aggregation. Different operators can be employed to
achieve this aggregation. A primary factor in the determina-
tion of the structure of such aggregation is the relationship
between the criteria involved. Consider the cases of want-
ing, for example, “all” or “at least one of them” or “most” of
the criteria to be satisfied. For each of these cases and many
of which are not contemplated here, a specific operator is
proposed, e.g., t-norm, t-conorm and ordered weighted av-
eraging (OWA) operators (Yager, 1988). In our problem, we
desire that both evaluating criteria be satisfied; so, a t-norm
operator can be an appropriate choice. In this work, we em-
ploy the minimum possibility degree of the two constraint
networks as the overall degree. One might also wish to keep
the two possibility degrees separate, to be able to query on
the degree of satisfiability for each dimension.

Computing Interval Bounds of Inferred Value

The propagation of qualitative Allen relations does not pro-
vide any knowledge about the time bounds of the intervals.
I.e., we know the temporal and value possibility of an in-
ferred activity occurring, but we do not know when it could
occur, except for a relative qualitative placement in time of
sensor readings. In fact, we know when sensor readings oc-
cur in time, but the lack of knowledge about the occurrence
interval of inferred values makes it impossible to build a
timeline. Since a timeline corresponding to a state variable
is a sequence of values in time, the need of quantitative tem-
poral reasoning arises; thus, we convert the obtained optimal
temporal network containing a solution with maximum pos-
sibility degree to a STP. As noted earlier, the optimal solu-
tion contains a temporally consistent network with the high-
est possibility degree relative to the initial network, thus, the
network which is converted to STP is consistent. Temporal
propagation in the STP is done through the Floyd-Warshall
algorithm, whose computational cost is O(n3). Therefore,
computing the temporal bounds for the inferred value can
be done in polynomial time.

As a case in point, the network shown in Figure 4(c) is
converted to a STP. This network is consistent as a result
of performing the fuzzy Allen algorithm on the inconsistent
network shown in Figure 4(b). Since the Stove and Loca-
tion state variables represent sensor readings, we know the
precise time in which these readings occurred. For instance,
if the user was in the kitchen in the interval [1, 12] and the
stove was on in the interval [5, 15], then the occurrence of
Cooking would be [0, 16]. The cooking interval is calculated
by choosing the earliest time of the timepoints in the STP
which represent the beginning and ending of the Cooking
activity.

Dealing with Multiple Timelines

The abductive reasoning process, by hypothesizing the head
of rules, outputs hypotheses which can have different possi-

bility degrees. The number of hypotheses is the number of
combinations of state variable values in the SCN which can
be unified with the value requirements of the applied rule.
For instance, in the case that Cooking is hypothesized which
is shown in the Figure 4, there are six possible combinations
of state variables Stove and Location. Each combination en-
tails an inferred hypothesis with a particular possibility de-
gree. Moreover, there can be dependencies among the rules,
therefore, each inferred value can be a requirement for the
others. For instance, the model may state that Eating occurs
after Cooking (among other requirements), thus, inferring
the occurrence of Eating depends on a Cooking hypothesis
which has been already inferred. Consequently, each Cook-
ing hypothesis enlarges the number of combinations of val-
ues which is needed for the process of inferring Eating. With
respect to the growing rate of inferences, we aim at recog-
nizing a most likely timeline. The possibility of a timeline is
expressed as the minimum of the possibility degree assigned
to the values of state variables in the model.

We cast the problem of extracting the best timeline
(i.e., the timeline with maximum possibility degree) as a
Constraint Optimization Problem, COP (Dechter, 2003), in
which variables are hypotheses referring to the possible val-
ues of a state variable; values of this constraint network are
different ways to “support” a value of a state variable which
itself is a constraint network (combinations of state variable
values in the SCN). Constraints are the value constraints and
the Allen temporal relations among values of state variables
prescribed in the rules. Assigning a support to the variable
has a cost which is calculated through the fuzzy inference
process. An optimal solution to this problem, is a set of sup-
ports assigned to the variables and has the highest possibility
degree with regard to the constraints. The collection of inter-
vals associated to the hypotheses belonging to the optimal
solution is the most likely timeline of a state variable.

Example

To extend our Cooking scenario, the human user leaves the
kitchen and goes to the dining room in order to eat his lunch.
The inference system aims at recognizing both Cooking and
Eating activities. The value and temporal requirements of
Eating are modeled in the rule shown below

(Human = Eating) During (Location = Dining table) ∧
(Human = Eating) After (Human = Cooking)

An example of sensing process is depicted in the Figure 5
which is compatible with the above scenario. In this Figure,
in addition to the timelines of state variables Location and
Stove, we show the most likely timeline for state variable
Human resulting from the overall process described in this
paper.

The best two timelines of Human activity in terms of the
possibility degrees are shown in Figure 6. The possibility
degree associated to each value is the result of the fuzzy in-
ference process which is introduced in this paper.
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Figure 5: State Varibale Timlines

Figure 6: Human State Variable Timelines

Conclusion and Future Work

We have presented a fuzzy inference process for interpreting
a crisp constraint-based model so as to accommodate un-
certainty in sensor data and imprecision in the model. This
fuzzy inference process covers two aspects of the model,
namely value and temporal requirements. The problem of
accommodating uncertainty into each aspect is solved using
the notion of soft unary constraints in a fuzzy value con-
straint network and conceptual neighborhoods in a fuzzy
temporal constraint network. We leverage state of the art al-
gorithms for fuzzy qualitative temporal reasoning, and intro-
duce quantified temporal bounds for the purpose of extract-
ing timelines as a polynomial time post-processing step.

Our approach has been implemented in a system, which
has been used on simple artificial scenarios like the ones
shown in this paper. Our current work focuses on the evalua-
tion of the system along two axes: first, time performance in
larger domains; second, behavior in a real environment with
sensors deployed in a smart home (Saffiotti et al., 2008).

While we have focused on qualitative temporal relations
in this paper, it might also be interesting to investigate the
use of quantitative temporal relations with uncertainty (Vi-
dal and Fargier, 1999) and preferences (Khatib et al., 2001).
Furthermore, it is essential to combine multiple hypotheses
into candidate timelines. As described in this paper, we cast
the problem of extracting a unique timeline as a COP, hence,
different approaches for solving a COP which can be em-
ployed in this work should be studied.
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