
22
on Automated Planning and Scheduling
June 25

WS-IPC 2012
Proceedings of the 3rd

the International Planning

Competition

Edited by
Amanda Coles, Andrew Coles, Ángel
and Scott Sanner

22nd International Conference
on Automated Planning and Scheduling
June 25-29, 2012, Atibaia – Sao Paulo

2012
3rd Workshop on

the International Planning

Amanda Coles, Andrew Coles, Ángel García Olaya, Sergio Jiménez, Carlos Linares L

International Conference
on Automated Planning and Scheduling

Sao Paulo – Brazil

García Olaya, Sergio Jiménez, Carlos Linares López

Organization

 Amanda Coles, King's College London, UK

 Andrew Coles, King's College London, UK

 Ángel García Olaya, Universidad Carlos III de Madrid, SPAIN

 Sergio Jiménez. Universidad Carlos III de Madrid, SPAIN

 Carlos Linares López, Universidad Carlos III de Madrid, SPAIN

 Scott Sanner, NICTA and the ANU, AUSTRALIA

Program Committee

 Blai Bonet, Universidad Simón Bolívar

 Daniel Borrajo, Universidad Carlos III de Madrid

 Stefan Edelkamp, University of Bremen

 Alan Fern, Oregon State University

 Hector Geffner, Universitat Pompeu Fabra

 Alfonso Gerevini, Università degli Studi di Brescia

 Malte Helmert, University of Basel

 Jörg Hoffmann, Saarland University

 Derek Long, King's College London

 Mausam, University of Washington

 Lee McCluskey, University of Huddersfield,

 Héctor Palacios, Universidad Carlos III de Madrid

 Prasad Tadepalli, Oregon State University

 Sungwook Yoon, PARC

i

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Foreword

The International Planning Competition (IPC) was created in 1998 to set a common ground for
comparing different planning techniques. Nowadays the IPC is considered a reference source when
building a planner and most of the new planning techniques presented at ICAPS, are evaluated
regarding the languages, benchmarks and metrics defined in the competition. However, several
critiques have been raised concerning the necessity and usefulness of several aspects of the
competition.

Given the relevance of IPC and continuing with the lineage of the workshops organized at ICAPS 2003
and 2007, this workshop aims to review the current status of the IPC, and to help to
determine/sketch/prepare the forthcoming competition, the Eight International Planning
Competition.

Amanda Coles, Andrew Coles, Ángel García Olaya,
Sergio Jiménez, Carlos Linares López, Scott Sanner
Workshop Organizers
June 2012

The edition of these proceedings has been partially supported by the Universidad Carlos III de Madrid,
Spain

ii

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Contents

The Academic Advising Planning Domain ... 1
Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith

Leveraging Classical Planners through Translations ... 6
Ronen I. Brafman, Guy Shani, and Ran Taig

Advances in BDD Search: Filtering, Partitioning, and Bidirectionally Blind 10
Stefan Edelkamp, Peter Kissmann, and Álvaro Torralba

A Multi-Agent Extension of PDDL3.1 ... 19
Daniel L. Kovacs

Mining IPC-2011 Results ... 28
Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández

How Good is the Performance of the Best Portfolio in IPC-2011? .. 37
Sergio Nuñez, Daniel Borrajo, and Carlos Linares López

“Type Problem in Domain Description!” or, Outsiders’ Suggestions for PDDL Improvement .. 43
Robert P. Goldman and Peter Keller

iii

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

The Academic Advising Planning Domain

Joshua T. Guerin, Josiah P. Hanna, Libby Ferland, Nicholas Mattei, and Judy Goldsmith
Department of Computer Science

University of Kentucky
Lexington, KY 40506-0633

jtguer2@uky.edu, jpha226@g.uky.edu, libby.knouse@uky.edu, nick.mattei@uky.edu, goldsmit@cs.uky.edu

Abstract

The International Probabilistic Planning Competition is a
leading showcase for fast stochastic planners. The current do-
mains used in the competition have raised challenges that the
leading deterministic-planner-based MDP solvers have been
able to meet. We argue that in order to continue to raise chal-
lenges and match real world applications, domains must be
generated that exhibit true stochasticity, multi-valued domain
variables, and concurrent actions. In this paper we propose
the academic advising domain as a planning competition do-
main that exhibits these characteristics. We believe that this
domain can build upon the success of previous contests in
pushing the limits of MDP planning research.

Introduction
Generating new problem sets to challenge state-of-the-art
probabilistic planners is often difficult. Planners have
evolved in leaps and bounds in a very short time, opening the
door to whole new classes of problems that can realistically
be solved by computer programs. As a driver in planning
research, the International Probabilistic Planning Competi-
tion (IPPC) has presented a number of domains meant to
continue pushing the field in new and exciting directions.

As the IPPC has continued, domains have become in-
creasingly complex and stochastic. In recent contests, strong
planners that solve deterministic instances of stochastic do-
mains (or “replanners” (Little and Thiébaux 2007)) have
continued to outstrip their inherently probabilistic counter-
parts. This indicates to us that the domains that have been
used are still not stochastic enough to closely model the
complexities of real world planning problems. We suggest
that current real world domains can be modified to present
more difficult problems, and that new domains requiring
different problem solving strategies can help provide more
challenges for planners.

Current competition domains have been designed to rep-
resent real world scenarios for probabilistic planners. In
the Elevator domain, for example, a controller coordinates
a bank of elevators to pick up passengers when requests are
received, and delivers them to the destination floor. This do-
main assumes that each elevator is acting separately and ac-
tions are performed sequentially. This makes the state space
less complex, allowing deterministic replanners to produce
strong solutions. In most real world problems, however, the

most comprehensive models are highly stochastic and con-
sider actions taken concurrently. This domain can be mod-
ified by assuming that the controller is directing elevators
in concurrent pairs or groups, instead of individually and se-
quentially. This introduces joint actions that greatly increase
the size and complexity of the state space. As the state space
grows more complex, it becomes more difficult for deter-
ministic planners to produce a good solution, and probabilis-
tic planners using concurrent action planning become better
choices due to a more complete consideration the domain
(Sanner 2008). We believe that many other competition do-
mains could be represented in this fashion, and that continu-
ing to introduce domains requiring different planning meth-
ods provides interesting and valuable challenges to compet-
itive planners.

Our domain, the academic advising domain, represents a
real world model in which concurrent actions must be con-
sidered in order to reach an optimal solution. Academic ad-
vising, when treated as a probabilistic planning domain, is
rich with the qualities used to classify domains as probabilis-
tically interesting (Little and Thiébaux 2007). The presence
of avoidable dead-ends, near-identical trajectories with dis-
tinct outcomes, multiple distinct trajectories, and mutually
exclusive actions, as well as a high degree of unpredictable
outside influences, makes for a challenging environment for
state-of-the-art planners today. Planners in this domain must
consider factors such as past performance history, courses
completed, and above all else the student’s ability to take
multiple courses concurrently — all with the aim of maxi-
mizing the student’s GPA as well as satisfying the require-
ments for graduation with a specific area of study.

This domain presents a large, complex, and easily scal-
able state space, ideal for a challenging competition. Most
importantly, while deterministic planning may eventually
produce a solution, optimal solutions can only be found us-
ing stochastic, concurrent-action planning. We believe that
this quality could make the academic domain a good addi-
tion to the domains already used in competition, and help in-
troduce even more “spice” into an already challenging prob-
lem set (Sanner 2008). Competitive domains have always
been used to test the very best in planners, and it is our hope
that the academic domain might be able to continue in this
tradition.

In the section “The Academic Domain”, we describe the

1

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

real-world advising domain, and in the section “The Aca-
demic Domain Model Generator Problem Structure”, we
briefly sketch the proposed domain generator. Note that
others have considered MDP-based advising domains. Both
Khan et al. and Dodson et al. have used hand-constructed
models of advising to motivate work on explanation gen-
eration for MDP policies (Khan, Poupart, and Black 2009;
Dodson, Mattei, and Goldsmith 2011).

The Academic Domain
Good academic advising in the American educational sys-
tem involves many decisions. In most degree programs, stu-
dents choose electives to satisfy multiple, sometimes over-
lapping requirements. Their choice of electives, the order in
which courses are taken, and the choices of which courses
to take together, all have enormous effects on the student’s
success and their enjoyment of their academic career.

We can model advising as a factored MDP. A student’s
course history and grades determine their current state.
Based on this state, a student can select one or more courses
to take during the next semester. More formally, states of
the MDP are student transcripts. Each variable represents a
possible course, with values (let us say) HIGH, LOW, FAIL
and NOT TAKEN. An action specifies a course to take. The
courses available for selection at any stage depend on the
fulfillment of prerequisites. Long prerequisite chains mean
a policy with a time bound on the number of semesters (or a
discounted reward) must begin the long chains early enough
to ensure the later courses can be taken.

Note that students who have taken the same courses can
be in very different states if one has received high grades and
the other has received low or failing grades. Two students
with the same GPA may be in different states because they
took different courses.

The effects of actions are stochastic. Grading scales are
less than precise measures, and small exogenous events
(something seen on the way to an exam, a girlfriend with
tutoring skills, a fight with a friend) can have large effects
on grades.

A policy specifies sets of concurrent actions at each time
step, since students take sets of courses each semester.
While the goal of the policy can vary, almost all academic
domain policies will seek to avoid states that involve failed
classes.

Probabilistic Outcomes
The effects of sets of actions in the academic domain are
uncertain. Adding to the uncertainty, the number of possible
next states is large for even a small number of concurrent ac-
tions. Consider a set of four classes that a student has taken.
There are 34 possible outcomes, ranging from HIGH, HIGH,
HIGH, HIGH to FAIL, FAIL, FAIL, FAIL. Each outcome,
or at least each set of FAILs, requires different responses.
Required courses must be repeated. Prerequisites and pre-
dictors of success should be repeated. In some cases, a LOW
should be repeated, but not always. For instance, if it were
shown that students who had taken first-semester calculus
performed better in discrete mathematics then a policy that

had a student take calculus before discrete math would be
more likely to result in a higher grade for the discrete math
class, and a LOW grade in calculus might skew likely grades
in several later courses toward LOW or FAIL.

As a result of this combinatorial explosion, the underlying
planning problem is not easy to determinize.

University curricula can lead to an enormous state space,
and real-world weakly coupled MDPs. Courses that are re-
quired for Human Ecology majors may have little impact on
Computer Science majors. There is a wealth of potential
challenges in modeling actual curricula, and building plan-
ners that can recognize and leverage the compartmentaliza-
tion of individual programs and majors. However, a realis-
tic model of transition probabilities can be built using data
mining techniques on grade data from students to have taken
courses previously (Guerin and Goldsmith 2011).

Concurrent Actions
Within the academic domain, students take courses in sets
rather than one at a time. The result of this is a much larger
set of choices for each stage of the plan. The number of
courses taken in a semester can vary so that the policy does
not need to have a uniform number of courses each semester.
Constraints can be specified for the domain so that a student
must remain full time (establishing a minimum number of
courses for each semester) and/or to establish a maximum
number of courses. This can be further complicated by hav-
ing the number of courses taken affect the probability of
success in each course. For example, a student taking four
courses is more likely to achieve higher grades than a student
taking the same four as well as three additional courses. It
should be noted that this planning domain does not have to
involve concurrent action planning if the number of courses
to be taken at a time is limited to one.

We can model the transition probabilities for each course,
based on statistical predictors (CS II grades probabilistically
depend, let us say, on the grade in CS I and on grades in prior
attempts on CS II). However, actions taken concurrently can
affect each other’s outcome probabilities, either synergis-
tically or destructively. For instance, taking a compilers
course at the same time as models of computation tends to
improve grades in both, because the compilers course mo-
tivates interest in regular and context-free grammars, while
the theory course reinforces computational techniques. On
the other hand, taking two courses with the same schedule
of assignments, exams, and projects can be detrimental to
grades. This means that optimal planning must consider ac-
tions concurrently rather than sequentially. This holds in a
fully realized model that takes into account concurrency ef-
fects, but it also holds in simpler models. Taking multiple
courses concurrently has a different effect than taking them
in sequence, and thus concurrent actions should not be mod-
eled sequentially.

Goal States
For each school and each program within that school, re-
quirements define a set of goal states. Individual stu-
dents have preferences on the types of electives, professors,
semester schedules, grade point average, time to graduation,

2

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

etc. The goal of the academic planner is to optimize the stu-
dent’s total expected utility and keep them moving toward
graduation. For a small scale realistic version of the prob-
lem, the goal can be to earn an academic minor. A larger
scale version is planning for completion of a degree. Be-
sides varying in size, goals also depend on what is valued in
the program.

A policy can be developed with a simple reward based on
time to the goal or on maximizing grades. With the former,
an optimal policy would only be concerned with the student
passing courses, while a GPA-driven policy might recom-
mend more time be taken if it ensured better grades. Other
criteria can be considered for optimization such as enjoy-
ment (different rewards for different courses or for certain
distributions of courses in each semester) or uniformity of
number of courses each semester.

Real-World Features of the Academic Domain
The features of the academic advising domain reflect as-
pects of many real world problems. The three features de-
scribed above allow the academic domain to capture inter-
esting planning problems. These are:

• planning under uncertainty,

• planning with concurrent actions, and

• planning with multiple reward criteria.

First, the stochastic nature of human endeavors, particu-
larly humans of college age, introduces uncertainty into any
plan. For this reason a classical plan does not suffice; rather,
a policy is needed.

Secondly, the academic domain models concurrent action
planning, because most students take multiple courses each
semester. Concurrent action planning has applications from
space exploration to pharmaceuticals (Mausam and Weld
2004). An example application for this research could be
designing drug regimens. For complex medical conditions,
a doctor has a choice of different drug treatments. Differ-
ent drugs may be taken simultaneously and there are uncer-
tainties associated with the effects and side effects of each
drug. For instance, a person might be taking medication for
migraines, rheumatoid arthritis, allergies, and digestive dis-
orders. Side effects may lead to the prescription of more
drugs which will have their own uncertain effects. This sce-
nario can be modeled as a concurrent action MDP. Solving it
could provide huge benefits to doctors prescribing drug reg-
imens and to patients trying to understand the utility of their
medicines. But first we need to develop concurrent-action
MDP solvers.

Finally, the academic domain has different criteria to op-
timize and could, therefore, be used for planning with multi-
criteria optimization (Perny and Weng 2010). This is rele-
vant to many scenarios in which there are multiple values
to optimize, such as balancing risk and reward with invest-
ments or prescribing radiation to kill tumors and not harm
healthy organs (Ehrgott 2000). The academic domain is
structured in a way that allows planners to be built that must
account for any or all of these features.

The Academic Domain Model Generator
Problem Structure

Although the common Bayes net representation of MDPs
uses dynamic Bayes nets, we represent the temporal aspect
of our models implicitly, and draw simple Bayes nets. The
nodes of the network represent courses. The values of each
course are NOT TAKEN, HIGH, LOW, and FAIL. Each node
has a probability table for those values, conditioned on its
parent nodes.

The domain generation module generates the structure
and parameters of the network, a goal state, and additional
constraints. The structure is based on a standard lattice. In
order to create varied instances, we begin with a full lattice
and then remove edges.

One feature of our domain instances, which is more typ-
ical of computer science programs than of many other pro-
grams at our university, is chains of prerequisites. These
can be represented as explicit constraints, if the planners can
handle constraints, or can be handled implicitly, through the
construction of the conditional probability tables (CPTs):
students are able to skip prerequisites or to go forward with
a poor or failing grade in a prerequisite course, but the ex-
pectation of HIGH or LOW grades is significantly depressed.
For now, we use the latter approach, so edges in the lattice
are interpreted both as prerequisites and as parents for CPTs.

The instance generator will choose:

• the size of the lattice;

• where to randomly break the prerequisite chains;

• the conditional probability tables for each node;

• the utility/reward function, and/or goal state.

Prerequisite Hierarchy
Course prerequisites are specified by a prerequisite graph.
The graphs we generate are based on lattices with complete
connectivity between layers, which are then pruned to gener-
ate prerequisite models. A visual representation of the first
three full lattices of this sequence are shown in Figures 1
and 2. Edges of the lattice will be pruned until the following
conditions are met: (1) all courses have at least one prereq-
uisite and (2) few courses have more than one prerequisite.
The resulting graphs will bear strong resemblance to pre-
requisite hierarchies we have surveyed in actual academic
departments.

CS#11#

CS#21# CS#22#

CS#31#

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

Figure 1: Full prerequisite lattices for small domains

The models we build, based on these lattices, have several
interesting properties:

3

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42# CS#43# CS#44#

CS#51# CS#52# CS#53#

CS#61# CS#62#

CS#71#

Figure 2: Full prerequisite lattice for a larger domain

1. there is an optimal policy, but even following that policy
doesn’t guarantee success;

2. the final prerequisite hierarchy specifies a partial ordering
over action sequences which must be learned in order to
find an optimal policy;

3. the number of state variables grows quadratically with the
lattice size parameter;

4. the number of states grows exponentially in the number
of state variables.

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

CS#11#

CS#21# CS#22#

CS#31# CS#32# CS#33#

CS#41# CS#42#

CS#51#

Figure 3: Pruned prerequisite lattices

Figure 3 shows how two lattices with the same nodes can
produce two significantly different instances, based on the
different edge prunings. A goal state can be specified by
giving a list of courses that are required. This can be done
either with an explicit set of courses that must be taken plus
a total number, or by specifying the number of courses to be
taken from each set of courses (i.e., “take 2 courses from the
third level of the lattice”).

Generating the Domain
The domains and instances can be generated from the spec-
ifications of the lattices described in the previous section.
The code examples in this paper use the RDDL domain def-
inition language (Sanner). The code describing these lat-
tices will also contain the conditional probabilities of state
transitions. This will include depressed probabilities when
prerequisites are untaken. The following table shows pos-
sible conditional probabilities for the outcome of taking a
course.

CS 32 CS 42 outcomes
grades H L F
H 0.7 0.2 0.1
L 0.3 0.4 0.3
F 0.1 0.15 0.75
NT 0.05 0.1 0.85

A reward function will be specified in the instance prob-
lem based upon the definition of the goal state. This func-
tion rewards success in required classes and creates penalties
for being further from the goal state. Therefore, reaching
the goal state is the way to maximize reward. For instance,
consider the following reward description for a domain with
four possible courses.

reward = 3 * [(CS11 == @High)
+ (CS21 == @High)
+ (CS22 == @High)
+ (CS31 == @High)]

+ 1 * [(CS11 == @Low)
+ (CS21 == @Low)
+ (CS22 == @Low)
+ (CS31 == @Low)]

+ 0 * [(CS11 == @Fail)
+ (CS21 == @Fail)
+ (CS22 == @Fail)
+ (CS31 == @Fail)]

-5 * [(CS11 == @NotTaken)
+ (CS21 == @NotTaken)
+ (CS22 == @NotTaken)
+ (CS31 ==@NotTaken)].

Concurrency can be enforced as the means of reaching
a solution by specifying a horizon that requires multiple
courses taken at a time to reach the goal. The below ex-
ample specifies a horizon of 8 and allows up to 5 concurrent
actions. If the goal state for this domain required 35 courses
to be taken, then concurrency is required to reach the goal.

instance advising {
domain = advising;
init-state {

CS11 = @NotTaken;
CS21 = @NotTaken;
. . .
};
max-nondef-actions = 5;
horizon = 8;
discount = 0.99;

}

Conclusion
This paper has proposed a novel domain, the academic ad-
vising domain, for probabilistic planning competitions. This
domain is interesting because it involves concurrent actions,
true stochasticity, and multi-valued domain variables. It en-
ables the use of constraints, both in terms of prerequisites

4

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

and potential mutual exclusion constraints. In addition, it
opens the possibility of explicitly considering the planning
problem as a multi-criteria optimization problem. Introduc-
ing these elements to planning competitions will raise new
challenges in the IPPC. It is our hope that this domain will
build upon the success of previous competition domains to
push the state of the art in planning research.

Acknowledgements This work is partially supported by
by NSF EAGER grant CCF-1049360. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.

References
Dodson, T.; Mattei, N.; and Goldsmith, J. 2011. Natural lan-
guage argumentation interface for explanation generation in
Markov decision processes. In Proc. Algorithmic Decision
Theory. also appeared in the EXaCT workshop at IJCAI
2011.
Ehrgott, M. 2000. Multicriteria Optimization. Berlin:
Springer.
Guerin, J. T., and Goldsmith, J. 2011. Constructing a
dynamic Bayes net model of academic advising. In Proc.
Bayesian Modelling Applications Workshop, UAI.
Khan, O. Z.; Poupart, P.; and Black, J. 2009. Minimal
sufficient explanations for factored Markov decision pro-
cesses. In International Conference on Automated Planning
and Scheduling (ICAPS).
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs.
replanning. In ICAPS Workshop on IPC: Past, Present and
Future.
Mausam, and Weld, D. S. 2004. Solving concurrent Markov
decision processes. In National Conference on Artificial In-
telligence. AAAI.
Perny, P., and Weng, P. 2010. On finding compromise solu-
tions in multiobjective markov decision processes. In Euro-
pean Conference on Artificial Intelligence Multidisciplinary
Workshop on Advances in Preference Handling, 55–60.
Sanner, S. Relational dynamic influence diagram language
(rddl): Language description.
Sanner, S. 2008. How to spice up your planning under un-
certainty research life. In Workshop on a Reality Check for
Planning and Scheduling Under Uncertainty (ICAPS-08).

5

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Position Paper — Leveraging Classical Planners through Translations
Ronen I. Brafman

Department of Computer Science
Ben-Gurion University of the Negev

brafman@cs.bgu.ac.il

Guy Shani
Department of Information Systems Engineering

Ben-Gurion University of the Negev
shanigu@bgu.ac.il

Ran Taig
Department of Computer Science

Ben-Gurion University of the Negev
taig@cs.bgu.ac.il

Abstract

Classical planners are rapidly becoming sufficiently fast and
efficient to be used as black boxes in many applications. In
other planning research areas, such as conformant planning,
contingent planning, and even probabilistic planning, trans-
lation based approaches which solve these difficult tasks by
translating them into classical planning problems have be-
come popular. These translations typically create a rather so-
phisticated classical planning problem, typically with many
more variables and actions, and often with special charac-
teristics, such as large number of conditional effects. They
also create variants of classical planning problems, such as
resource-bounded planning problems. Researchers in these
area rely on modern classical planners to provide solutions to
these problems in a heartbeat. Yet, these features raise seri-
ous difficulties for modern classical planners. We suggest that
research in classical planning can no longer afford to ignore
these limitations, and believe that the planning competition
has an important role in stimulating planning researchers to
seek planners that better handle them.

Introduction
Once SAT-solvers reached a certain level of maturity, solv-
ing huge problems rapidly, it became common practice in
many communities to translate their problems into SAT, and
then run some generic SAT-solver to obtain a solution (see,
e.g. (Hoffmann and Brafman 2006)). That is, for many prac-
tical problems, it became advantageous to make the effort to
translate a problem, run a generic solver, and translate the
solution back, rather than write a specific algorithm for the
problem of interest.

Classical planning is on route to playing a similar role
as SAT-solvers for diverse, richer planning models. Clas-
sical planning algorithms have scaled in the past decade to
solve huge problems with millions of variables and thou-
sands of actions very rapidly. Recently, research in con-
formant planning(Palacios and Geffner 2009), and partially
observable contingent planning(Albore et al. 2009), has de-
veloped smart translation schemes, taking as input a confor-
mant or continent planning problem, and outputing a clas-
sical problem, whose solution can be leveraged to solve the
original problem. More recently, we have also seen trans-
lations from planning problems with soft-goals (Keyder and
Geffner 2009) and conformant probabilistic planning (Braf-

man and Taig 2011) into classical planning problems and its
variants, such as resource-bounded planning.

Even when the resulting problems are pure classical plan-
ning problems, their properties are different from those com-
monly found in most classical planning benchmarks. The
most problematic limitations being the inability of modern
planners to solve domains with conditional effects, and to
accept multi-valued parameters in a human-readable format.
In many cases, because theoretical research has discussed
and offered solutions to these limitations, and translations
exist, e.g., for compiling conditional effects to multiple ac-
tions (Nebel 2000; Keller and Eyerich 2011), modern plan-
ners consider these issues as solved, expecting users to lever-
age existing research to write translations that would fit the
requirements of classical planners. We believe, however,
that requiring users of classical planners to understand such
research, and implement compilations and workarounds
themselves, narrows the number of classical planning users.
The competition can play an important role in encourag-
ing the development of planners that handle problems with
diverse features. Furthermore, as competition benchmarks
play an important role in challenging existing technology
and pushing its boundaries, it is important to include this
new class of problems among existing benchmarks.

But translation-based methods require more than plain
vanilla classical planners. To capture probabilities and pref-
erences, one needs numeric variants of classical planning,
including metric planning (Hoffmann 2003) and resource
bounded planning (Smith 2004). These difficult problems
receive much less attention than classical planning prob-
lems. Here, too, the competition can try to encourage re-
search in this area by enriching the set of benchmark prob-
lems and encouraging appropriate tracks that were absent
from recent IPCs.

Finaly, to be widely used as a black-box, classical plan-
ners must offer users the ability to rapidly encode their do-
mains in a human-readable format. This requires the use of
multi-value variables, as in SAS, but with a much more read-
able syntax, possibly as in PDDL 3.1. Although the transi-
tion in this case is not difficult, most modern planners stick
to SAS or simple variants of PDDL.

The goal of this paper is to convince the IPC commu-
nity, and not the general planning research community, in
the importance of adding translated domains as an oblig-

6

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

atory part of the satisfying track of the IPC, and to add
more tracks for resource bounded planning and metric plan-
ning. We believe that once features such as conditional ef-
fects will become standard in the IPC benchmarks, classi-
cal planning researchers will find innovative efficient ideas
for solving domains with such features. Furthermore, the
IPC offers users a fair comparison and a reasonable testing
ground for deciding which planner to use in their application
as a black-box, without requiring users to fully understand
the algorithms and methods employed by the planner. This
would allow users of classical planners to focus on their own
research, e.g., on generating more expressive and efficient
translations, rather than on implementing required features
for classical planners. In the rest of this paper we consider
some of the difficulties faced when attempting to use classi-
cal planners in solving translation based techniques. We re-
fer the readers to (Palacios and Geffner 2009; Albore et al.
2009; Brafman and Taig 2011; Keyder and Geffner 2009;
Shani and Brafman 2011) for more details on translation
techniques.

The Difficulties of Using Classical Planners on
the Translations

We now review a set of difficulties that we encountered in
using classical planning algorithms to solve classical plan-
ning problems generated by automated compilation-based
planners, and in particular, problems generated by contin-
gent planners. Obviously, these difficulties are not unique to
translations, and some solutions to these problems exist in
theory, but are not integrated into current planners. And in
fact, those solution we tried (such as compiling away condi-
tional effects) do not scale up well.

Conditional Effects
One of the key features of translations from conformant and
contingent planning is a large increase in the number of
conditional effects. Intuitively, the generated classical do-
mains attempt to explicitly model the state of knowledge of
the agent. This state depends, conditionally, on the value
of observations made. Furthermore, one must also condi-
tion the actual effect of actions, whether observed or not,
on properties that are unknown to the planner, such as the
value of some propositions in the initial state of the world.
This require the use of conditional effects. Moreover, con-
formant and contingent planning problems usually contain
many conditional effects in their original formulation, as in
many cases, operators without conditional effects are inef-
fective given uncertainty.

While it is arguably difficult to imagine a complete par-
tially observable definition language with no conditional ef-
fects, it is often argued that for classical problems, condi-
tional effects are merely a convenience. That is, one can
compile an action with a conditional effect into two actions
— one where the condition c holds and one where it does
not, adding its negation into the precondition of the appro-
priate action. This omits a single condition from the action,
and can be repeated until all conditional effects have been
removed from all actions.

Domain Original actions Max translated conditions
Localize 3 8 48
Localize 5 19 114
Localize 7 34 204
Localize 9 53 318

Localize 11 76 456
Localize 13 103 618

Table 1: Conditional actions in translated localize domains. In
these examples, there are 9 original actions, and 315 trans-
lated actions.

This approach results in an exponential growth of actions,
as each combination of conditions of an action requires a
separate new action. When the number of conditions is not
too large, as is typically the case in hand-written problems,
this is certainly a viable approach. There are other trans-
lations (Nebel 2000) that transform an action with condi-
tional effects into a sequence of actions with no conditional
effects, resulting in only a linear growth in the number of
actions. The result is, however, that the actual cost of an ac-
tion computed in the planner heuristic becomes dependent
on the original number of conditional effect in the action,
which distorts the search heuristic.

Thus, perhaps most modern classical planners do not al-
low for conditional effects (except, perhaps for FF and its ex-
tensions), or impose strange constraints on these conditions.
For example, FD does not allow a literal and its negation to
appear in two different conditional effects of an action.

However, in our compiled problems, featuring hundreds
of conditional effects, the syntactic sugar approach is clearly
infeasible, and conditional effects typically contain a literal
and its negation, for example, in order to reflect knowledge
gain and knowledge loss conditions. As such, conditional
effects pose the largest obstacle facing the usage of classical
planners for solving current translations.

Specifying Non-Binary Variables
One of the limitations of the widely used PDDL language is
its inability to directly express multi-valued variables. The
only way to specify such variables is through a set of binary
variables, whose obvious dependency is not directly spec-
ified. An obvious example is when the problem contains
the location of an object upon a grid. This location could
naturally be defined through a single location multi-valued
variable, or through two x,y multi-valued variables. How-
ever, in PDDL the natural definition of a location on a grid
requires |X| × |Y | binary variables, with no formal method
of specifying that only one of these variables is always true.

An alternative can be found in the SAS or SAS+ lan-
guages, which are the input languages for many modern suc-
cessful planners, such as LAMA, or FD. These languages al-
low us to specify multi-valued variables. However, writing
the translations directly in SAS has proven to be very diffi-
cult, and the authors of this paper have forsaken a direct SAS
output after weeks of failures. This is mainly because SAS
has a structure that is difficult for humans to read and un-
derstand. Thus, while understanding and hence debugging a
PDDL file is relatively straight forward, understanding and

7

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Domain type Multi-valued variables
logistics 3

ebtcs 1
CB n− k k, k ∈ [1, 7]
Doors n n

2
, n ∈ [5, 17]

Localize 1
Unix 1

Wumpus n 1 + 6n, n ∈ [5, 20]

Table 2: Number of natural multi-valued parameters in exist-
ing PPOS benchmarks.

debugging a SAS file of the translation has proven to be be-
yond our capabilities.

This was obviously acknowledged previously by other re-
searchers, as LAMA and FD offer a translator from PDDL
into SAS. Unfortunately, for our translations, this PDDL-
to-SAS translator has proven to be very slow, and in fact
becomes the bottleneck of the execution. We believe that a
language that would offer the flexibility of SAS joined with
the understandability of PDDL would make this translator
obsolete.

Of course, such extensions to PDDL were offered many
times in the past (see, e.g. (Geffner 2000), and the PDDL 3.1
specification developed for the IPC-2008 by Malte Helmert).
Still, modern planners that participate in the IPC support
only PDDL with boolean propositions, or the difficult SAS
format. Clearly, this is a well-known issue in the commu-
nity, and making, e.g., functional STRIPS, an obligatory in-
put language in the IPC will force participants to support it.

Execution Speed
The IPC currently focuses on satisfiability (i.e. the ability
to provide a solution) through a rather generous time frame
(30 minutes). In some cases, although not always, when
planners are executed as a black box, it is critical that each
problem will be solved very rapidly. A user of such a black
box planner may prefer a planner that solves most problems
rapidly, but sometimes is unable to solve a problem, to a
planner that solves more problems, but does so more slowly.
We believe that the execution speed of planners should be
evaluated in the IPC directly, and faster planners should re-
ceive adequate acknowledgement.

Table 3 demonstrates the amount of time required for scal-
ing up. We report both the number of times that the planner
was executed, as well as the total runtime of the entrie con-
tingent online planner. As we can see, planners that take
more than a few seconds to compute a solution, become a
bottleneck for our approach.

Linux-only Implementations
Many researchers prefer the Linux environment for develop-
ing software. To date, all the classical planners that we have
explored were originally developed and tested on Linux en-
vironments. Still, a vast majority of programming nowa-
days is done on Windows systems. If the classical plan-
ning community wants its planners to be used as black boxes
within other applications, the limitation of development un-
der Linux is simply unrealistic.

Domain Replanning Total runtime (secs)
elog7 3.3 1.3

ebtcs-70 35.6 15.8
CB 9− 7 310.9 693.3
Doors 17 60 96.9

Localize 17 6.6 75
Unix 4 29.4 12.4

Wumpus 20 17.7 156.1

Table 3: Number of replanning episodes in existing PPOS
benchmarks. Reported numbers are averages over 50 exe-
cutions.

Planner Compiles Runs Solves
FF Yes Yes Yes

FF(hs) Yes No No
FF(hsa) Yes No No

MIPS-XXL Yes No No
Metric-FF Yes Yes No

LPG Yes No No
LAMA (2008) Yes No No

FD Yes Yes Yes

Table 4: The behavior of planners we experimented with on
PPOS benchmarks under Cygwin. Planner download pages
were accessed from the IPC-6 and IPC-7 webpages.

A workaround that is often used is to compile in Windows
under the simulated Linux environment Cygwin. While this
is a viable option, and in many cases works well, we have en-
countered several problems with this approach. First, certain
components often used in planners are not working prop-
erly in Cygwin. Specifically, Bison and Flex are often used
tools for specifying the PDDL syntax, but fail on, e.g, the
FF syntax under Cygwin. Workarounds exist, such as pre-
compiling some files in a Linux environment, and then trans-
ferring the results to Cygwin, but such solutions put yet an-
other obstacle for the user. Furthermore, several compiled
applications do not work the same way under Cygwin as
they do under Linux. Specifically, we encountered prob-
lems running MIPS-XXL,FF(ha), and FF(hsa), on Cygwin
which did not reproduce on Linux. That being said, some
important planners such as FF and FD compile and work
well under Cygwin.

While transferring all current Linux C and C++ code into
modern C# or Java is clearly difficult, we urge the com-
munity to start writing new planners in languages that can
be compiled and executed within a Windows system. One
possible low-cost alternative is to allow Windows users to
access planners through Cygwin. The IPC should perhaps
encourage the submission of planners compiled under Cyg-
win, and test this compilation to ensure that this compiled
version operates as well as the original Linux compilation.
Thus, the IPC would ensure that equivalent results will be
obtained on both Windows and Linux.

Table 4 shows a part of the planners that we experimented
with and the difficulties in using them. Note that although
we managed eventually to use FD, this was only achieved af-
ter receiving much help by two experts in FD, Erez Karpas
and Michael Katz, explaining to us how to translate our con-

8

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

ditional effects into a format readable by FD.

Conclusion
To conclude, in this position paper we argue that classical
planners may become the new building block of many mod-
ern applications. To achieve this ambitious goal, such plan-
ners must be able to handle more complicated domains, and
allow additional flexibility in the inputs that they process.
Based on our experience in using classical planners to solve
translated contingent and conformant problems, we point to
a number of limitations that, should they be resolved, will
make our usage of classical planners much more natural and
easy.

We realize that the IPC is run by volunteers and cannot
simply dictate to the planning community what research to
do and what planners to build. In fact, it is often the case that
new tracks are organized because sufficient planners exist.
Nevertheless, through awareness to the issues we raise, and
to the important trend of using planners as blackboxes, the
IPC can play an important role in shaping the direction plan-
ning research and making planning technology more usable.

References
Alexandre Albore, Héctor Palacios, and Hector Geffner. A
translation-based approach to contingent planning. In IJCAI, pages
1623–1628, 2009.
Ronen I. Brafman and Ran Taig. A translation-based approach to
conformant probabilistic planning. In Second Int. Conf. on Algo-
rithmic Decision Theory, 2011.
Héctor Geffner. Logic-based artificial intelligence. chapter Func-
tional strips: a more flexible language for planning and problem
solving, pages 187–209. Kluwer Academic Publishers, Norwell,
MA, USA, 2000.
J. Hoffmann and R. I. Brafman. Conformant planning via heuristic
forward search: A new approach. Artif. Intell., 170(6-7):507–541,
2006.
Jörg Hoffmann. The metric-ff planning system: Translating ”ig-
noring delete lists” to numeric state variables. J. Artif. Intell. Res.
(JAIR), 20:291–341, 2003.
Thomas Keller and Patrick Eyerich. A polynomial all outcome
determinization for probabilistic planning. In Fahiem Bacchus,
Carmel Domshlak, Stefan Edelkamp, and Malte Helmert, editors,
ICAPS. AAAI, 2011.
Emil Keyder and Hector Geffner. Soft goals can be compiled away.
J. Artif. Intell. Res. (JAIR), 36:547–556, 2009.
Bernhard Nebel. On the compilability and expressive power of
propositional planning formalisms. J. Artif. Intell. Res. (JAIR),
12:271–315, 2000.
Héctor Palacios and Hector Geffner. Compiling uncertainty away
in conformant planning problems with bounded width. JAIR,
35:623–675, 2009.
Guy Shani and Ronen I. Brafman. Replanning in domains with
partial information and sensing actions. In IJCAI, pages 2021–
2026, 2011.
David E. Smith. Choosing objectives in over-subscription plan-
ning. In ICAPS, pages 393–401, 2004.

9

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Advances in BDD Search: Filtering, Partitioning, and Bidirectionally Blind

Stefan Edelkamp and Peter Kissmann
TZI Universität Bremen, Germany
{edelkamp, kissmann}@tzi.de

Álvaro Torralba
Planning and Learning Group

Universidad Carlos III de Madrid, Spain
atorralb@inf.uc3m.es

Abstract

Symbolic search with BDDs often saves huge amounts of
memory and computation time, but in the sequential-optimal
track of the 2011 International Planning Competition (IPC)
explicit-state heuristic search planners performed better.
In this paper we present a set of improvements for blind and
heuristic search with BDDs that indicate how to scale better.
Besides some basic refinements this paper proposes two gen-
eral techniques to advance BDD search by refining the image
operator to compute the set of successors. First, a transition
relation tree selects the set of applicable actions through filter-
ing their precondition. Secondly, the state sets to be expanded
are partitioned in equally-sized state subsets. Experiments
on IPC 2011 planning benchmark domains are reported, with
surprisingly good results for bidirectional blind search.

Introduction
In the 2011 International Planning Competition (IPC 2011),
explicit-state heuristic search planners showed advantages to
symbolic planners (that won the preceding one), indicating
that the increased quality of search heuristics sometimes ex-
ceeds the structural savings for representing and exploring
large state sets in advanced data structures.

For the automated construction of search heuristics for
planning, symbolic pattern databases have been proposed by
Edelkamp (2005) and refined by Kissmann and Edelkamp
(2011). Alternatively, Bonet and Geffner (2008) compile
the planning heuristic h+ into a logic program and extract a
d-DNNF of it, where d-DNNFs are other succinct represen-
tations for Boolean functions for which many operations like
model counting are polynomial, but not always as efficient
as for decision diagrams.

In this paper we look at improvements for the BDD-
based planner GAMER that won the sequential-optimal track
of IPC 2008. The improvements for GAMER proposed in
(Kissmann and Edelkamp 2011) already went into the com-
petition version of IPC 2011. We will look at further changes
to the planner, including changes to the parser, to either al-
ways or never applying heuristic symbolic search, and in-
cluding a list representation of the search frontier (rather
than a matrix representation). Then we turn to filtering and
lexicographic partitioning, resulting in new image opera-
tions for symbolic search.

The paper is structured as follows. First, we reconsider

the explicit-state and symbolic heuristic search with pattern
database heuristics. Next, we revisit the IPC 2011 competi-
tion outcome in the sequential-optimal track and turn to the
set of refinements to GAMER that we experimented with. In
the experimental results we show that we could advance the
state-of-the-art in some of the planning benchmarks of IPC
2011. We close the paper with a discussion and give some
concluding remarks.

Explicit-State Pattern Database Search
A planning task consists of variables of finite domain, so
that states are assignments to the variables, an initial state,
the goal, and a finite set of actions, each being a pair of pre-
conditions and effects. In cost-based planning, actions are
associated with action cost values, which often are integers.
The task is to find a path, the plan, from the initial state to
the goal. The plan is optimal if its cost is smallest among
all possible plans. A heuristic is a mapping from states to
natural numbers, and admissible if for all possible states the
value is not greater than the cost of an optimal plan. A plan-
ning task abstraction is a planning task based on a mapping
for the initial state, goal state as well as the actions.

The word pattern in the term pattern database (PDB)
coined by Culberson and Schaeffer (1998) was inspired by a
selection of tiles in the sliding-tile puzzle, and has been ex-
tended to the selection of state variables in other domains.
More general definitions have been applied, shifting the
focus from the mere selection of care variables to differ-
ent state-space abstractions that are computed prior to the
search. Following the definition in (Edelkamp and Schrödl
2012), a pattern database is characterized by memorizing an
abstract state space, storing the shortest path distance from
each abstract state to the set of abstract goal states.

Symbolic Pattern Database Search
The main limitation for applying pattern databases in search
practice is the restricted amount of RAM. For the explo-
ration of large state spaces, symbolic search using decision
diagrams can save huge amounts of memory and computa-
tion time. State sets (Pang and Holte 2011) are represented
and modified by accessing their characteristic functions.

Perfect hash functions (PHFs) to efficiently rank and un-
rank states have been very successful in traversing single-
player problems like Rubik’s Cube or the Pancake Problem

10

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

(Korf 2008) or two-player games like Awari (Romein and
Bal 2002). They are also used for creating PDBs (Breyer and
Korf 2010). The downside of the construction of PHFs for
traversal algorithms like two-bit BFS is that they are prob-
lem-dependent.

Binary decision diagrams (BDDs) (Bryant 1985) are a
memory-efficient data structure used to represent Boolean
functions as well as to perform set-based search, where the
BDD represents all binary state vectors that evaluate to true.
More precisely, a BDD is a directed acyclic graph with one
root and two terminal nodes (0 and 1), called sinks. Each in-
ternal node corresponds to a binary variable of the state vec-
tor and has two successors (low and high), one representing
that the current variable is false and the other representing
that it is true. For any assignment of the variables on a path
from the root to a sink the represented function will be eval-
uated to the value labeling the sink. Moreover, BDDs are
unique by applying the two reduction rules of (1) eliminat-
ing nodes with the same low and high successors and (2)
merging two nodes representing the same variable that share
the same low successor as well as the same high successor.

Symbolic search with BDDs takes two sets of variables,
one (x) representing the current states and another (x′) rep-
resenting the successor states. To find the successors of a set
of states S represented in the current state variables given a
BDD T (the transition relation) for the entire set of actions,
the image is computed, i. e., image(S, x′) = ∃x . S(x) ∧
T (x, x′). Similarly, search in backward direction is done
by using the pre-image operator (i. e., pre-image(S, x) =
∃x′.S(x′) ∧ T (x, x′).

For symbolic backward search we start with the abstract
goal set and iterate the computation of the pre-image un-
til we encounter the initial state. Each state set in a layer
is efficiently represented by a corresponding characteristic
function. We may assume that the variable ordering is fixed
and has been optimized prior to the search.

Symbolic PDBs (Edelkamp 2005) are PDBs that have
been constructed symbolically as BDDs for later use either
in symbolic or explicit heuristic search. Their construction
exploits that the transition relation is defined as a relation.
In contrast to the posterior compression of the state set (Ball
and Holte 2008), the construction in (Edelkamp 2005) works
on compressed representation, allowing much larger PDBs
to be constructed. The savings observed by the symbolic
representation are substantial for many planning domains.

For symbolic PDB construction in unit-cost graphs, back-
ward symbolic BFS is used. For a given abstraction function
the symbolic PDB Heur(value, x) is initialized with the pro-
jected goal. As long as there are newly encountered states,
we take the current backward search frontier and generate
the predecessor list with respect to the abstracted transition
relation. Then we attach the current BFS level to the new
states, merge them with the set of already reached states,
and iterate. When action costs are integers this process can
be extended from breadth-first to cost-first levels, and it is
possible to combine different symbolic heuristics by taking
their maximum or by a controlled combination of their sum.

The variables encoded in value are often queried at the
bottom or at the top (in which case we obtain the equiva-

lent to a vector of BDDs). For symbolic heuristic search
(Jensen, Veloso, and Bryant 2008) it is often more conve-
nient to choose the latter, i. e., where the heuristic relation is
partitioned into Heur[0](x), . . .Heur[maxh](x), with

Heur(value, x) =
maxh∨
i=0

(value = i) ∧ Heur[i](x).

BDDA* (Edelkamp and Reffel 1998) operates on a matrix
Open of sets represented by BDDs. The successors of the
BDD Openg[h] for a chosen transition with cost c are uni-
fied with the BDD Openg+c[h

′], where h′ ∈ {0, . . . , hmax}
is the partitioning obtained by the heuristic evaluation of the
successor set. As we aim at cost-optimal symbolic sequen-
tial planning we work on a partitioning of the search space
in g- and h-values, where g is the cost of the path traversed
so far and h is the heuristic estimate on the cost to reach the
goal. To guarantee optimal cost we expand the matrix along
the f -diagonals with increasing g-values.

Competition Outcome
The IPC 2011 version of GAMER (Kissmann and Edelkamp
2011) already contained some improvements in the plan-
ner’s code wrt. the IPC 2008 version, e. g., on handling large
action costs (as in the PARC-PRINTER domain). The plan
script was improved (it uses 15 minutes real-time for back-
ward search, not CPU time). Moreover, it features the au-
tomated calculation of abstractions, and the improvement of
the variable ordering. More precisely, the IPC 2011 compe-
tition version of GAMER contained two major improvements
wrt. the IPC 2008 version.

Variable Ordering Heuristics The problem of finding a
good variable ordering in a BDD is co-NP-complete, so that
we decided to approximate another optimization problem
to find a good variable ordering without BDDs. Follow-
ing Kissmann and Edelkamp (2011) we incrementally com-
pute the optimization function

∑
1≤i,j,≤n,(ui,vj)∈D(π(i) −

π(j))2, where π denotes the applied permutation and D de-
notes the set of the causal dependencies.

Partial and Abstract PDBs A partial PDB (Anderson,
Holte, and Schaeffer 2007) does not apply abstractions but
truncates the exploration when it exhausts its allocated time
slot. PDBs based on abstraction usually search for a number
of variables on which the exploration is done.

The decision criterion we apply is to check whether back-
ward exploration in the original space is too costly by look-
ing at the CPU times for the backward exploration. If it
rises too rapidly, we change from the partial PDB to the au-
tomated selection of variables for the abstraction PDB.

Our test-cases are benchmarks from IPC 2011. Unfor-
tunately, in that competition GAMER did not score as well
as it did in 2008 (the IPC 2011 results are depicted in Ta-
ble 1). Of the twelve planners it finished ninth with only
148 solved instances, while one of the FAST DOWNWARD
STONE SOUP versions (Helmert, Röger, and Karpas 2011)
won with a total of 185 solutions. If we compare the number

11

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Problem FD
SS

-1

FD
SS

-2

S
E

L
M

A
X

M
&

S

L
M

-C
U

T

F
D

A
U

T
O

F
O

R
K

IN
IT

B
JO

L
P

L
M

F
O

R
K

G
A

M
E

R

IF
O

R
K

IN
IT

C
PT

4

NOMYSTERY 20 20 20 20 15 15 20 20 20 14 14 9
PARKING 7 7 4 7 2 2 7 3 5 0 4 0
TIDYBOT 14 14 14 13 14 14 14 14 14 0 14 0

VISITALL 13 13 10 13 10 10 12 10 12 9 14 10
Total (unit-cost) 54 54 48 53 41 41 53 47 51 23 46 19

BARMAN 4 4 4 4 4 4 4 4 4 4 4 0
ELEVATORS 18 17 18 11 18 18 16 14 14 19 14 0
FLOORTILE 7 7 7 7 7 7 2 2 2 9 2 0

OPENSTACKS 16 16 14 16 16 16 16 14 12 20 16 0
PARC-PRINTER 14 13 13 14 13 13 11 11 10 7 10 17
PEG-SOLITAIRE 19 19 17 19 18 17 17 17 17 17 17 1

SCANALYZER 14 14 10 9 12 12 10 6 8 6 6 1
SOKOBAN 20 20 20 20 20 20 19 20 19 19 20 0

TRANSPORT 7 7 6 7 6 6 6 7 6 7 6 0
WOODWORKING 12 11 12 9 12 12 4 9 5 17 3 6

Total (costs) 131 128 121 116 126 125 105 104 97 125 98 25

Total (all) 185 182 169 169 167 166 158 151 148 148 144 44

Table 1: Number of solved problems for all domains of the sequential optimal track of IPC 2011, competition results.

of solved instances of the domains with and without action
costs the results are quite peculiar. For the unit-cost domains
GAMER found only 23 solutions; only one participant was
worse than that. For those with action costs GAMER found
125 solutions; only three other planners were able to find
more (with the maximum being 131).

Improvements to the Competition Version
We now present the improvements to optimal symbolic
search in GAMER that were issued posterior to IPC 2011.
Recall that this planner allocated 15 minutes for backward
search, and the remaining time for forward search.

Solution Reconstruction After the competition we inves-
tigated the results in some detail and found several problems
with GAMER. First of all, there was a small bug in the solu-
tion reconstruction for bidirectional BFS. It supposed that at
least one forward and at least one backward step were per-
formed. The two easiest problems of VISITALL require only
a single step, so that the solution reconstruction crashed.

Parser Enhancements The parser we used was extremely
slow. In some cases, parsing the ground input took more
than 15 minutes, so that actually no search whatsoever was
performed in the domains with action costs. First, the input
was parsed in order to generate a PDB, the calculation of
which was killed after 15 minutes, and then the input was
parsed again for BDDA*. In the unit-cost domains the pars-
ing sometimes also dominated the overall runtime. Thus, we
switched to a parser generator for Java programs, with which
the parsing typically takes no more than a few seconds.

One Computation of the Transition Relation In the
most complex cases, generating the BDDs for the transi-
tion relation takes a long time. So far we had to generate
them twice in case of domains with action costs if we did
not use abstraction, once for the PDB generation and once
for BDDA*. To omit this, we now store the transition rela-
tion BDDs, the BDD for the initial state and that for the goal
condition on the hard disk; storing and reading them is often
a lot faster than generating them from scratch.

Early Fail in Backward Search In two domains, namely
PARKING and TIDYBOT, we found that the first backward
step takes too long, often even more than 30 minutes, so that
the decision whether to use bidirectional or unidirectional
BFS could not be finished before the overall time ran out. In
these cases, the single images for all the actions were quite
fast, but the disjunction took very long. Thus, during the
disjunction steps we entered the possibility to check whether
too much time, in this case 30 seconds, has passed. If it
has we stop the disjunctions and the planner only performs
unidirectional BFS (or PDB generation using abstractions).
This enabled us to find some solutions in TIDYBOT, where
we failed completely during the competition.

As the computation of the reachability set is done in com-
pact form, invalid (unreachable) states may appear in the
backward traversal. Due to the partial description of the
goals there are many planning domains where the set of
backward reachable states is much larger than the one in for-
ward search. Consider the n2 − 1-Puzzle with N = n2 − 1
being the number of tiles and with the blank position not
mentioned in the goal state. The inverse of planning actions
that move a tile has the position of the blank and the tile to

12

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Algorithm 1 Bidirectional BDD-Dijkstra: A, I, G, w, Ta

fClosed ← bClosed ← 0
fReach0 ← I
bReach0 ← G
gf ← gb ← 0
wtotal ←∞
while gf + gb < wtotal

if NextDirection = Forward
{g1, . . . , gn} ← fStep(fReach, gf , w, fClosed , bClosed)
for all g ∈ {g1, . . . , gn}

for all i ∈ {i | i < gb ∧ bReachi 6= 0 ∧ g + i < wtotal}
if fReachg ∧ bReachi 6= 0
wtotal ← g + i
update π

gf ← gf + 1
else // same in backward direction

return π

Procedure fStep(fReach, g, fClosed , bClosed)
Ret← {}
fReachg ← fReachg ∧ ¬fClosed
for all c ∈ {1, . . . , C}

Succ(x′)←
∨

a∈A,w(a)=c ∃x.fReachg ∧ Ta(x, x′)
if Succ ∧ bClosed 6= 0
Ret← Ret ∪ {g + c}

fReachg+c ← fReachg+c ∨ Succ
fClosed ← fClosed ∨ fReachg

return Ret

be moved in the precondition, and the exchange of tile and
blank in the effects. Since the blank position is not known to
the planner, backward exploration will generate states with
tiles on top of each other, so that with NN the set of back-
ward reachable states is exponentially larger than the num-
ber of N !/2 forward reachable states.

Matrix BDDA* Search In the competition version we
used bidirectional BDD-BFS for unit-cost domains. After-
ward, we tried running BDDA* in all cases, no matter if we
are confronted with costs or not. We call the resulting ap-
proach Matrix BDDA*.

Bidirectional Shortest Path BDD Search As another ex-
treme, we implemented bidirectional shortest path search on
domains with action costs (cf. Algorithm 1). The motivation
for this was that for PDB generation the domains are often
not abstracted, so that the heuristic corresponds to a perime-
ter around the goal. In those cases bidirectional blind search
is more flexible, since the A* version uses a fixed timeout
for the backward exploration to generate the PDBs, and the
remainder of the available time in the forward exploration,
while the bidirectional search is able to select whether to
perform a backward or a forward step at any time.

The algorithm takes a set of actions A, the initial state I,
the goal states G, the action costs w and the transition rela-

tion Ta in form of a BDD for each action a ∈ A as input.
The forward search starts at I, the backward search at G.
Procedure fStep perform a forward step, which removes the
already expanded states from the bucket to be expanded of
the open list fReach . Then it computes the image to find the
set of successor states and inserts them into the correct buck-
ets of fReach . In case of a backward search the algorithm
looks the same, only that the forward and backward sets are
swapped and pre-images instead of images are applied.

The stopping criterion in the bidirectional BDD version of
Dijkstra’s (1959) algorithm is not immediate, as individual
shortest paths for the states cannot be maintained. Fortu-
nately, in the context of external search the following cri-
terion has been established (Goldberg and Werneck 2005):
stop the algorithm when the sum of the minimum g-values of
generated states for the forward and backward searches is
at least wtotal , the total cost of the cheapest plan found so
far. They have shown that this stopping condition is correct.
Since the g-value for each search is monotone in time, so is
their sum.

After the condition is met, every state s removed from a
priority queue will be such that the costs of the plans from
I to s and from s to G will be at least wtotal , which implies
that no plan of cost less than wtotal exists.

List BDDA* Search When a state set is expanded in
BDDA* all the successors have to be classified according to
their h-values by applying conjunctions with all the heuris-
tic BDDs. When the number of heuristic values grows, this
can be inefficient since some of these conjunctions could be
avoided. The representation in the matrix can be simplified
to a vector for the states in the Open list ordered along the
g value (serving as the Unclassified list). The reasoning be-
hind this strategy is to defer the heuristic calculation by com-
puting the conjunction of the successor set with the heuristic
estimate only when it is needed for expansion in the cur-
rently traversed f -diagonal. We call the resulting algorithm
List BDDA*. Additionally, while Matrix BDDA* uses BFS
to get the states reachable with 0-cost actions independent
of their actual h-values, in the list version we apply a con-
junction with the heuristic value to get only those states in
the current f -diagonal.

Filtering
In many explicit-state planners there are speed-up tech-
niques for filtering the operators that match, such as the
successor generators used in FAST DOWNWARD (Helmert
2006). There, operators are organized in a tree (see Fig-
ure 1). Leaf nodes of the transition tree contain a set of
operators with the same preconditions. Every internal node
is associated with a variable v and splits the operators with
respect to their precondition for v, one child for every pos-
sible value of v and an additional one for the cases that are
independent of v.

We found that the approach carries over to BDD search as
follows. As all the variables are binary, each internal node
has three children, dividing the operators depending if they
have v or ¬v as precondition are have a precondition inde-

13

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

v1

v2

O9O8O7

0
1

X
v2

O6O5O4

0
1

X
v2

O3O2O1

0
1

X

0
1

X

Figure 1: Improving image computation in domains with
many operators using a transition tree.

Algorithm 2 Image using the transition tree

if node is leaf:
return

∨
a∈node.A ∃x . S(x) ∧ Ta(x, x

′)
else
v ← node.variable
r0 ← image(node.c0, bdd ∧ ¬v)
r1 ← image(node.c1, bdd ∧ v)
rx ← image(node.cx, bdd)
return r0 ∨ r1 ∨ rx

pendent of v. When computing the successor states, instead
of applying the operators over a single state we need to com-
pute the successors of a state set represented as a BDD. Al-
gorithm 2 shows the algorithm to compute the image of a
BDD using the transition tree structure. For each internal
node three recursive calls are applied, one for each of the
child nodes. In the leaf nodes we compute the image using
the transition relation of the operators in the node.

Using this kind of transition tree brings two advantages
over the previous approach of just computing the disjunction
of the result of the images for every transition. On the one
hand, all the operators regarding branches without any state
are ignored, reducing the total number of images. On the
other hand, if several operators have the same precondition,
the conjunction of the state set with that precondition is only
computed once, reducing the size of the BDDs for which we
are computing the images.

Partitioning
BDD-BFS is widely known to improve the memory pro-
file of the search in many planning problems. If the BDDs
are still growing too quickly we apply a partitioning op-
tion which we call lex-partitioning. Given a Boolean func-
tion f : {0, 1}n → {0, 1}, defined over n inputs Xn =
{x1, . . . , xn}, the lex-partitioned BDD representation of f
is a set of k assignments a1 . . . , ak ∈ {0, 1}n and k func-
tions f1, . . . , fk : {0, 1}n → {0, 1} that are also defined
over Xn and satisfy the following conditions.

1. fi are represented as BDDs respecting the same variable
ordering as f , for 1 ≤ i ≤ k.

2. ak = (1, . . . , 1) and, for all i < k, we have ai <lex ai+1.

3. f1 ∨ . . . ∨ fk = f .

4. fi ∧ fj = 0 for all i 6= j.

Algorithm 3 Fold-BDD-DFS: A, I,G, Ta,M

Open0 ← I
for all g = 0, 1 . . .

if (explore(g,Open)) return

Procedure explore(g,Open)
if (S ∧ G 6= 0) return true
if (satcount(Openg) > M)

Openg[1], . . . ,Openg[p]← split(Openg)
else

Openg[1]← Openg
for all p ∈ Openg

S ← Openg[p]
for all i = 1, . . . , C

Succi(x′)←
∨

a∈A,w(a)=i ∃x . S(x) ∧ Ta(x, x′)
Open g+i ← Open g+i ∨ Succi

if explore(g + 1,Open)
return true

return false

5. f1 = f ∧
∨

a≤lexa1
a ands fi = f ∧

∨
ai−1<lexa≤lexai

a,
for all 1 < i ≤ k.

The advantage is that by the lexicographical ordering we
obtain control over the state set size (satcount) resulting
from a split. More formally, given the BDD Gf and any
assignment a ∈ {0, 1}n, the binary lexicographic split func-
tion computes the BDDs Gg and Gh with the satisfying sets
Sg = {b ∈ {0, 1}n | b ≤lex a} and Sh = {b ∈ {0, 1}n |
b >lex a}. The recursive procedure partitions the original
BDD into two by splitting nodes on the path defined by s
into a left and right representative and setting links to 0. If
nodes are missing they are allocated and split accordingly.

Theorem 1 (Time Complexity Split Function). In a shared
BDD representation, given BDD Gf that has been anno-
tated with satcount-values at each node and provided an as-
signment a ∈ {0, 1}n the lexicographic split function com-
putes the BDDsGg andGh inO(n) time. Moreover, at most
2n nodes are created.

Proof. As at most O(n) nodes are processed in post-order,
the time complexity follows. All original nodes remain valid
in the shared representation and each new node that is cre-
ated in the bottom-up traversal is checked for applying BDD
reduction rules (by issuing a look-up in the unique table). In
this process at most 2n new nodes are created.

It is not difficult to extend the splitting strategy to a k-fold
split that produces k equally-sized sets represented as BDDs
and runs in O(kn) time.

Fold BDD-DFS To participate in the partition of state sets
that exceeds some predefined memory threshold M , we de-
vise a generic symbolic search algorithm that is shown in
Algorithm 3. It refers to an Open-list that is already par-
titioned along the g-value. We assume the initial and goal

14

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

states represented in form of characteristic functions I and
G. For the sake of simplicity, we assume unit-cost transition
relations Ta, one for each action a ∈ A. If the maximum
p in Openg[p] is 1, then we are in the unpartitioned case,
otherwise Openg[p], 1 ≤ p ≤ k, denotes its partition.

The algorithm has interesting special cases. For M =
∞, Fold BDD-DFS resorts to BDD-BFS. For M = 1, Fold
BDD-DFS resorts to explicit-state DFS.

Note that deleting the sets in the partitions may hinder ef-
ficient solution reconstruction, so that we save the expanded
state sets. This also allows full duplicate detection.
Theorem 2 (Fold BDD-DFS). Let V be the induced state
space of a planning problem. When applying the lexico-
graphic folding with full duplicate detection, Fold BDD-
DFS finds a solution if it exists and requires at most
O(|V |/M) splits.

Proof. Full duplicate detection implies the completeness of
Fold BDD-DFS. We have |V | states in total and each split
reduces this set by at least M states, so that we have at most
O(|V |/M) splits.

It is not difficult to extend the algorithm to support itera-
tive deepening and finally return an optimal plan.

Fold BDDA* When combining the partitioning approach
with List BDDA* we call the resulting procedure Fold
BDDA* (see Algorithm 4). Fold BDDA* applies lex-
partitioning on the f -diagonal. Due to its depth-first strat-
egy it has the advantage to find solution paths on the final f -
diagonal faster. Of course, all state sets with f -value smaller
than the optimal one have to be expanded completely.

To preserve optimal solutions we apply partitioning only
on states with common f -value, i. e., that are located on the
same f -diagonal. If a set Openg[h] is partitioned we switch
from breadth-first minimum g-wise ordering to depth-first
maximum g-wise ordering, so that successor partitions have
all been worked upon when the next partition of a BDD is
looked at. If all partitions have been handled, the next pos-
sible g-value on the current f -diagonal is processed.
Theorem 3 (Optimality Fold BDDA*). Fold BDDA* is op-
timal, i. e., it returns the optimal solution cost when encoun-
tering its first goal state.

An example of the algorithm is provided in Figure 2. The
state sets in buckets 7 and 8 are too large and split into two.
The tree is traversed in depth-first order and the exploration
may terminate at a goal each time bucket 10 is reached.

The algorithm relates to Beam-Stack Search (Zhou and
Hansen 2005). However, instead of monitoring different f -
values that lead to larger plateaus, here we use the lexico-
graphic ordering with sharp boundaries.

Experiments
We implemented the refinements in GAMER (Kissmann and
Edelkamp 2011) using the CUDD library of Fabio Somenzi
(compiled for 64-bit Linux using the GNU gcc compiler, op-
timization option -O3). For the experiments we used our
own machine (Intel Core i7 920 CPU with 2.67GHz and

Algorithm 4 Fold-BDDA*: A, I,G, w,Heurh, Ta,M

Unexplored0 ← I
for all f = 0, . . .

for all g = 0, . . . , f
Openg ← Unexploredg ∧ Heurf−g

if (exploreDiagonal(f, g,Open)) return

Procedure exploreDiagonal(f, g,Open)
if (g > f) return false
h← f − g
if (h = 0) and (S ∧ G 6= 0) return true
if (satcount(Openg) > M)

Openg[1], . . . ,Openg[p]← split(Openg)
else

Openg[1]← Openg
for all p ∈ Openg

S ← Openg[p]
for all i = 1, . . . , C

Succi(x′)←
∨

a∈A,w(a)=i ∃x . S(x) ∧ Ta(x, x′)
Open g+i ← Open g+i ∨ (Succi ∧ Heurh)
Unexploredg+i ← Unexploredg+i ∨ (Succi ∧ ¬Heurh)

if exploreDiagonal(f, g + 1,Open)
return true

return false

24GB RAM) with the same settings concerning timeout (30
minutes) and maximal memory usage (6GB) as in the com-
petition. For the experiments we used the software infras-
tructure from the resources of IPC 2011.

The results are depicted in Table 2. The different ver-
sions are the competition version (IPC11), the one with all
improvements except for A* search in unit-cost domains en-
abled (Post-IPC11), and the final Matrix A*, List A*, and
Fold A* versions. Those versions using the transition tree
extension are denoted by suffix (TT). The last version is the
bidirectional BDD-Dijkstra.

We see that on our computer the competition version
solves two fewer problems than in IPC 2011, highlighting
that our computer is not stronger than the one used in the
competition. All the small improvements helped mainly in
the unit-cost domains. There we are now able to find the
two trivial solutions in VISITALL, as well as six solutions in
TIDYBOT. In the domains with action costs the new parser
helped us to find three additional solutions in the SCANA-
LYZER domain.

Switching from BFS to BDDA* in case of unit-cost do-
mains we see only a small improvement: for PARKING we
find one solution. Overall, the Matrix A* solves 158 prob-
lems, which is 12 problems more than with the competi-
tion version. List A* and Fold A* are performing well in
the domains with action cost, finding two more solutions
than Matrix A*, while they are slightly worse in the uni-
cost domains, losing two solutions. Overall, all three ap-
proaches find the same number of solutions. When compar-
ing the runtimes of these three approaches (Figure 3) we see

15

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

6

7

71

8

81

9

10

82

9

10

72

8

9

10

(a) Partition

h

g

I
1

2 3

4

5

6

7

8

9

10
v∗g

Unclassified

(b) Last diagonal

Figure 2: Example of the Fold A* Algorithm (with DFS tree
for last diagonal and corresponding bucket layout).

that overall surprisingly Matrix A* is the fastest, especially
in NOMYSTERY, TIDYBOT, VISITALL and SCANALYZER,
while List A* is slightly faster than Fold A*.

Concerning the use of the transition tree, the overall out-
come of Matrix A* and Fold A* is decreased to 154 resp.
155 solutions, while that of List A* is increased to 159.
When comparing the influence of the transition tree to the
runtime the results suggest that it is highly domain depen-
dent (Figure 4). For some domains, such as ELEVATORS,
FLOORTILE, and SOKOBAN, the runtime using the transition
tree is higher in most cases than when not using it, but for
others (e. g.,, in SCANALYZER, TRANSPORT, and WOOD-
WORKING) the runtime decreases.

Finally, the results of bidirectional BDD-Dijkstra are
rather astonishing. In the unit-cost domains it performs ex-
actly the same as bidirectional BDD-BFS, which is to be
expected. In those with action costs it finds the most solu-
tions in the BARMAN, FLOORTILE, PARC-PRINTER, and
TRANSPORT domains, and in the others it finds the same
number of solutions as Matrix A* without the transition tree,
resulting in 164 solutions in total, 133 of those in the do-
mains with action costs. Compared to the other planners of
the actual competition in Table 1 we see that with 133 solved
problems in the domains with action costs this approach is
best among all participants. Moreover, if we were to ex-
clude the PARC-PRINTER domain, which is special due to
the very diverse and extremely high action costs, the pic-
ture would be even more fortunate for bidirectional BDD-
Dijkstra. Thus, it seems that blind symbolic search works
better than the much more informed explicit state heuristic
search planners in the domains with action costs, while in
the unit-cost domains the latter are still ahead.

Conclusion
According to the outcome of the last two IPCs, heuristic and
symbolic search are two leading methods for sequential op-
timal planning. Symbolic search is effective in exploring
large state sets, while explicit-state heuristics are often more
informed. The outcome of IPC 2011 suggested a clear ad-

IP
C
1
1

Po
st

-I
PC

1
1

M
at

ri
x

A
*

L
is

tA
*

Fo
ld

A
*

M
at

ri
x

A
*

(T
T

)

L
is

tA
*

(T
T

)

Fo
ld

A
*

(T
T

)

B
-D

ijk
st

ra

NOMYSTERY () 14 14 14 13 13 14 14 14 14

PARKING () 0 0 1 1 1 1 1 1 0

TIDYBOT () 0 6 6 5 5 4 4 4 6

VISITALL () 9 11 11 11 11 11 11 11 11

Total (unit-cost) 23 31 32 30 30 30 30 30 31

BARMAN () 4 5 4 4 4 4 7 4 8

ELEVATORS () 19 19 19 19 19 19 19 19 19

FLOORTILE () 8 9 8 8 8 8 8 8 9

OPENSTACKS () 20 20 20 20 20 20 20 20 20

PARC-PRINTER () 7 7 7 8 8 7 7 8 8

PEG-SOLITAIRE () 17 17 17 17 17 17 17 17 17

SCANALYZER () 6 9 9 9 9 9 9 9 9

SOKOBAN () 19 19 19 19 19 16 17 16 19

TRANSPORT () 7 7 7 8 8 8 8 8 8

WOODWORKING () 16 16 16 16 16 16 17 16 16

Total (costs) 123 128 126 128 128 124 129 125 133

Total (all) 146 159 158 158 158 154 159 155 164

Table 2: Number of problems solved by GAMER for the se-
quential optimal track of IPC 2011, own results.

vantage for heuristic explicit-state search. We have shown
that symbolic search planners can be competitive with state-
of-the-art planners, at least in cost-based domains.

While the competition version of GAMER used bidirec-
tional blind search for unit-cost domains and BDDA* for the
rest, we have compared the performance of both approaches
separately. This comparison shows advantages for the bidi-
rectional blind search. Surprisingly, after many years of re-
search on finding refined heuristics in the AI planning do-
main this form of blind search still outperforms all existing
planners, at least on the IPC 2011 domains with action costs.
We also tried some improvements in the A* implementation,
such as the List and Fold versions of BDDA* and the tran-
sition tree for the successor generation, but experimental re-
sults show small impact on the number of solved problems.

The motivation of the partitioning pointing towards fu-
ture work is that explicit search can be more space-efficient
if perfect hash functions are available. With ranking and un-
ranking as proposed by Dietzfelbinger and Edelkamp (2009)
we can eventually connect a symbolic state space representa-
tion with BDDs and an explicit bitvector based exploration.
The BDDs can serve as a basis for a linear-time ranking
and unranking scheme. As we have control over the num-
ber of states in a BDD we can switch between symbolic
and explicit state space generation when the main memory
available is sufficient to cover the partitioned state sets. In
other words, for the explicification of the search we provide
a combination of the two methods, where the BDDs are used
to define hash functions for addressing states in the bitvec-
tor representation of the state space. This may have implica-
tions to other AI applications. For example, in game playing
we think of a layered approach to perform forward search
with a BDD, and retrograde analysis that changes from sym-
bolic to explicit state representation find strong solutions.

16

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

L
is

tB
D

D
A

*
[s

]

Runtime Matrix BDDA* [s]

(a) List BDDA* vs. Matrix BDDA*.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

Fo
ld

B
D

D
A

*
[s

]

Runtime List BDDA* [s]

(b) Fold BDDA* vs. List BDDA*.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

Fo
ld

B
D

D
A

*
[s

]

Runtime Matrix BDDA* [s]

(c) Fold BDDA* vs. Matrix BDDA*.

Figure 3: Comparing the runtime results of different
BDDA* versions without the transition tree. The keys are
omitted for better readability. The symbols correspond the
domains with the same symbol in Table 2.

Acknowledgments
Thanks to Deutsche Forschungsgesellschaft (DFG) for sup-
port in the project ED 74/11-1. Thanks to the Spanish
Government for support in the MICINN projects TIN2011-

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

M
at

ri
x

B
D

D
A

*
(T

T
)[

s]

Runtime Matrix BDDA* [s]

(a) Matrix BDDA*.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

L
is

tB
D

D
A

*
(T

T
)[

s]

Runtime List BDDA* [s]

(b) List BDDA*.

0

200

400

600

800

1000

1200

1400

1600

1800

0 200 400 600 800 1000 1200 1400 1600 1800

R
un

tim
e

Fo
ld

B
D

D
A

*
(T

T
)[

s]

Runtime Fold BDDA* [s]

(c) Fold BDDA*.

Figure 4: Comparing the runtime results of different
BDDA* versions with and without the transition tree. The
keys are omitted for better readability. The symbols corre-
spond the domains with the same symbol in Table 2.

27652-C03-02, TIN2008-06701-C03-03 and to the Co-
munidad de Madrid for support in the project CCG10-
UC3M/TIC-5597.

17

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial
pattern databases. In SARA, volume 4612 of LNCS, 20–34.
Springer.
Ball, M., and Holte, R. C. 2008. The compression power of
symbolic pattern databases. In ICAPS, 2–11.
Bonet, B., and Geffner, H. 2008. Heuristics for planning
with penalties and rewards formulated in logic and com-
puted through circuits. Artif. Intell. 172(12–13):1579–1604.
Breyer, T. M., and Korf, R. E. 2010. 1.6-bit pattern
databases. In AAAI, 39–44.
Bryant, R. E. 1985. Symbolic manipulation of boolean func-
tions using a graphical representation. In DAC, 688–694.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dietzfelbinger, M., and Edelkamp, S. 2009. Perfect hashing
for state spaces in BDD representation. In KI, 33–40.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1:269–271.
Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In Herzog, O., and Günter, A., eds., KI, volume
1504 of LNCS, 81–92. Springer.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search –
Theory and Applications. Academic Press.
Edelkamp, S. 2005. External symbolic heuristic search with
pattern databases. In ICAPS, 51–60.
Goldberg, A. V., and Werneck, R. F. F. 2005. Com-
puting point-to-point shortest paths from external memory.
In Workshop on Algorithm Engineering and Experiments
and Workshop on Analytic Algorithmics and Combinatorics,
ALENEX /ANALCO, 26–40.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast down-
ward stone soup: A baseline for building planner portfolios.
In ICAPS-Workshop on Planning and Learning (PAL).
Helmert, M. 2006. The Fast Downward planning system.
JAIR 26:191–246.
Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2008. State-
set branching: Leveraging BDDs for heuristic search. Artif.
Intell. 172(2–3):103–139.
Kissmann, P., and Edelkamp, S. 2011. Improving cost-
optimal domain-independent symbolic planning. In AAAI,
992–997.
Korf, R. E. 2008. Minimizing disk I/O in two-bit breadth-
first search. In AAAI, 317–324.
Pang, B., and Holte, R. C. 2011. State-set search. In SOCS.
Romein, J. W., and Bal, H. E. 2002. Awari is solved. In-
ternational Computer Games Association (ICGA) Journal
25(3):162–165.
Zhou, R., and Hansen, E. A. 2005. Beam-stack search:
Integrating backtracking with beam search. In ICAPS, 90–
98.

18

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

A Multi-Agent Extension of PDDL3.1

Daniel L. Kovacs

Budapest University of Technology and Economics
Budapest, HUNGARY
dkovacs@mit.bme.hu

Abstract

Despite a recent increase of research activity in the field of
multi-agent planning there is still no de-facto standard for
the description of multi-agent planning problems similarly
to the Planning Domain Definition Language (PDDL) in
case of deterministic single-agent planning. For this reason,
in this paper a multi-agent extension of the currently latest
official version of PDDL (3.1) is proposed together with a
corresponding multi-agent planning track for the
International Planning Competition (IPC). Our aim is to
allow for a more direct comparison of planning systems and
approaches, a greater reuse of research, and a more
coordinated development in the field. Multi-agent planning
is fundamentally different from the single-agent case with a
broad range of applications (e.g. multi-robot domains). Not
only is it inherently harder because of an exponential
increase of the number of actions in general, but among
others also constructive/destructive synergies of concurrent
actions, and agents’ different abilities and goals may need to
be considered. The proposed multi-agent extension copes
with these issues and allows planning both for and by agents
even in temporal, numeric domains. It implies minimal
changes to the syntax of PDDL3.1 and the related parsers.

1. Introduction

Multi-agent planning (de Weerdt and Clement 2009) is

about planning by N planning agents for M executing

agents (or actors, actuators, bodies) situated in a multi-

agent environment, with a broad range of applications.

Planning and executing agents may be the same or separate

entities. Executing agents are always situated in the

environment, while planning agents may be external to it.

However the most typical scenario is either when an

external agent is planning for a group of situated agents

(), or when there is a group of autonomous,

situated planning-and-executing agents (). In

general four cases can be distinguished (cf. Table 1).

 In cases where the control of multiple executing

agents may be centralized or decentralized. A typical case

of distributed planning is when agents plan for

Table 1: a general categorization of multi-agent planning

 agent. Planning can be done on-line or off-line, and

agents and environments can correspond to types

mentioned in Chapter 2 in (Russell and Norvig 2010).

 Multi-agent planning is inherently harder than single-

agent planning because agents may act independently and

thus the number of possible actions in general is

exponential (combinations of individual actions need to be

considered). Moreover agents may be heterogeneous; they

may have different abilities, contradicting goals or

asymmetric beliefs; they may require coordination of plan

execution, communication or synchronization of

concurrent actions; constructive/destructive interference of

joint actions may arise (joint actions may produce different

effects from the union of effects of their parts); cooperation

and self-interest, goals of teams and individuals may need

to be conciliated; and the level of coupling between agents

is also important. Thus single-agent planning can’t be

directly applied to multi-agent planning problems.

 Research in the field of multi-agent planning was

focusing recently mainly on the following topics.

 scaling up the performance of planners, e.g. (Shah,

Conrad, and Williams 2009; Stefanovitch et al. 2011;

Jonsson and Rovatsos 2011; Kumar, Zilberstein, and

Toussaint 2011; Spaan, Oliehoek, and Amato 2011);

 coping with more realistic domains, e.g. (Beaudry,

Kabanza, and Michaud 2010; Pajarinen and Peltonen

2011; Zhuo and Li 2011; Wang and Botea 2011; Fox,

Long, and Magazzeni 2011);

19

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

 improving solution quality, e.g. (Yabu, Yokoo, and

Iwasaki 2009; Marecki and Tambe 2009);

 exploiting problem structure (Brafman and Domshlak

2008; Nissim, Brafman, and Domshlak 2010);

 utilizing learning, e.g. (Martins and Demiris 2010;

Zhuo, Muñoz-Avila, and Yang 2011);

 reasoning about agents’ knowledge, e.g. (Baral et al.

2010; Baral and Gelfond 2011);

 and addressing agents’ self-interest, e.g. (Brafman et al.

2009; Crosby and Rovatsos 2011).

The problem is that despite all this progress there is still no

standard description language for multi-agent planning

problems allowing a more direct comparison of systems

and approaches and a greater reuse of research similarly to

the Planning Domain Definition Language (PDDL)

(McDermott et al. 1998) in single-agent planning, a base

language of the International Planning Competition (IPC).

 Naturally there were some previous approaches (cf.

Section 2.2), but none of these languages became de-facto

standards probably partly because of their limitations. On

the other hand PDDL is not enough to describe multi-agent

planning problems in general (e.g. possibly different goals

and utilities of different agents, synergy of joint-actions).

 To address these issues, in this paper a multi-agent

extension of PDDL3.1 is proposed, which is currently the

latest official version of PDDL (Helmert 2008), and based

on this extension, ideas for a corresponding multi-agent

planning track are also proposed for the upcoming IPCs.

 The structure of the paper is as follows: after Section 1

discusses the motivation behind the proposed approach,

Section 2 examines its background; Section 3 presents the

main result of the paper, the formal syntax and informal

semantics of the proposed multi-agent extension of

PDDL3.1 and an example; Section 4 discusses ideas for a

multi-agent planning track at the upcoming IPCs based on

the proposed extension; finally Section 5 concludes the

work and outlines some directions for future research.

2. Background

This section examines some of the considerations and

decisions behind the proposed multi-agent extension of

PDDL3.1. Namely it discusses (1) some minor corrections

of PDDL3.1’s syntax, (2) previously published multi-agent

planning problem description languages, and (3)

requirements of an appropriate multi-agent extension.

2.1. Corrections of PDDL3.1’s syntax definition

Since PDDL3.1 was chosen as the basis of the multi-agent

extension, a complete and correct BNF (Backus-Naur

Form) definition of its syntax becomes necessary, which

was made available in (Kovacs 2011). It makes mainly the

following minor corrections to previously published BNF.

 The default type (of objects) in PDDL is object, but

until now this was not made explicit in the grammar.

Accordingly the next rule should be added to the BNF.

 <primitive-type> ::= object

 Similarly the definition of the built-in 2-ary = predicate

in case of the :equality requirement was also left out

from previous definitions of PDDL. To correct this, the

following rule needs to be added to the BNF.

 <atomic formula(t)> ::=:equality (= t t)

 Since PDDL2.1 (Fox and Long 2003) function-

expressions in the domain description allowed only 2-

argument numeric operators, although in the problem

description, in the definition of metric they could be

also multi-argument. To fix this, the following two

production rules should be added to the grammar.

 <f-exp> ::=
:numeric-fluents

 (<multi-op> <f-exp> <f-exp>
+
)

 <f-exp-da> ::=
:numeric-fluents

 (<multi-op> <f-exp-da> <f-exp-da>
+
)

 The definition of non-terminals <name> and <number>

was underspecified until now, so it is suggested to

define them more precisely, for example as shown in

the Appendix in (Teichteil-Königsbuch 2008).

 The following rule would allow durative actions to

have non temporally annotated numeric effects, which

would contradict the specification of durative actions in

(Fox and Long 2003). Thus it needs to be deleted.

 <da-effect> ::=
:numeric-fluents

 (<assign-op> <f-head> <f-exp-da>)

 The following rule is present in the BNF of PDDL2.1

and PDDL3.0 (Gerevini and Long 2005). The problem

with it is that <a-effect> is not defined anywhere, so

<a-effect> should be changed to <cond-effect>.

Otherwise <p-effect> or <effect> may also be

considered, but the former would not allow

conjunctions of propositions, while the latter would

overly complicate the syntax and allow semantically

ambiguous constructs (e.g. nested conditional effects).

 <timed-effect> ::=

 (at <time-specifier> <a-effect>)

 Production rules for non-terminals <assign-op-t>

and <f-exp-t> are referenced, but missing from the

BNF since PDDL3.0 in the form they were given in the

BNF of PDDL2.1. They should be included again.

 The following rule defines the syntax of derived

predicates since PDDL2.2 (Edelkamp and Hoffmann

2004a). The problem with it is that there is no mention

of the name of the derived <predicate>. Thus instead

of <typed list (variable)> (Edelkamp and

Hoffmann 2004b) would suggest <atomic

formula(term)>, which is better, since it includes the

20

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

name of the derived predicate, but then there are no

argument-types in the head of the derived-rule as one

might expect in case of :typing. To include both the

name of the predicate and the type of its arguments

<atomic formula skeleton> should be used

instead of <typed list (variable)> below.

 <derived-def> ::=

 (:derived <typed list (variable)> <GD>)

 The following rule is present in the initial conditions

part of the problem description since PDDL2.1, but it is

incorrect, since <f-head> may be lifted, although it

should be grounded. To fix this <basic-function-

term> can be used instead of <f-head> below.

 <init-el> ::=
:numeric-fluents

 (= <f-head> <number>)

 PDDL3.0 introduced plan constraints via modal

operators at the 5
th

 IPC in 2006, but they were not

allowed to be nested at the time of the competition.

Nonetheless this restriction could be lifted by using

production rules provided in Section 3 in (Gerevini and

Long 2005). The problem with those rules, which are

still part of the BNF, is that they do not allow a normal

end to the recursive nesting of modal operators. This

needs to be corrected, e.g. as given in (Kovacs 2011).

2.2. Previous approaches

Previous multi-agent planning problem description

languages provided valuable experience and ideas for the

design of the proposed multi-agent extension of PDDL3.1.

In the following an overview of these languages is given.

2.2.1. Non-deterministic Agent Domain Language

The Non-deterministic Agent Domain Language (NADL)

introduced in (Jensen and Veloso 2000) is suitable for

describing multi-agent planning domains to a limited

extent. It could be seen a predecessor of numeric fluents of

PDDL2.1, but its syntax differs significantly from PDDL.

 In NADL each explicitly given agent is a collection of

actions that have preconditions and effects (numeric and/or

propositional formulas). Actions can also refer to state

variables they constrain. These constraints are then used in

planning time to avoid joint actions that have destructive

synergetic effects, i.e. which constrain an overlapping set

of state variables (e.g. actions that assign different values

to a numeric fluent). Constructive interferences on the

other hand are not modeled. This makes for a relatively

simple model of interactions among concurrent actions.

 However NADL allows a distinction between system

and environment agents, the latter being non-controllable

and thus responsible for possible non-deterministic effects.

 NADL’s model of time is discrete. Actions have equal

duration and each agent can execute only one action at a

time. All agents share the same goal. Later in (Bowling,

Jensen, and Veloso 2002) this was extended to multiple

agents having possibly different goals, but no

accompanying description language was provided, and the

model was applicable only to propositional domains.

2.2.2. Concurrent interacting actions in STRIPS

This multi-agent extension of STRIPS (Boutilier and

Brafman 2001) provides a more elaborate way to model

interactions of concurrent actions than NADL based on the

idea of concurrent action lists. Essentially the same (but a

bit simplified) idea is presented in Section 11.4.1 in

(Russell and Norvig 2010). Concurrent action lists refer to

state variables and concurrently executed actions in form

of separate lists attached to actions’ preconditions or to

conditional effects’ conditions. In Section 2.2 in (Boutilier

and Brafman 2001) they are described precisely as follows.

If an action schemata A’ appears in the concurrent
action list of an action A then an instance of schema
A’ must be performed concurrently with action A in
order to have the intended effect. If an action schema
A’ appears negated in the concurrent action list of an
action A then no instance of schema A’ can be
performed concurrently with action A if A is to have
the prescribed effect.

This is a generic and intuitive way to model interference of

concurrent actions, however the implicit quantifiers over

actions are a bit restrictive and the scope of quantification

(the whole list) is also a bit broad. This could be improved

by having explicit quantification, and including reference

to concurrent actions directly in (pre)conditions.

 Agents responsible for the execution of actions are

referred to in form of variables (always the first parameter

of an action). The only issue with this is that there is no

typing, and thus no distinction between agents and objects.

Effectively every object can be considered an agent (e.g. a

planner may try to instantiate a table object in the first

variable of a pickup action, which wouldn’t make much

sense). Otherwise the language is just like STRIPS: time is

discrete, states are propositional. Moreover, each agent can

execute only one action at a time (no parallel or partially

ordered actions are allowed for one agent), and all share

the same goal, i.e. only cooperative agents are modeled.

 Despite all these limitations this language shows that a

proper multi-agent extension can be achieved with minimal

changes to a single-agent base language (STRIPS), and

that the changes implied to planners may also be limited.

2.2.3. Multiagent Planning Language

Multiagent Planning Language (MAPL) was presented in

(Brenner 2003a; 2003b) after interest in such an extension

was coined in the Call for Contributions of the Workshop

on PDDL at the ICAPS-03 conference. However there was

no multi-agent planning track at any IPC ever since or

before. Understanding all the reasons is beyond our scope,

but some observations can still be made regarding MAPL.

21

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

 MAPL builds upon PDDL2.1 and thus it includes

PDDL2.1’s main features (typing, numeric fluents, and

durative actions), but at the same time it also makes quite

drastic changes to the base language, which may be partly

responsible for MAPL’s limited success. Among others it

abandons the closed-world assumption and instead of

predicates it introduces n-ary state variables (which may be

even unknown). This is done partly to cope with partial

observability arising from multiple agents operating in the

environment, but it also gives rise to the question, if e.g.

actions’ preconditions reflect an agent’s knowledge

necessary to execute the action, or states of the “physical”

environment in which the action can be executed? In our

interpretation the latter is closer to the design philosophy

of PDDL, since “PDDL is intended to express the ‘physics’

of a domain” (McDermott et al. 1998). Moreover object-

fluents added in PDDL3.1 allow for a very similar

functionality without significant changes (to PDDL3.0).

 MAPL also introduces a qualitative model of time,

which was introduced in PDDL3.0 in a more concise form

(of modal operators). This was necessary to coordinate

multiple agents’ behavior via speech acts: fixed meta-

actions, whose definition is not part of the description.

 Such coordination was necessary to synchronize actions

or events in general with initially uncertain duration which

is again a novelty of MAPL intended to allow greater

realism and flexibility. An additional control function (for

each agent) decides whether this duration is controlled by

the environment or by the agent. Similarly there is also a

responsibility function, which maps state variables to

agents to represent which agent is responsible over a state

variable. The mentioned additional functions are not part

of the MAPL description, yet the definition of planning

problems includes the control function for example, which

may be confusing. These additions are effectively advices

to the planner, which contradicts original intentions again:

“We have endeavored to provide no advice at all as part of

the PDDL notation” (McDermott et al. 1998).

 Despite the above additions MAPL still handles the

interaction of simultaneous actions similarly to NADL.

“Two events are mutually exclusive (mutex) if one affects

a state variable assignment that the other relies on or

affects” (Brenner 2003a). This model avoids destructive

synergetic effects, but isn’t considering constructive ones.

 In MAPL every agent may face a different planning

problem, but all of them eventually share the same goals.

In actions, agents are represented with variables like in

Section 2.2.2, but they are handled just like any other

parameter, which implies further questions, e.g.: Can an

action have more/no agent-parameters? Should the actor

always be the first? Can an agent inherit an action defined

for a parent-type? Can actions be redefined for children?

 Such questions may become important when a planner is

being implemented and so they should be addressed

together with a complete syntax definition at least. The

reception of MAPL may have also been influenced by that

it is not just a new requirement (as derived predicates or

numeric fluents), but it is a new language, which is again

not in accordance with some intentions behind PDDL, e.g.

as stated in the Preface of the Proceedings of the Workshop

on PDDL at ICAPS-03: “how the...development of PDDL

can be managed within the community to ensure that it

does not...fork into multiple incompatible directions...”.

2.2.4. Concurrent STRIPS

Concurrent STRIPS (CSTRIPS) was proposed in (Oglietti

and Cesta 2004). It is classic STRIPS with the addition of

concurrent threads, which are explicitly declared, fixed

subsets of action schemas. However they are defined only

at model level without exact syntax (not even in examples).

 Each agent and controllable environmental process can

have a separate thread. The planner should find a sequence

of fully instantiated actions for each thread based on their

respective action-subsets to produce a joint-plan that

achieves a common set of goals. While the simplicity of

this approach may be tempting, it is not enough to describe

challenging multiagent problems (e.g. action interactions).

2.2.5. MA-STRIPS

MA-STRIPS (Brafman and Domshlak 2008) is a multi-

agent extension of STRIPS. Its idea is similar to CSTRIPS:

partition different agents’ grounded actions into disjoint

subsets (corresponding to threads in Section 2.2.4). This

however may raise implementation-level questions like: Is

it possible that different instantiations of the same

operator-schema belong to different agents? If yes, then

how should we represent this exactly, syntactically?

 Because of the similarity with CSTRIPS, eventually the

same conclusions hold here too, but it must be noted, that

the work of (Brafman and Domshlak 2008) focused mainly

not on the subtleties of describing multi-agent planning

problems, but given MA-STRIPS, a simple description

language, they rather set out to formalize and efficiently

exploit loosely coupled agents. They provided formal

results to quantify the notion of agents’ coupling and a

centralized multi-agent planning algorithm that was shown

to be polynomial in the size of the planning problem for

fixed coupling levels. Their notions of internal/public

atoms/actions and the agent interaction digraph could be

extended to more complex descriptions straightforwardly,

but the extension of their planning algorithm and the

implied complexity results relying on these notions could

be less trivial (e.g. extending them to actions with

interacting effects, continuous time or competing goals).

2.3. Requirements of a multi-agent extension

Based on the observations made in previous sections the

requirements of a multi-agent extension of PDDL3.1 can

be summarized as follows. In general it should be...

22

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

 Additional: a new, additional, optional extension (a

PDDL-requirement), not a completely new language;

 Minimalistic: introduce only minimal changes to the

base language and try to minimize the modifications

implied to existing planning systems and approaches;

 Backward compatible: compatible with every existing

extension (PDDL-requirement) in the official language;

 Forward compatible: designed to be easily integrated

with anticipated future extensions (e.g. partial

observability, stochastic effects, events, processes);

 General: useful in all four general categories of multi-

agent planning shown in Table 1;

 Conforming: in accordance with the design philosophy

of the language, i.e. neutrally expressing the “physics”

of the domain and including no advice for planners;

 Compact: the extended problem- and domain-

description should include every model-level detail;

 Well-defined: has a complete and accessible definition

of formal syntax and at least informal semantics;

In particular the multi-agent extension should allow...

 Modeling concurrent actions with interacting effects;

 Modeling competitive, cooperative or mixed domains;

 Agents having possibly different actions/goals/utilities;

 Straightforward association of agents and actions;

 Distinction between agents and non-agent objects;

 Inheritance/polymorphism of actions/goals/utilities;

 Different agents in different problems of a domain;

 Modeling full- and/or partial-observability;

 Optional use of any combination of PDDL3.1 features.

Optional communication of agents can be modeled by

PDDL (by defining communicative actions in the domain),

so communication can be realized in execution time.

Similarly agents’ knowledge can be represented with

domain-specific predicates and/or by using a PDDL-

extension allowing for partial observability, if necessary.

The proposed multi-agent extension should be modular,

i.e. useable with such other extensions, e.g. partial-

observability or probabilistic-effects. But in this paper now

we focus only on extending PDDL3.1 to multiple agents.

3. A multi-agent extension of PDDL3.1

In the following the main result of this paper, a multi-agent

extension of PDDL3.1 (MA-PDDL) is presented based on

the requirements gathered in Section 2.3. First the syntax

and semantics are given, then an example and a discussion

of solutions. The section should be best read in conjunction

with the BNF of PDDL3.1, e.g. in (Kovacs 2011).

3.1. Domain description

A new :multi-agent PDDL-requirement is introduced

to indicate the presence of multiple agents in the domain.

Agents are considered objects (or constants) that may have

associated actions, goals and utilities (metric definitions).

I.e. the idea is to associate actions, goals and utilities

directly to objects and/or types (say, sets of objects).

 The necessary changes implied to the grammar first

include the following slight modification of the production

rule defining non-durative actions in the BNF of PDDL3.1.

The only difference is the addition of an optional part for

the associated agent(s). It can be used only if the :multi-

agent requirement is declared, and also implies addition

of the following rules for <agent-def> to the grammar.

This means that agents can be associated to an action in

form of constants or variables. If :typing is declared,

then they can be given in form of types or typed variables

too. If a type or a variable is given, then the action-schema

is associated to every object whose type is a subset of the

given type or the type of the variable (since in PDDL types

correspond to sets of objects). Without an explicitly

declared type the agent-variable is assumed to have type

object by default (corresponding to the set of every

object). In this case every object is eventually considered

an agent, since those and only those objects are considered

agents, which have at least one associated action-schema.

If agents are referred to with variables, we suggest to use

types to enable distinction between agents and non-agent

objects. Furthermore it is required that the names of objects

and primitive types are unique and not overlapping, and

that every object has only one directly associated type.

 If the agent is referenced with a variable in the action-

schema, then this variable may appear in the body of the

action-schema (in conditions and effects) just like any

other action-parameter, and thus the name of the agent

variable is required to be different from parameter-names.

 If the :multi-agent requirement is declared, but the

agent-reference is not given in the action-schema, then the

schema is associated to the type object by default.

 Now in case of :typing, given a type-hierarchy, an

agent-object with a given type is associated with actions

that are either associated to it directly, or directly to its

type, or directly to an ancestor-type (superset) of its type.

This is called inheritance of actions. Polymorphism on the

other hand works as follows: an action with the same name

and arity (number of arguments) can be redefined for

descendants, i.e. an action directly associated to a type

redefines any action directly associated to its ancestor type

(superset), if the name and arity of the actions are equal.

23

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

An action associated directly to an object (constant)

redefines any actions with the same name and arity directly

associated to the type of the object, or which are inherited.

An agent-object or type cannot have two or more directly

associated action-schemas with the same name and arity.

Therefore association of actions to agents is unambiguous.

 Beyond typing an even more important aspect of a

proper multi-agent extension is how interaction of

concurrent (joint) actions works. For the proposed

extension a generalization of concurrent action lists

presented in Section 2.2 in (Boutilier and Brafman 2001) is

proposed. The idea is simply to allow references to

concurrent actions not only in a special construct, such as

the concurrent action list, but also among the preconditions

of actions and the conditions of actions’ conditional

effects. Interweaving the content of concurrent action lists

with conditions this way allows for a more convenient and

compact design. The proposed idea is similar to

“progressive predicates” suggested in Section 2.1 in

(Bacchus 2003), except that we now refer directly to

ongoing actions, and not to facts. This also implies that the

name-arity pairs of fluents (predicates, numeric and object

fluents) need to be unique, and cannot overlap with the

name-arity pairs of actions (durative or non-durative).

 The above considerations imply the addition of the

following 4 new production rules to the grammar.

This means that if the :multi-agent requirement is

declared, a goal description, <GD> is allowed to refer also

to ongoing actions (similarly to state fluents). The exact

form of reference to concurrent actions is the following.

The first argument (term) should be always the agent

executing the referenced action, while further arguments

should be the actual parameters of that action in their

respective order. If during execution a grounded reference

to an action A needs to be positive for the conditions of a

grounded action B to hold, then this means that A needs to

be executed in parallel with B for B’s respective effects to

take place. Otherwise, if the grounded reference to A needs

to be negative for conditions of B to hold at a given time

during execution, then A should not be executed in parallel

with B for B’s respective effects to take place at that time.

 The exact time(interval) when A should or should not be

under parallel execution with B is the same time(interval),

when a unique “progressive” proposition PA corresponding

to A should or should not be true respectively for B’s

conditions to hold were all occurrences of A replaced with

PA in the grounded PDDL-description and thus in the plan.

Now this depends only on the semantics of PDDL3.1.

 It must be noted though that the consistency of a joint-

action (where all member actions either refer to other

members in their conditions, or they are referred to by at

least one of them) should be more relaxed than the

traditional definition of mutex actions. For non-durative

actions, similarly to Definition 2 and 3 in (Boutilier and

Brafman 2001) we only require that the members of the

joint-action have consistent joint-(pre)conditions and joint-

effects in a given state, i.e. interference among effects and

(pre)conditions is not considered. In case of durative

actions the consistency check should focus on the exact

time instants and intervals when (pre)conditions need to

hold, and when effects take place during scheduled

execution. That is in this case it may happen that the

(pre)conditions of a member of a durative joint-action are

inconsistent with the effects of another member, which

may imply a re-scheduling of these actions by the planner.

The way this is achieved is beyond the scope of this paper.

A consistent joint-plan consists of consistent joint-actions.

 Durative actions of multiple agents are defined similarly

to non-durative actions. The rule for <durative-

action-def> needs to be slightly modified as follows.

This means that we can now associate agents to durative

actions just like we did to non-durative actions.

 Many further additions could be made to the grammar

of the domain. A minimal, but useful one is the following.

The built-in function num calculates the number of actions

under execution (during execution) for every instantiation

of a list of variables where given conditions hold. This

small extension adds great expressivity.

3.2. Problem description

The problem description needs to be extended slightly to

cope with possibly different goals and utilities of agents.

This requires modification of the problem definition first.

The only change here is that now at least one <goal> and

zero or more <metric-spec> structures are required.

24

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Goals can be empty (always true), while utilities don’t

need to be present when :numeric-fluents is declared.

 In case of multiple agents, goals can be captured by the

addition of the following production rule to the grammar.

The only essential change here compared to PDDL3.1 is

the addition of the agent-reference. If it refers to the agent

with a variable, then the variable may appear in the goal

formula. Goal conditions are prefixed with :condition to

emphasize them more. Utilities need a similar addition.

The declaration of the :multi-agent requirement is

necessary for the use of the above two structures, but we

can also use default PDDL3.1 goals and metric structures,

which would mean – similarly to the case of actions – that

goals and utilities are associated with the object type, i.e.

with every agent-object. Above we see that goal and utility

schemas can be associated directly to objects (or constants)

or types similarly to actions, although one object or type

can have only one directly associated goal or utility

schema in contrary to actions. But inheritance and

polymorphism are the same as in case of actions. Therefore

the assignment of goals/utilities to agents is unambiguous.

 One last addition is necessary to the grammar to allow

agent-variables in hitherto grounded metric expressions.

This way now we can include fluents in connection with

agents in the definition of their utility, but naturally the

value of metric needs to remain numeric. Not all agents

have to have a utility though, but all of them need to have

(at least an inherited) goal, which may be the same for all

of them or different depending on the problem at hand.

 An important topic is still left untouched: For which

agents is a planner planning? Which object(s) represent(s)

the planner in the description? Should it be represented?

 The answer depends on how the MA-PDDL description

is used: whether the planner is external or situated; whether

planning is centralized or decentralized, whether it is

distributed; or whether planners share the same MA-PDDL

description. The association of the planner and agent(s) can

vary from run-to-run (similarly to how an agent may

assume different players’ role during different plays of the

same game (von Neumann and Morgenstern 1944)). This

meta-information, the connection of planners and agent-

objects is therefore not included in the description. It is the

responsibility of the planner to know for whom it plans,

and possibly which object(s) represent(s) it in the problem.

So it is suggested to planner applications to have 1-2 more

inputs carrying this information beside other parameters.

3.3. Example

The following simple example aims to give a basic idea of

how the proposed multi-agent extension works. A minimal

set of PDDL features is used to illustrate important aspects,

such as cooperation, joint-actions, constructive synergy.

 The only action-schema in the domain (lift) is

associated with type agent, which is a direct descendant

(subset) of object; lift allows an agent to lift the table

(the only domain-constant of type object), but only if it is

not yet lifted, if the agent is at the table, and if there is at

least one other agent at the table lifting it simultaneously.

The related problem description defines 2 agents: a and b,

both being at the table, and having the same goal: the

table being lifted. Their goal is defined for type agent.

The solution requires cooperation from a and b, since they

have the same goal and the only way for them to achieve it

is to coordinate their actions. The only, trivially simple

solution is when both lift the table starting at time 0:

[0:(lift a) 0:(lift b)]. Because of the lack of

options the same plan should arise in case one or more

external rational planners plan for a and b.

 When a planner chooses a grounded lift action for

execution in a given state, it can assert a corresponding

unique (lift ·) fact to the state, and check what

implications this has on the applicability of other chosen

actions. If they remain executable, it may continue,

otherwise it may retract (lift ·) from the state, and

choose different actions. This should work also in general.

 In case of decentralized planning, i.e. when different

planners plan for different agent-objects, but all planners

share the same MA-PDDL description (which is common

knowledge among them), then solution-plans should not be

fully ordered sequences of temporally annotated actions

anymore. They should be rather strategies (for each agent)

that prescribe actions to observation-histories of the agent.

A joint plan in this case is a combination of such strategies.

 In our case, since partial observability isn’t introduced

yet as another extension, the planning environment is fully

observable, i.e. observations are complete descriptions of

new states and action-combinations that produced them.

 We should also note that though an MA-PDDL

description may be converted to an extensive- or normal-

form game, it would be a much less detailed description.

25

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

 Two issues arise in the decentralized case: (1) coping

with durative strategies; and (2) both in durative and non-

durative case it is not trivial how to compactly represent

strategies, especially in case of large state-spaces.

 However both issues can be solved (1) by reasonably

restricting the scheduling of durative actions (e.g. an agent

could schedule its next actions only when an other action

starts/ends); and (2) by using a client-server architecture

with planners as clients. Planners could receive new

observations for relevant time-instants (see previous issue)

from the Server and answer with their actual actions.

4. A multi-agent planning track at the IPC

In this section a short proposal is made for a multi-agent

planning track at the forthcoming IPCs based on the multi-

agent extension of PDDL3.1 presented in Section 3.

 There are 3 organizational steps (similarly to current

IPCs): (1) preparation; (2) competition; and (3) evaluation.

During the preparation phase the following should be

made public: a Call for Submissions; detailed rules of the

competition/evaluation; any source-code and additional

applications with documentation; a detailed manual/article

about MA-PDDL; and domains/problems for participants.

 For the competition the participants would need to

submit planners (sources, binaries) and papers about them.

The competition itself could consist of 2 fully-observable

sub-tracks at first: (2a) when external planner plans

for situated agents, and (2b) when planning is done

by situated planners. In both cases problems

can be categorized according to 3 properties: whether (i)

all agents’ goals/utilities are the same; (ii) if there are

utilities at all; and (iii) if durative actions are allowed. If in

(2b) we do not allow durative actions, then altogether 12

categories of multi-agent competition emerge.

 When (i) holds, problems are cooperative. Otherwise

they are competitive. The latter case can be divided into

sub-cases, where each agent has different goals/utilities,

and where only agents in teams have the same goal/utility.

 It should be noted that the easiest category is sub-track

(2a) when (i) holds, but this is still harder than single-agent

planning e.g. because of possible constructive synergies.

 In each of the 12 categories approx. 12-14 domains

could be present each with around 20 related problems.

The evaluation in case of sub-track (2a) could measure

normalized quality of joint-plans and planning-time per

problem, and the number of solved problems per domain

for each planner. The sum of these scores could decide the

winner of sub-track (2a). But it should be added, that the

quality of plans depends mostly on (i). If (i) and (ii) hold,

then quality is defined by utility, but if (ii) is not true, then

quality can be the makespan of plans. If (i) is false, then

the number of agents whose goal was achieved, or the sum

of achieved sub-goals or of plans’ makespan can be used.

 The evaluation of planners in sub-track (2b) could be

similar to evaluation at the probabilistic track at IPC-2011.

As mentioned in Section 3.3, a client/server architecture

could be used with planner-clients receiving observations

from a server and replying to it with their actions. The

server could wait for planners’ actions at each step for a

given time. In case of time-out (e.g. after 30 seconds/step)

the no-op action could be chosen for late planners.

 Initially the server should broadcast the MA-PDDL

description, and then for each problem and permutation of

planner-agent assignments it could execute e.g. 30 runs to

determine planners’ average fitness for each assignment

(since some may make non-deterministic decisions). The

sum of these averages over assignments could be the score

of a planner for a problem, and thus the sum of scores over

problems and domains could determine the winner of sub-

track (2b). If (ii) holds, then planners’ fitness could be the

individual utility of their agent. Otherwise it could be the

maximum of its simultaneously achieved sub-goals.

5. Conclusions

A multi-agent extension of PDDL3.1 was proposed with a

corresponding multi-agent planning track for the IPC to

enable more direct comparison of multi-agent planners and

approaches and a greater reuse of research. Planning by

and for agents is both possible. The syntax and semantics

of the extension were provided together with an example.

A few corrections to the BNF of PDDL3.1 were also listed

and an overview of current research in the field was given.

 Future research could focus on providing more detailed,

possibly formal semantics; planning algorithms; more

application domains (e.g. multi-robots, such as RoboCup,

or networking problems, such as efficient routing with

limited resources). The addition of partial observability (in

a separate, modular PDDL-requirement) would be primary,

but probabilistic effects and events/processes may also be

considered to allow treatment of more realistic problems.

The corresponding multi-agent IPC track could also be

developed further to narrow the gap between theory and

practice and to advance the field of multi-agent planning.

Acknowledgments

This work was partially supported by the ARTEMIS JU

and the Hungarian National Development Agency (NFÜ)

in frame of the R3-COP (Robust & Safe Mobile Co-

operative Systems) project. The author wishes also to

thank SUZUKI Foundation Japan, Derek Long, Carlos L.

López, Gabriele Röger, Ron Alford, Éric Jacopin, Takashi

Watanabe, Naoki Fukuta and Tadeusz P. Dobrowiecki.

26

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

References

Bacchus, F. 2003. The Power of Modeling - a Response to
PDDL2.1 (Commentary). J. of AI Res. 20:125-132.

Baral, C.; Gelfond, G.; Son, T. C.; and Pontelli, E. 2010. Using
Answer Set Programming to model multi-agent scenarios
involving agents’ knowledge about other’s knowledge, In Proc.
of AAMAS-2010, 259-266. IFAAMAS.

Baral, C.; and Gelfond, G. 2011. On representing actions in
multi-agent domains, In Engelmore, R., and Morgan, A. eds.
Logic programming, knowledge representation, and
nonmonotonic reasoning. 213-232. Springer.

Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning for
Concurrent Action Executions Under Action Duration
Uncertainty Using Dynamically Generated Bayesian Networks.
In Proc. of ICAPS-10, 10-17. AAAI Press.

Boutilier, C.; and Brafman, R. I. 2001. Partial-order planning
with concurrent interacting actions. J. of AI Res. 14(1):105-136.

Bowling, M.; Jensen, R.; and Veloso, M. 2002. A formalization
of equilibria for multiagent planning. In Proc. of the Workshop on
Planning with and for Multiagent Systems, AAAI-02, 1-6.

Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In Proc. of
ICAPS-08, 28-35. AAAI Press.

Brafman, R. I.; Domshlak, C.; Engel, Y.; and Tennenholtz, M.
2009. Planning Games, In Proc. of IJCAI-09, 73-78. AAAI Press.

Brenner, M. 2003a. A Multiagent Planning Language. In Proc. of
the Workshop on PDDL, ICAPS-03, 33-38.

Brenner, M. 2003b. Multiagent Planning with Partially Ordered
Temporal Plans, Technical Report No. 190, Institut für
Informatik, Universität Freiburg, Germany.

Crosby, M.; and Rovatsos, M. 2011. Heuristic Multiagent
Planning with Self-Interested Agents, In Proc. of AAMAS-2011,
1213-1214. IFAAMAS.

Edelkamp, S.; and Hoffmann, J. 2004a. PDDL2.2: The Language
for the Classical Part of the 4th International planning
Competition, Technical Report No. 195, Institut für Informatik,
Albert-Ludwigs-Universität Freiburg, Germany.

Edelkamp, S.; and Hoffmann, J. 2004b. PDDL2.2: The Language
for the Classical Part of IPC-4. In IPC-4 Booklet, ICAPS-04, 1-5.

Fikes, R. E.; and Nilsson, N. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 5(2):189-208.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to pddl for
Expressing Temporal Planning Domains. J. of AI Res. 20: 61-124.

Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-
Continuous Domains for Planning. J. of AI Res. 27:235-297.

Fox, M.; Long, D.; and Magazzeni, D. 2011. Automatic
Construction of Efficient Multiple Battery Usage Policies. In
Proc. of ICAPS-11, 2620-2625. AAAI Press.

Gerevini, A.; and Long D. 2005. BNF Description of PDDL3.0.
Unpublished manuscript from the IPC-5 website.
http://cs-www.cs.yale.edu/homes/dvm/papers/pddl-bnf.pdf

Helmert, M. 2008. Changes in PDDL 3.1. Unpublished summary
from the IPC-2008 website.
http://ipc.informatik.uni-freiburg.de/PddlExtension

Jensen, R. M.; and Veloso, M. M. 2000. OBDD-based universal
planning for synchronized agents in non-deterministic domains. J.
of AI Res. 13(1):189-226.

Jonsson, A.; and Rovatsos, M. 2011. Scaling Up Multiagent
Planning: A Best-Response Approach. In Proc. of ICAPS-11,
114-121. AAAI Press.

Kovacs, D. L. 2011. BNF definition of PDDL 3.1. Unpublished
manuscript from the IPC-2011 website.
http://www.plg.inf.uc3m.es/ipc2011-deterministic/Resources

Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scalable
Multiagent Planning Using Probabilistic Inference, In Proc. of
IJCAI-11, 2140-2146. AAAI Press.

Marecki, J.; and Tambe, M. 2009. Planning with Continuous
Resources for Agent Teams, In Proc. of AAMAS-09, 1089-1096.

Martins, M. F.; and Demiris, Y. 2010. Learning Multirobot Joint
Action Plans from Simultaneous Task Execution Demonstrations,
In Proc. of AAMAS-2010, 931-938. IFAAMAS.

McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.; Ram, A.;
Veloso, M.; Weld, D.; and Wilkins, D. 1998. PDDL---The
Planning Domain Definition Language, Technical Report, CVC
TR98003/DCS TR1165, Yale Center for CVC, NH, CT.

von Neumann, J.; and Morgenstern, O. 1944. Theory of games
and economic behavior. Princeton University Press.

Nissim, R.; Brafman, R. I.; and Domshlak, C. 2010. A General,
Fully Distributed Multi-Agent Planning Algorithm, In Proc. of
AAMAS-2010, 1323-1330. IFAAMAS.

Oglietti, M.; and Cesta, A. 2004. CSTRIPS: Towards Explicit
Concurrent Planning. In Proc. of the 3rd Italian WS on Plan. and
Sched., 9th Nat. Symp. of Assoc. Italiana per l'Int. Artif., 1-13.

Pajarinen, J.; and Peltonen, J. 2011. Efficient Planning for
Factored Infinite-Horizon DEC-POMDPs, In Proc. of IJCAI-11,
325-331. AAAI Press.

Russell, S.; and Norvig, P. 2010. Artificial Intelligence: A
Modern Approach. Prentice Hall.

Shah, J. A.; Conrad, P. R.; and Williams, B. C. 2009. Fast
distributed multi-agent plan execution with dynamic task
assignment and scheduling. In Proc. of ICAPS-09, 289-296.

Spaan, M. T. J.; Oliehoek, F. A.; and Amato, C. 2011. Scaling Up
Optimal Heuristic Search in Dec-POMDPs via Incremental
Expansion, In Proc. of IJCAI-11, 2027-2032. AAAI Press.

Stefanovitch, N.; Farinelli, A.; Rogers, A.; and Jennings, N. R.
2011. Resource-Aware Junction Trees for Efficient Multi-Agent
Coordination, In Proc. of AAMAS-2011, 363-370. IFAAMAS.

Teichteil-Königsbuch, F. 2008. Extending PPDDL1.0 to Model
Hybrid Markov Decision Processes. In Proc. of the WS on A
Reality Check for Plan. and Sched. Under Unc., ICAPS-08, 1-8.

Wang, K. C.; and Botea, A. 2011. MAPP: a Scalable Multi-Agent
Path Planning Algorithm with Tractability and Completeness
Guarantees. J. of AI Res. 42:55-90.

de Weerdt, M.; and Clement, B. 2009. Introduction to planning in
multiagent systems. Multiagent Grid Systems 5(4):345-355.

Yabu, Y.; Yokoo, M.; and Iwasaki, A. 2009. Multiagent Planning
with Trembling-Hand Perfect Equilibrium in Multiagent
POMDPs, In Ghose, A.; Governatori, G.; and Sadananda, R. eds.
Agent Computing and Multi-Agent Systems. 13-24. Springer.

Zhuo, H. H.; and Li, L. 2011. Multi-Agent Plan Recognition with
Partial Team Traces and Plan Libraries, In Proc. of IJCAI-11,
484-489. AAAI Press.

Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2011. Learning
Action Models for Multi-Agent Planning, In Proc. of AAMAS-
2011, 217-224. IFAAMAS.

27

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Mining IPC-2011 Results

Isabel Cenamor, Tomás de la Rosa, and Fernando Fernández
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. Leganés (Madrid). Spain
icenamor@inf.uc3m.es,trosa@inf.uc3m.es, ffernand@inf.uc3m.es

Abstract

The International Planning Competition (IPC) offers a won-
derful scope to evaluate and compare different planning ap-
proaches and specific planner implementations in benchmark
domains. In IPC 2011, the software generated for the com-
petition permits to obtain a lot of data about the execution of
all the planners in the different tracks in a simple way, which
permits its recovery and use. In this work, we propose to ana-
lyze such data from a Data Mining (DM) perspective, includ-
ing additional features which can be useful for the analysis.
In such a way, we are able to construct models of the results
obtained, allowing us to make additional analysis to the ones
performed by the organizers. In this work, we report some
initial analysis after constructing classification and regression
models for the sequential satisficing and optimal track.

Introduction
Since 1998, the International Planning Competition (IPC)
has offered the opportunity to researchers in Automated
Planning to evaluate and compare their ideas about how to
develop better and faster planners. Each competition pro-
duces a big amount of data specially from the execution of
the planners in the different tracks, domains and problems.
This fact is remarkable in the last two IPC, where the number
of participants and the number of evaluated domains have
increased considerably. Additionally in IPC 2011, the exe-
cution of a planner for a planning problem reported a total of
33 features, including runtime, number of solutions found,
the moment where each solution was obtained, or the qual-
ity of those solutions. Such an amount of data opens a wide
variety of analysis and studies from a Data Mining (DM)
perspective. For instance, one would think whether it is pos-
sible to generate a model that predicts if a planner will be
able to find a solution for a given problem and, if so, with
what probability or how long it will take. The results of the
prediction can help us to find some insights about the per-
formance of planners or can be used to configure a portfolio
of planners that takes into account the particular features of
a planning problem.

In this work we perform an initial analysis of the IPC 2011
data. We follow a classical data mining methodology as it
is introduced in the following section, which describes the
DM process using a data workflow. The following sections
explains the main steps deeply: the pre-process of the data,

including feature generation, extraction and instance selec-
tion; then, the different data models generated, its evaluation
and analysis. Later, some related works are summarized,
while the last section describes our main conclusions and
future research lines.

Data Mining Workflow of the IPC 2011
Results

Data Mining is a process of discovering implicit knowledge
from data. Such process may contain different phases de-
pending on the goals, data sources and tools. Figure 1 shows
the complete process performed in this work. We have fol-
lowed the phases described in the CRISP-DM methodol-
ogy (Chapman et al. 2000): data understanding, data prepa-
ration, modeling, evaluation and deployment. 1

In addition to previous phases, CRISP-DM starts with a
business understanding phase, which is very related to busi-
ness intelligence approaches, where the organization where
the data mining process is going to be performed is ana-
lyzed to generate the data mining goals. In our case, we
have defined the data mining goals as the creation of predic-
tive models that predict, on the one hand, whether a planner
will be able to solve a problem, and if so, what will be the
time required to compute a plan. The first problem is a clas-
sification task, where the predicted attribute has only two
possible values: {true, false}. The second problem is a re-
gression task, where the output belongs to the positive real
numbers, but restricted to the time limit given to the plan-
ners (i.e., 1800 seconds). The reason why we have chosen
these two tasks is two-fold. On the one hand, we want to
characterize under which conditions a planner will succeed,
so this characterization will support a better knowledge of
the planners and their possible improvements. On the other
hand, and from a more engineering point of view, we want
to obtain predictive models that can be used for the selection
of planners when configuring a portfolio-based planner.

Given those goals, the data source of the process is the
SVN repository of the IPC 2011. From this repository we
downloaded the domain and problem files in PDDL, and the
competition results using the IPCReport tool. From the do-
main and problem files, we get the features of each instance

1In this work we do not study in deep methodological aspects,
so any other methodology could be used for the description.

28

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

and compute additional features we think will serve for a
better modeling. Once we have the features, the data is inte-
grated, generating a first training set. This data suffers new
transformations (feature generation and selection, and in-
stance selection) depending on the requirements of the mod-
els to build. Afterwards, the models are learned using ma-
chine learning techniques and then evaluated using a suitable
evaluation scheme for estimating the prediction capabilities
of the models. In a real world scenario the methodology
also includes a deployment phase, but we have not consider
it for this work. The next sections describe in depth all these
phases.

IPC 2011
SVN

Repository

2011
Dataset
Results

IPC 2011
Problems

And
 Domains

(PDDL)

PDDL
TO

 SAS+

SAS+
Problems

Feature
Generation

Training
Data

Training
Data

DATA
PREPARATION

Predictive
 model

Predictive
 model

MODELING

EVALUATION

Can a planner
solve a problem?

What is the
time of the best
plan obtained by
a planner in a given
problem?

IPC 2011
Reporting

Feature
Extraction

DATA
UNDERSTANDING

Problem
And

Domain
Features

Data
Integration

Training
Data

DEPLOYMENT

1. Can a planner
solve a problem?

2. What is the
time of the best
plan obtained by
a planner in a given
problem?

BUSINESS
UNDERSTANDING

Feature
Selection

Feature
Selection

Instance
Selection

Model
Construction
(Regression)

Model
Construction

(Classification)

Figure 1: Data workflow of the mining process following CRISP-
DM methodology

Data Understanding
This first step consists of recognizing the available sources
of data and devising a good way to collect and integrate this
data. For our analysis we have focused on the sequential
satisficing track and the sequential optimal track of the IPC-
2011. In the first one, planners should find a plan within the
time bound. Since the solution does not need to be optimal,
most planners develop the strategy of continuously reporting
a solution that improves a previous one until the time runs
out. In the sequential optimal track, planners should report
a single optimal solution within the time bound.

For both tracks, the input data to the DM process comes
from the competition results and from the domain and prob-
lem files. The competition results are in fairly suitable way
for applying DM because each result for a planner execu-
tion, given a domain and a problem, corresponds to an ex-

ample in terms of machine learning, i.e., a set of features and
the given target attribute. However, this is not the case for
PDDL files, therefore we need to extract some useful fea-
tures from them. In the following sections we describe the
data collected and generated for the mining process.

Features from IPC 2011 results
The IPC-2011 software (López 2011) contains several pack-
ages, which facilitates to test planners, compare their per-
formance and obtain reports of the results. IPCReport is the
package in charge of providing access to the data generated
during the competition. The report is able to present 33 raw
variables and 23 elaborated variables. The raw variables are
the principal observations about the execution of planners
for a given problem and domain. The elaborated variables
are the ones derived from raw data, for example, a maxi-
mum of a set of values in the raw variables. In this work, we
use some of the raw variables, which are described next:

1. Planner: the name of the planner.

2. Domain: the name of the domain.

3. Problem: a problem identifier (the problem number for a
particular domain).

4. Oktimesols: For each validated plan found by the planner,
a vector containing the time elapsed (in seconds) since the
planner was started until such solution was found. This
variable can either be empty (no solution was found), have
a single value or an array of values. We will refer to this
feature as the time vector.

5. Values: A vector containing the plan quality for the found
solutions. The i− th position of vector OKtimesols corre-
sponds to the same plan as i−th position of vector Values.
We will refer to this feature as the quality vector

From the sequential satisficing track we got 7560 in-
stances, corresponding to the execution of 27 planners in a
total of 20 problems for 14 domains. From the the sequen-
tial optimal track we got 3360 instances corresponding to
the execution of 12 planners in a total of 20 problems for 14
domains.

Features extracted from IPC 2011 domains and
problems
The objective of this process is to generate a set of features
that characterize a problem instance. In order to achieve a
good characterization, we will use basic features that can be
extracted from PDDL files and a set of elaborated features
generated from the problem translation to the SAS+ formal-
ism and its induced graphs, i.e., the causal graph and the
domain transition graphs.

The basic features from a problem instance are:

1. Objects: Number of objects defined in the problem.

2. Literals: Number of instantiated predicates in the initial
state.

3. Goals: Number of instantiated predicates that are true in
the final state.

29

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

These basic features offer information about the complex-
ity of the problems. In fact, most problem generators re-
ceives as input the number of each type object and the num-
ber of goals, so they can determine the instance size. How-
ever, these basic features and many others that can be ex-
tracted from the domain definition will not be sufficient for
discriminating between instances of the same size. Indeed,
any conceivable set of possible features from the domain,
such as the number of actions, maximum predicate arity,
maximum number of preconditions, in conjunction with the
basic features from the problem, will serve to discriminate
between problems of different domains or problem of the
same domains with different size, but not between problems
having the same object and goal distribution. We argue that
additional information can be extracted from the graphs in-
duced by the SAS+ formalism in order to partially recognize
the differences between problems of similar size.

The SAS+ formalism (Backstrom and Nebel 1995;
Helmert 2009) is an alternative representation for STRIPS.
It considers a set of state variables, each one associated to a
finite set of possible values. Actions have preconditions (i.e.,
required assignments of some variables to the action become
applicable) and effects (i.e., the new values of the affected
state variables). Using this formalism, a problem instance
can be represented in a structured way using two types of
graphs: (1) The causal graph (CG), which is a graph that
captures the causal dependencies between the state variables
of a given problem. (2) The domain transition graph (DTG)
which encodes the allowed transitions between different val-
ues of a variable. In a problem there is a DTG for each state
variable. For more details see (Helmert 2006).

We have used the LAMA planner (Richter and Westphal
2010) pre-process to generate all graphs. We recall that in
the causal graph, the high-level variables are the variables
for which there is defined a value in the goal. Although the
common definition of the causal graph does not consider the
edges as weighted, LAMA computes the edge weights of the
causal graph as the number of instantiated actions that in-
duced each edge. We also consider these weights for com-
puting our features.We have extracted a total of 47 features
for each problem, which are summarized next.

Features from the Causal Graph: For the CG we clas-
sify the generated features in four categories: (1) general,
which includes the direct information from the graph (2) ra-
tios, which represents interesting proportions that may be
equal across problems of different size, (3) statistical, such
as the average or the standard deviation of particular ele-
ments of a graph. (4) high-level statistical, the same as be-
fore but only considering the high-level variables.

• General Features
1. NumberVariablesCG: The number of variables of the

causal graph.
2. High-LevelVariablesCG: The number of high-level

variables.
3. TotalEdgesCG: The number of edges.
4. TotalWeightCG: The sum of weights of the edges.
• CG Ratios

1. VERatio: The ratio between the total number of vari-
ables and the total numbers of edges. This ratio shows
the level of connection in the causal graph.

2. WERatio: The ratio between the sum of the weights
and the number of edges. This ratio shows the average
weight for the edges.

3. WVRatio: The ratio between the sum of the weights
and the number of variables.

4. HVRatio: The ratio between the number of high-level
variables and the total number of variables. This ratio
shows the percentage of variables involved in the prob-
lem goals.

• Statistics of the CG
This statistical information is used to characterize the
structure of the causal graph. We compute the average,
the maximum and the standard deviation of the following
values:

1. InputEdgeCG: The number of incoming edges for each
variable. Thus, we compute the average of input edges
in the CG, the maximum number of input edges for a
single variable and standard deviation of input edges,
for knowing the variation between variables.

2. InputWeightCG: The sum of the weights of the incom-
ing edges for each variable. Thus, we compute three
new features following the same computations as In-
putEdgeCG.

3. OutputEdgeCG: The number of outgoing edges for
each variable. Thus, we compute the average of output
edges in the CG, the maximum number of output edges
for a single variable and standard deviation of output
edges.

4. OutputWeightCG: The sum of the weights of the in-
coming edges for each variable. Thus, we compute
three new features following the same computations as
OutputEdgeCG.

• Statistics of high-level Variables
This information tries to encode the structure for the vari-
ables involved in the problem goals. We compute the av-
erage, the maximum and the standard deviation for the
following values:

1. InputEdgeHV: The number of incoming edges for each
high level variables. This value produces three new fea-
tures following the same computation as InputEdgeCG.

2. InputWeightHV: The edge weight sum of the incom-
ing edges for each high level variables. This value pro-
duces three new features following the same computa-
tion as InputWeightCG.

Features from DTGs: Since the number of DTGs in a
problem is variable, it is difficult to encode general attributes
for each graph. Instead, we can summarize DTGs char-
acteristics aggregating the relevant properties of all graphs.
We compute general aggregated features and some statistics
over all graphs.

• General Aggregated Features

30

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

1. NumberVerticesDTG: The sum of the number of ver-
tices of all DTG.

2. TotalEdgesDTG: The sum of the number of edges of all
DTGs.

3. TotalWeightDTG: The sum of the weights of the edges
of all DTGs. The weight of An edge in DTG corre-
sponds to the cost of applying the action that induced
the edge.

• Statistics of DTGs
Considering all DTGs, we compute the average, the max-
imum and the standard deviation of the following values:

1. InputEdgeDTG: The number of incoming edges for a
vertex in a DTG.

2. InputWeightDTG: The sum of the weights of the incom-
ing edges of all vertices.

3. OutputEdgeDTG: The number of outgoing edges for a
vertex in a DTG.

4. OutputWeightDTG: The sum of the weights of the out-
going edges of all vertices.

Data Preparation
Data preparation may contain different phases, that can be
summarized in four: data cleaning and transformation (like
normalizing data), feature generation (generating new fea-
tures from the available ones), feature selection (eliminate
useless features) and instance selection (select a sub-subset
of training instances from the total one).

The main tasks of the data cleaning are the management
of missing values and the identification of outliers. For the
first one, we have not performed any task since we have a
strong confidence on the data. The IPCReport tool gives
a complete and reliable data set and the feature generation
process was computable for all problems used in the compe-
tition. For the second one, we decided to eliminate some out-
liers, mainly data from specific problems in some domains
which generated data very far from the average values. Nev-
ertheless initial evaluations demonstrated that results did not
vary significantly.

Regarding feature generation, we generated a lot of de-
rived features, as explained in previous sections. Although
feature generation is an operation that is typically performed
in this step, we performed it in the data collection and un-
derstanding phase due to implementation reasons, thus while
we extracted the data from the PDDL and SAS+ representa-
tions, we computed also the derived features.

The rest of the data preparation processes are explained
depending on the data-mining task:

• Classification: For this task we create a new attribute
class representing whether a planner was able to solve a
problem. This attribute is set to “yes” if there exists at
least one value in the attribute of the time vector, other-
wise it is set to “no”. Both time and quality vectors are
removed from the dataset since they are no longer of in-
terest. Additionally, the domain name and problem num-
ber are treated as identifiers, therefore they will not be
used for modeling. For this task, we did not perform any

instance selection process, since data was very clean, and
we have a manageable amount of instances. This task will
be the same for the satisficing and optimal track.

• Regression: In this task we draw a distinction for IPC
tracks. For the sequential satisficing track we try to pre-
dict three different values: first-time, representing the ex-
ecution time elapsed when a planner found its first solu-
tion for the problem; best-time representing the execution
time elapsed when a planner found its best solution; and
medium-time, representing the median of the time vector.
When predicting each of these values, the others are re-
moved from the training set. The time and quality vectors
are also removed. In addition, we have eliminated all the
instances where a planner was not able to find a solution,
i.e. where time and quality vectors are missing. In the
sequential optimal track planners give one single time for
finding the optimal solution, therefore the regression task
consists of predicting the single value of the time vector.
As before, we only consider instances where a solution
was found.

Data Modeling and Evaluation
Although Figure 1 presents the data mining process as a
cascade, data preparation, modeling and evaluation are typi-
cally performed many times iteratively until a satisficing so-
lution is found. In addition, different models and learning
algorithms are tested until the “best” one is obtained.

In this work, we have used several algorithms, decision
trees (J48) (Quinlan 1993), decision rules (PART) (Frank
and Witten 1998), Support Vector Machines (SMO) (Cris-
tianini and Shawe-Taylor 2000), and IBK (Witten and Frank
2005) for different values of k. The implementation of these
algorithms is provided by WEKA (Witten and Frank 2005),
and they are used with the pre-defined parameters.

Evaluation Set-up
A question that arises when applying machine learning over
any dataset is how to perform the evaluation process. Eval-
uating over the training set typically produces optimistic es-
timations of performance over future data, since it is easy
that the generated models are over-fitted to the training set.
Therefore, other evaluation mechanisms must be used. A
classical one is cross validation, which is a procedure to es-
timate the performance of a previously learned model over
data which has not been used to train the model. It consists
on dividing the whole data set, D, in k slides, D1, . . . , Dk.
Then, ten models are learned, m1, . . . ,mk, each of them
using nine slices for training, and a tenth slices for test.
Therefore, at the end of the process, we have k evaluations,
e1, . . . , ek, one for each model. The estimated performance
e of the complete model is assumed to be the average of the
ten evaluations. The standard deviation over such average
usually gives information about how uniform the k slices
are. The inductive hypothesis ensures that if the model has
been learned over a large amount of representative data, then
the cross validation will return an accurate estimation. How-
ever, is that true in our case? To answer this question, we
divide it in two different ones:

31

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

1. is the estimation valid for new problems in the same do-
mains seen in the IPC 2011?

2. is the estimation valid for new problems in domains dif-
ferent to the IPC 2011 ones?
The answer to the first question depends on whether the

problems used for learning are a representative set of prob-
lems in such domain. Since the IPC goal is to evaluate plan-
ners in different situations, problems are selected to cover
such objective. Therefore, we can expect that a classical
cross-validation is a good estimation. This conclusion would
not be strong enough if the distribution of problems (20 in-
stances per domain in IPC-2011) only covers a small space
of the possible problems.

In the case of the second question, that is equivalent to ask
whether the set of domains is representative of the set of all
the possible domains that can be defined in PDDL. To eval-
uate this issue, we need to modify the evaluation method to
a leave-one-out approach. In classical supervised learning,
a leave-one-out approach is equivalent to a cross validation
where k is set to the size of the data set. This mechanism
estimates how the model will behave in the next example
received. In planning, we are interested in evaluating how
the model will behave in a new domain. Therefore, we can
apply a leave-one-out over domains, instead of on the whole
dataset. Specifically, if we have data from k domains, we
learn k models with the data from k − 1 domains, and eval-
uate all them over the k − th domain. The average of the k
evaluations is the estimation of the performance of the mod-
els in future domains. We call this evaluation process as
leave-one-domain-out. The metrics used are:
• Classification Accuracy is the percentage of instances in

a data set that a classification model correctly classifies
(the ratio between the correctly classified instances and
the total, multiplied by 100). The classification accuracy
can be measured over different data sets (training or test
sets), or estimated through different processes, like split,
cross-validation, or leave-one-out.

• Relative absolute error is the ratio between the absolute
error of a prediction of a model (difference between the
predicted value and the expected one) and the expected
output. Since it is a relative value, it is more indepen-
dent of specific class values than no relative measures.
Opposite to classification where maximum accuracy is
searched, regression is a minimization problem of the pre-
diction error. It also can be computed over different data
sets or estimated through different procedures.

Predicting Planner Success
The goal of this task is to predict whether a planner will
solve a given problem. As described previously, the tar-
get variable belongs to the domain {true, false}, meaning
whether the input planner was able to solve the input prob-
lem in the corresponding domain.

Empirical Results. Tables 1 and 2 show the classification
accuracy and the standard deviation obtained in both evalu-
ation processes for the sequential satisficing and sequential
optimal track respectively. In each row, we show the results

of the different classification algorithms: J48, IBK for dif-
ferent values of k, and SMO.

Dataset Cross Validation Leave one Domain Out
J48 88.75(1.05) 59.14(12.13)
IBk -K 1 88.67(1.29) 60.83(10.13)
IBk -K 3 87.63(1.07) 60.58(11.76)
IBk -K 5 88.58(1.07) 61.95(11.10)
SMO 72.48(1.58) 61.34(10.10)

Table 1: Classification accuracy and standard deviation for pre-
dicting planner success in the sequential satisficing track with cross
validation and leave one domain out evaluation

Dataset Cross Validation Leave one Domain Out
J48 90.14(1.58) 60.36 (23.69)
IBk -K 1 86.96(1.57) 60.36 (21.26)
IBk -K 3 87.81(1.81) 58.78 (21.66)
IBk -K 5 83.91(1.90) 60.86 (20.53)
SMO 79.96(2.30) 67.41 (16.55)

Table 2: Classification accuracy for predicting planner success in
the sequential optimal track with cross validation and leave one
domain out evaluation

Regarding the sequential satisficing track, the cross-
validation results show that the best result is obtained using
decision trees (J48), but IBK obtained fairly similar accu-
racy. These results reveals that we are able to achieve good
classification accuracy in the cases where we are predict-
ing planner success within already seen domains. However,
the results for the leave-one-domain-out evaluation worsen
considerably, showing that it is very difficult to general-
ize in the classification task for new unseen domains. Be-
sides, both evaluation schemes show that we are able to cre-
ate models that are better than a default or random classi-
fier, which would obtain an accuracy of 50.7%. This per-
centage corresponds to the ratio of successful executions in
the track. Concerning the sequential optimal track, algo-
rithms performed similar than in the seq-sat track. As be-
fore, the leave-one-domain-out evaluation got worse results
than cross validation, though the best result (67.4%) was
higher than in seq-sat results.

We also have performed a feature selection process prior
the generation of the models. Nevertheless, the default pa-
rameters produce an aggressive process. As a result, only
one feature was left after the process (i.e., the planner). With
only this feature, generalization is not possible, and the clas-
sification result was very poor (72.06± 1.52) independently
of the algorithm). We have not applied other configuration
or algorithms for feature selection. We postpone this study
to future research.

We performed an additional evaluation to see if we can
predict the performance of some planners better than oth-
ers. For achieving this, we made a separate dataset for each
planner (a total of 27). Then, we built the models with J48
(decision trees) and evaluated them using cross validation.
Table 3 shows the results for the best, the worst and the

32

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

average predicted performance. We also include the accu-
racy for the winner, LAMA. As we can see there is consid-
erable gap in the classification accuracy. Another relevant
observation is that it is hard to predict the performance of
a planner based on an algorithm-portfolio, which internally
could behave as different planners. This is the case of the
Fd-autotune-2 which produced the worst model.

planners accuracy
Minimum Fd-autotune2 78,2
Maximum Acoplan, Acoplan2 97,5
Average – 88,5 ± 5,3
Track Winner Lama-2011 81,4

Table 3: Different classification accuracies achieved with individ-
ual models

Semantic Analysis. Here we give a few examples of the
knowledge that we could extract from the models learned.
Specifically, we use the PART algorithm implemented in
WEKA to obtain a set of decision rules that predict whether
a planner will succeed or not. This algorithm firstly creates
a decision tree, from which it generates the set of decision
rules, which are then pruned (simplified). It also includes a
parameter (minNumObj), which sets the minimum number
of instances per rule allowed. This is, therefore, a prune pa-
rameter. If it is low, it permits models with a large number of
rules (maybe sub-optimal due to over-fitting to the training
data), which hence, are more complex to understand for a
human. However, while this value grows, the models gener-
ated contains less rules (maybe sub-optimal due to the lack
of expressiveness). In machine learning, balancing expres-
siveness capability and over-fitting risk is a main issue. Ta-
ble 4 shows the importance of a correct balance. It shows
the prediction capability of the models generated for differ-
ent pruning values over the training set and estimated by
the cross validation. This simple evaluation demonstrates
that reducing pruning capabilities increases expressiveness
(the generated model has more rules), but it over-fits to
training data (difference between training success and cross-
validation estimation is larger). A good balance, in this case,
is a pruning value of 10, which maintains high accuracy
(although significantly worse than the others) without over-
fitting, with only 120 rules.

What is the looking of the rule sets generated? Are they
really informative? The following is the rule at generated
for the pruning parameter set to 1000, which is composed of
only four rules.
Rule 1: NumberVerticesDTG > 168 AND

AND STDInputEdgeHV <= 42.9906

AND AVGInputEdgeDTG > 1.84576

AND TotalEdgesCG > 699: false (2160.0/926.0)

Rule 2: NumberVerticesDTG > 168 AND

AVGInputEdgesDTG > 1.84576: true (2349.0/1024.0)

Rule 3: STDInputEdgeHV <= 55.8043: false (1566.0/560.0)

Rule 4: true (1485.0/459.0)

Pruning pa-
rameter

training
success

cross-
validation
success

number of
rules

1 94.9 88.8± 1.15 287
2 (default) 94.4 88.6± 0.83 233
10 89.9 85.8± 1.41 120
100 78.5 75.7± 1.44 31
1000 60.72 60.3± 1.55 4

Table 4: Different results of PART depending on the pruning pa-
rameter (minimum number of instances per leaf) and the evaluation
mechanism (over training data or estimated with cross-validation
procedure.

The way to read the rules is the following. First, we check
the conditions of the first rule: (NumberV erticesDTG >
168 AND STDInputEdgeHV <= 42.9906 AND
AV GInputEdgeDTG > 1.84576 AND TotalEdgesCG >
699). If the condition is true, the output is false (i.e. the
problem can not be solved). The values (2160.0/926.0)
indicates the number of instances that satisfy the condition
and that belongs to the class ’false’ and ’true’ respectively.
Therefore, those values provide an idea of the coverage and
success of the rule. If an instance does not satisfy Rule
1 condition, Rule 2 is checked, and so on. The last rule
returns a default value in case the input instance does not
satisfy any previous rule.

We want to highlight that this rule set is so reduced that it
does not ask for many of the input features that describe the
instances. It is so reduced that it does not ask for the plan-
ner. However, it already gives information about the prob-
lems, and it seems that to have a number of variables in the
DTG higher or lower than 168 is an important feature of the
problems, since that condition appears in the the initial rules.
In fact, NumberV erticesDTG is a feature that appears in
all the decision trees that PART construct to generate the
rule sets, independently of the pruning parameter. For in-
stance, when the minimum number of instances per leaf is
2, the first question that the decision tree generated makes is
whether NumberV erticesDTG is larger than 106. Then,
it asks for the planner.

For higher expressiveness, we need to reduce pruning ca-
pabilities, and we can try to understand what are the features
that characterize whether a problem will be solved or not.
For instance, this is the rule set that characterize the prob-
lems that LAMA is not able to solve (for a pruning parameter
set to 2):

MAXInputWeightDTG > 3: true (166.0/1.0)

HVRatio > 0.970588 AND

STDInputEdgeCG > 0.026307:true (27.0)

MAXInputWeightHV > 70 AND

AVGInputWeightHV <= 11520: true (37.0/1.0)

WVRatio > 16896: false (9.0)

MAXInputWeightCG <= 6480: true (20.0/1.0)

goals <= 14: false (4.0)

otherwise: false

literals <= 9801 AND

MAXInputWeightHV > 60: true (164.0/2.0)

33

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

NumberVariablesCG > 58 AND VERatio > 0.00575 AND

MAXInputEdgeHV <= 8: true (51.0)

Goals <= 50 AND

NumberVerticesDTG > 130 AND NumberVariablesCG > 11 AND

MAXInputEdgeDTG <= 1210: false (22.0)

MAXInputEdgeDTG <= 1397: true (36.0)

: false (7.0/1.0)

Can this rule set help researches to focus the development
or improvement of their planners? That is something that
only them can answer but, at least, these rules can give some
clues, since they characterize the solved and the unsolved
problems. A similar study could be easily performed for any
of the planners of the competition, although we omit them
due to lack of space.

Predicting Execution Time
Once we know whether the input planner will be able to
solve the input problem (using the predictive model learned
in the previous phase), the goal of this task is to predict the
time a planner needs to find the solutions.

Empirical Results. As explained before, in the sequential
satisfying track we have created models for predicting the
time invested in finding the first, the median and the best
solution. The results obtained for this track are shown in
Table 5. We follow the same evaluation scheme of the clas-
sification case. The table shows the relative absolute error
and standard deviation after the validation process. As in
the classification case, results worsen when estimations are
performed with the leave-one-domain-out scheme. Besides,
IBK with different values of K had less degradation of the
estimated errors, showing that this technique could be better
when making predictions on new domains.

Regarding the sequential optimal track, if planners report
a solution, it should be optimal. Therefore, it only make
sense to create a model to predict a time for finding the so-
lution, which is obviously the best one. Table 6 shows the
results for both evaluation schemes. Each value corresponds
to the relative absolute error and the standard deviation after
the evaluation process.

Dataset Cross Validation Leave Domain Out
M5Rules 67.08(7.63) 213.87 (231.95)
IBk -K 1 59.74(8.37) 141.54 (47.40)
IBk -K 3 59.99(6.32) 123.37 (11.26)
IBk -K 5 63.59(6.38) 127.21 (10.96)
SMOreg 66.84(5.71) 15151.04 (54178.83)

Table 6: Relative absolute error (% percentage) and standard de-
viation of predicting the time planners will need to find a solution
in the sequential optimal track

Semantic Analysis. Semantic analysis of regression mod-
els is more complex than for classification, because regres-
sion models include mathematical models difficult to inter-

pret. In our case, we will analyze a few of them. For this
study, we use the algorithm M5Rules, which generate re-
gression rules. Table 7 shows the results of an experimental
process equivalent to the one described in Table 4.

Pruning pa-
rameter

Training
Error

Cross-
validation
Error

Number of
Rules

1 71.26 71.26± 6.82 5
4 (default) 71.26 73.38± 6.82 5
10 66.68 71.63± 3.08 11
100 70.42 71.35± 2.30 11
1000 83.86 77.33± 2.02 4

Table 7: Different results of M5Rules depending on the pruning
parameter and the evaluation mechanism (over training data or es-
timated with cross-validation procedure.

As in the case of classification, we can see that a value
of 10 is a good value for the pruning parameter. However,
in this case, the number of rules generated is not so differ-
ent for different values, as well as the prediction capabili-
ties. Again, we analyze the looking of the rule set generated
for LAMA planner In this case, M5Rules generates only 2
rules, each of them with its linear regression model. From
a semantic point of view, we can think that the regression
models generated could give an idea about the importance
of the features in the prediction model. For instance, in this
case the output value changes a lot with different values of
the V ERatio and MAXInputWeigthDTG features (in rule
1), and with AV GInputEdgeHV , STDInputEdgeCG and
STDOutputEdgeCG (in Rule 2), showing that, for LAMA,
the output time is very sensitive to small differences in those
values. The relative absolute error of that rule set is 78.74%.
Rule: 1

IF STDInputWeigthCG <= 13305.8

MAXInputWeigthDTG <= 4.5

WERatio > 5.52

THEN bestTime =

0.17 * objects

- 0.0764 * goals - 0.0002 * TotalWeigthCG

- 52.7647 * VERatio - 0.0099 * WERatio

- 0.0676 * WVRatio + 0.7708 * AVGInputEgdeHV

- 0.4982 * STDOutputEdgeCG + 0.0043 * STDInputWeigthCG

- 0.0002 * TotalWeigthDTG - 0.0226 * NumberVerticesDTG

+ 0.0015 * TotalEdgesDTG + 0.0703 * STDInputEdgeDTG

+ 0.0314 * MAXOutputEdgeDTG - 8.4912 * MAXInputWeigthDTG

+ 178.6288 [79/44.805%]

Rule: 2

bestTime = 0.0784 * literals + 0.0003 * TotalWeightCG

+ 6.8833 * AVGInputEdgeHV - 0.0053 * STDInputEdgeHV

+ 11.8598 * STDInputEdgeCG - 11.4135 * STDOutputEdgeCG

+ 193.2316 [171/85.323%]

These analysis are only small examples of how power-
ful data-mining studies can be for supporting decisions in
solving planning problems. For instance, one classical deci-
sion in heuristic search based planners is, once a solution is
found, to decide whether to wait for a new solution is inter-
esting or not. To make this decision, to predict the required

34

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Dataset Cross Validation Leave Domain Out
First Time Medium Time Best Time First Time Medium Time Best Time

M5Rules 73.81(4.78) 74.02(3.90) 73.66(3.61) 17204.81(60518.16) 1492.24(2798.89) 985.64(2200.93)
IBk -K 1 59.84(5.15) 65.25(5.28) 67.57(4.07) 87.94(30.76) 91.12(29.39) 93.66(23.38)
IBk -K 3 55.05(3.72) 60.02(4.00) 62.98(3.12) 79.31(28.27) 89.87(31.70) 85.96(22.26)
IBk -K 5 56.61(3.66) 60.93(3.51) 64.39(3.00) 92.12(29.73) 89.70(26.57) 85.57(19.21)
SMOreg 60.18(4.06) 64.08(3.65) 69.50(2.87) 835.17(2264.22) 184.10(165.75) 907.32(2620.74)

Table 5: Relative absolute error (% percentage) and standard deviation of predicting the time planners invested in finding the first, median
and best solution in the sequential satisficing track.

time to obtain the best plan is required. We can predict that
value for LAMA with a mean absolute error of only 217 sec-
onds.

Related Work
The construction of models to predict the performance of
planners is not a novel idea. Roberts and Howe (2009)
showed that model learned from planners’ performance on
known benchmarks up to 2008 get high accuracy when pre-
dicting whether a planner will succeed or not. They use 19
features extracted from the domain and problem definition.
They also proposed to use some features from the causal
graph, but they did not find them relevant for the classifi-
cation task. The main difference with our approach is that
we include features also from the domain transition graphs
and most of our features come from the ground instantiation
of the problem. Additionally, results from both works are
not comparable because they do not have common planners
or instance sets. Besides, they found that domain features
are the more relevant ones, and models are indeed basing
their planner success prediction on implicitly predicting the
domain. This is a good insight regarding the available data;
however, it does not seem a general rule, since one can imag-
ine large planning problems for which any planner will fail
to solve it. We think that models may exploit instance fea-
tures in order to determine the relative hardness between in-
stances of the same domain. To achieve this goal, further
investigation is needed and performance data should be col-
lected from instance sets with more diversity than the one
that could be derived in 20 instance per domain used in the
IPC.

In a more general scope, the prediction of a solver per-
formance is a research topic of interest since it is one of the
techniques for creating algorithm portfolios (Xu et al. 2007;
Gagliolo and Schmidhuber 2006). The idea consists of
learning empirical hardness models based of instance fea-
tures that can be computed efficiently. Then, whenever the
portfolio tries to solve a new instance, the learned models
predict the set of solvers that are likely to solve the in-
stance, so the available time is scheduled between the se-
lected solvers using a criteria based on the prediction con-
fidence. This approach can make a per-instance decision
of which portfolio configurations are likely to perform the
best. However, the successful portfolios in automated plan-
ning (Gerevini, Saetti, and Vallati 2009; Fawcett et al. 2011)
are only able to use the configuration of the best average
performance in a set of training problems. Therefore, given

a new set of instances, these portfolios tries to solve them
using a fixed configuration (i.e., the best over past bench-
marks) or a per-domain configuration, if there is an available
example set of a particular domain. This per-domain deci-
sion for configuring portfolios is the approach followed by
the cited planners in the learning track of the IPC. We argue
that one can use the models presented in this work (or other
similar ones) to create a per-instance configurable planning
portfolio.

Conclusions and Future Work

We have presented an analysis of the IPC-2011 results fol-
lowing a data mining methodology. With this analysis we
have given some insights about the performance of planners,
in addition to the general results reported by the IPC orga-
nizers. We have built classification models for predicting
whether a planner will succeed or not in a given problem,
and regression models for predicting the time a planner will
need to solve the problem.

We have presented the leave-one-domain-out evaluation
scheme. This kind of evaluation is an alternative to the stan-
dard cross-validation if one want to estimate how good the
learned models are, in the situations where problems belong
to an unknown domain. As we have seen in the results, we
can get good classification accuracy when we are dealing
with problems of known domains, but it seems that this does
not hold in unknown domains. We expect that if we repro-
duce the same experiment with more domains, the models
would generalize better.

We have introduced a set of elaborated features that come
from the causal graphs and the domain transition graphs.
The results have shown that these features are relevant for
partially characterizing the complexity of planning prob-
lems. Besides, these features are easy to compute, therefore
they can be extracted in a pre-processing stage of a planning
process, and then used to query a learned model for deciding
the set of planners and the set of times in an instance-based
configurable portfolio. In the near future we plan to continue
our research in this direction.

Acknowledgments

This work was supported by several Spanish projects:
TIN2008-06701-C03-03, TIN2011-27652-C03-02,
TIN2010-08861-E and TRA2009 0080.

35

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

References
Backstrom, C., and Nebel, B. 1995. Complexity results for SAS+
planning. Computational Intelligence 11:625–655.
Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz, T.;
Shearer, C.; and Wirth, R. 2000. Crisp-dm 1.0 step-by-step data
mining guide.
Cristianini, N., and Shawe-Taylor, J. 2000. An Introduction to
Support Vector Machines. Cambridge University Press.
Fawcett, C.; Helmert, M.; Hoos, H.; Karpas, E.; Roger, G.; and
Seipp, J. 2011. Fd-autotune: Domain-specific configuration us-
ing fast downward. In Booklet of the 7th International Planning
Competition.
Frank, E., and Witten, I. H. 1998. Generating accurate rule sets
without global optimization. In Proceedings of the Fifteenth In-
ternational Conference on Machine Learnin.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic al-
gorithm portfolios. Annals of Mathematics and Artificial Intelli-
gence, 47 3(4):295–328.
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An automatically
configurable portfolio-based planner with macro-actions: PbP. In
Proceedings of the 19th International Conference on Automated
Planning and Scheduling (ICAPS-09).
Helmert, M. 2006. The fast downward planning system. JAIR
26:191–246.
Helmert, M. 2009. Concise finite-domain representations for
PDDL planning tasks. Artificial Intelligence 173:503–535.
López, C. L. 2011. The seventh international planning compe-
tition documentation. Technical report, Universidad Carlos III
de Madrid, Madrid, Spain. http://www.plg.inf.uc3m.es/ipc2011-
deterministic/FrontPage/Software.
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.
Morgan Kaufmann.
Richter, S., and Westphal, M. 2010. The LAMA planner: Guiding
cost-based anytime planning with landmarks. JAIR 39:127–177.
Roberts, M., and Howe, A. 2009. Learning from planner perfor-
mance. Artificial Intelligence 173:536–561.
Witten, I. H., and Frank, E. 2005. Data Mining: Practical Ma-
chine Learning Tools and Techniques. 2nd Edition, Morgan Kauf-
mann.
Xu, L.; Hutter, F.; Hoos, H.; and Leyton-Brown, K. 2007.
Satzilla-07: The design and analysis of an algorithm portfolio for
SAT. In Proceedings of the 13th CP Conference.

36

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

How Good is the Performance of the Best Portfolio in IPC-2011?

Sergio Núñez and Daniel Borrajo and Carlos Linares López
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganes (Madrid). Spain
sergio.nunez@uc3m.es, dborrajo@ia.uc3m.es, clinares@inf.uc3m.es

Abstract
In recent years the concept of sequential portfolio has be-
come an important topic to improve the performance of mod-
ern problem solvers, such as SAT engines or planners. The
PbP planner and more recently Fast Downward Stone Soup
have shown to be successful approaches in automated plan-
ning. However neither theoretical analysis nor formal defi-
nitions about sequential portfolios have been described. In
this paper, we have focused on studying how to evaluate the
performance of planners defining a baseline for a set of prob-
lems. We present a general method based on Mixed-Integer
Programming to define the baseline for a training data set. In
addition to prior work, we also present a brief empirical anal-
ysis of the utility of training problems to configure sequential
portfolios.

Introduction
The AI community constantly designs faster and more effi-
cient heuristics and algorithms for solving automated plan-
ning problems. However, it has not been able to develop a
single planner that dominates all others for classical auto-
mated planning (Roberts and Howe 2009). Also if a planner
does not solve a planning problem quickly, it is likely that
it will not solve it at all (Howe and Dahlman 2002). Both
facts led to a new concept of planner called portfolio. This
is based on the following idea: several planners are executed
in sequence with shorter timeouts, hoping that at least one of
them will find a solution in its allotted time. This technique
has been shown to be a successful approach in classical au-
tomated planning.

Recently, different approaches to build planner port-
folios have been introduced. Fast Downward Stone
Soup (Helmert, Röger, and Karpas 2011) and PbP (Gerevini,
Saetti, and Vallati 2009) are some interesting examples. The
first one is a sequential portfolio of domain-independent
planners. There are two main versions of FDSS, one for op-
timal planning and one for satisficing planning. FDSS was
configured using a set of training problems from the IPCs1

1998-2008 and a set of planning algorithms. The algorithm
uses a hill-climbing search in the space of portfolios. The
search starts from an initial portfolio which assigns 0 sec-
onds to each planning algorithm. At each iteration, it gener-
ates a set of possible successors (which are new portfolios)

1http://ipc.icaps-conference.org

to the current portfolio. Each successor is generated by in-
creasing the runtime of one planning algorithm by a small
ratio of the total time. The best successor is selected as the
current portfolio to the next iteration. Once the total time
has been reached, the algorithm finishes the configuration of
the sequential portfolio.

The PbP planner is a portfolio-based planner with macro-
actions, which automatically configures a sequential port-
folio of domain-independent planners. The configuration
relies on some knowledge about the performance of the
planners in the portfolio for a specific domain and the ob-
served utility of automatically generated sets of macro-
actions. Nevertheless, PbP can be used without this addi-
tional knowledge. Thus, the portfolio schedules all planners
by a round-robin strategy and it assigns the same time slot to
the randomly ordered planners. If PbP uses the knowledge
computed for the current domain, it only selects a cluster of
planners (which is sorted by performance) for configuring
the portfolio. The macro-actions sets are not always used
by the planners. Only if the set of macro-actions improves
the performance of the planner for the current domain, the
planner will use the macro-actions set.

Commonly, most of the approaches of planner portfolios
are evaluated by comparing the score of the new sequen-
tial portfolio on the last IPC with the score reached by the
participating planners. We believe this comparison is not a
good measure to evaluate the performance of new portfolios
because it does not show how far the portfolio is from the
optimal configuration in this particular set of planning tasks.
Therefore, in this paper we propose a general method based
on Mixed-Integer Programming (MIP) to configure the opti-
mal static sequential portfolio for some training data (prob-
lems and planners). This optimal portfolio defines a base-
line for the training data set. Using this baseline, the perfor-
mance of any planner can be analyzed. To show an example,
we have applied this approach to the IPC 2011 sequential
optimization (seq-opt) track.

Additionally, we have performed an empirical analysis
of the utility of training problems to configure a sequential
portfolio. To carry out this analysis we have used the previ-
ous example, which configures the optimal static sequential
portfolio for the IPC 2011 seq-opt track.

This document is organized as follows: first in Section
2, we define the concept of the static sequential portfolio.

37

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

In Section 3 we show the motivations of our work and we
describe our proposals. In Section 4 we describe the MIP
model. In Section 5 we show the experimental results of our
approach over IPC 2011 seq-opt track. Finally, in Section 6
we conclude and introduce future work.

Portfolio Framework
In this work, we focus on static sequential portfolios for clas-
sical automated planning. A static sequential portfolio can
be defined as a configuration of planners, where each one
has been assigned a slice of time. Formally, a static sequen-
tial portfolio is a sorted set C where each ci ∈ C is a pair
< p, t >:

• p is a planner, defined as a tuple (A,H,P) where
A is a non empty set of search algorithms (A*, hill-
climbing, ...), H is a non empty set of heuristics
(Merge&Shrink (Helmert, Haslum, and Hoffmann 2007),
FF (Hoffmann 2003), ...) and P is the policy to choose
which search algorithm ai ∈ A and heuristic hi ∈ H to
run at all times.

• t is the time allotted to p.

Assuming that two or more planners cannot be executed
at the same time, the only way to run them is executing every
planner p in a given time t, where < p, t > is a pair ci ∈ C.

Motivation
Currently, the field of sequential portfolios is a hot topic.
There are many open issues, like the anytime nature for sat-
isfying planning, the order of the execution sequence, etc.
We have focused on studying how to evaluate the perfor-
mance of planners and subsequently on analyzing the util-
ity2 of training problems to configure sequential portfolios.

Usually, the performance of new sequential portfolios is
evaluated by running them on the last IPC. But this compar-
ison does not show how good a portfolio is. It only shows
if the portfolio is better or worse than the participating plan-
ners in that particular set of planning tasks. Even if it is bet-
ter than the winner, the measure does not show the quality
of the portfolio. We propose instead to define the best possi-
ble sequential portfolio for a set of problems using MIP and
evaluate any planner (including portfolios) against it.

Basically, to evaluate a solver (which can be a new single
planner, a sequential portfolio of new planners, etc.), we pro-
pose to define the best possible sequential portfolio for a set
of problems and run them on this particular set of problems.
If the solver reaches a higher score than the best possible
portfolio, the solver can be said to be an improvement, oth-
erwise the quality of the solver will be said to be low (even
though the solver was better than the winner of the last IPC
because it can be far from the best possible portfolio).

With the purpose of configuring a sequential portfolio
many approaches use two sets of training data: one for plan-
ners, and one for training problems. Usually, the first one is

2We consider the utility of training problems to be the knowl-
edge provided to configure high-performance portfolios as dis-
cussed in this paper.

a small set of heterogeneous and modern planners (e.g., PbP
incorporates seven planners and FDSS for optimal planning
used a set of eleven planners). However there are some ap-
proaches that build new solvers to configure the portfolio.
Commonly, the second one is a large set of training prob-
lems from past IPCs (FDSS used a total of 1163 training
instances from IPC 1998-2008). The instances of this set
are very important to achieve high-performance. However,
there is neither an algorithm to find the best training problem
set nor a definition of the best problems to build this training
set.

The second issue we would like to analyze in this paper
is the following: in order to achieve the optimal configura-
tion for the sequential portfolio, it is not necessary to make
so many experiments since in many cases the data sets cho-
sen are not very informative. A good training problem set
should contain only a few training instances with high util-
ity. We propose a classification of problems into three cate-
gories sorted by difficulty. The first one contains problems
of high difficulty. These have no utility because no planner
is able to solve any of them. The category labeled as medium
difficulty is composed of problems that are only solved by a
few planners. These problems are the most useful ones. And
the last one contains problems with limited utility, because
most planners solve them all.

Mixed-Integer Programming model
MIP is the best choice for our purpose for three reasons.
First, the search of the optimal static sequential portfolio
from a set of training data (planners and problems) can be
modeled as a MIP task. Second, this technique ensures opti-
mal solutions. And third, MIP is fast, efficient and it allows
us to create and modify constraints quickly, which brings
flexibility. Besides, a linear combination of existing plan-
ners is a reasonable threshold for judging whether a new
portfolio results in an improvement or not.

We have used GLPK3 for solving the MIP task discussed
in this section. This package supports the GNU MathProg
modeling language4, which divides our model into four sec-
tions: Parameters, Variables, Objective function and Con-
straints.

The training data set contains a set of n planners S and a
set of m training instances I . The parameters store the input
data which is generated by running every planner p ∈ S with
every instance problem i ∈ I . The following parameters
have been defined in our MIP model:

• q(p, i). Plan quality found by the planner p ∈ S for the
training problem i ∈ I . If the planner p does not solve the
problem i, the value of plan quality will be zero.

• rt(p, i). Time spent by the planner p ∈ S to solve the
training problem i ∈ I . If the problem i is not solved by
the planner p in a given time, the parameter value will be
the given time limit to solve the training problem i by the
planner p.

3http://www.gnu.org/software/glpk/
4www.cs.unb.ca/ bremner/docs/glpk/gmpl.pdf

38

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

• m(p, i). Maximum memory used by the planner p ∈ S to
solve the training problem i ∈ I .

The following decision variables have been defined in our
model:

• solved bypi. This binary variable indicates whether the
plan found by the planner p ∈ S for the training problem
i ∈ I is considered to configure the sequential portfolio
or not.

• qualityi. Plan quality found by the sequential portfolio
for the training problem i ∈ I .

• timep. It is the output variable, which shows the allocated
time to each planner p ∈ S in the sequential portfolio.

• memory. Maximum memory used by the sequential
portfolio.

With the purpose of defining the objective function of the
MIP task, we have considered time, memory and plan qual-
ity for every training instance and every planner in the train-
ing data set. Time and memory are computed as time spent
and memory used by any planner to solve any problem, di-
vided by time and memory limit. Note that using normalized
values, the objective function has no specific bounds to time
and memory. Also, we compute the plan quality in the range
[0,1] for each training instance. If the portfolio does not
solve an instance, the plan quality of this problem is 0. The
plan quality of a solved instance is computed as the low-
est solution cost found by any planner in the training data
set, divided by the best solution achieved by the portfolio.
Hence, the objective function is defined as:

maximize : w1(
∑m

i=0 qualityi)
+ w2(1−

∑n
p=0 timep)

+ w3(1−memory)

The function for evaluating the participating planners in
the IPC only focuses on plan quality (equivalent to coverage
for optimal planning). We propose an objective function that
makes it possible to balance maximizing the score achieved
by the portfolio (i.e. the sum of the plan quality found for
every training problem), the time spent and/or memory used
by the portfolio with different weights w1, w2 and w3. Thus,
using our objective function we are able to maximize the
quality of the obtained solutions, as well as the performance
of the sequential portfolio measured in time and memory
consumption. For instance, selecting w1 = 1, w2 = 0 and
w3 = 0, only the overall score is optimized. However, if we
increase w2 and/or w3, we will obtain a sequential portfolio
that achieves the optimal score and optimizes the time spent
and/or memory used by the portfolio.

We have defined a set of constraints in our MIP model.
The constraints (1) and (2) define the time and memory
bounds to solve each training instance:

n∑
p=0

timep <= 1 (1)

memory <= 1 (2)

The MIP task analyzes plan quality, time and memory
used by all planners for every training problem. For each
one of these problems, the task should select at most one
planner to solve it. To avoid selecting two or more planners
to solve the same instance, the constraint (3) was used. This
constraint limits the number of planners that are considered
to solve each training problem:

n∑
p=0

solved bypi <= 1,∀i (3)

The following constraints compute the sum of all time
bounds allotted to all planners in the portfolio (4), the total
score achieved by the portfolio (5) and the maximum mem-
ory used to solve a training problem (6):

timep >= solved bypi × rt(p, i) (4)

qualityi =

n∑
p=0

solved bypi × q(p, i) (5)

memory >= solved bypi ×m(p, i) (6)

Experimental setup and results
In order to define a baseline for the IPC 2011 seq-opt track,
we have applied our MIP model over all IPC 2011 seq-opt
problems I and a set of planners S. This track contains 14
domains5 with 20 problems each.

The set of planners S contains all planners from the IPC
2011 seq-opt track, excluding portfolios and adding planners
from participating portfolios that were not taking part as sin-
gle planners: both versions of merge-and-shrink heuristics
from FDSS and the A* algorithm with the blind heuristic, as
shown in Table 1.

Planner Authors Source
Blind Silvia Richter, et al. FDSS-2 planner
BJOLP Erez Karpas, et al. IPC 2011
CPT4 Vincent Vidal IPC 2011
FD Autotune Chris Fawcett, et al. IPC 2011
Fork Init Michael Katz, et al. IPC 2011
Gamer Peter Kissmann, et al. IPC 2011
IFork Init Michael Katz, et al. IPC 2011
LM-cut Malte Helmert, et al. IPC 2011
LMFork Michael Katz, et al. IPC 2011
M&S-bisim 1 Raz Nissim, et al. FDSS-1 planner
M&S-bisim 2 Raz Nissim, et al. FDSS-1 planner
Selective Max Erez Karpas, et al. IPC 2011

Table 1: List of optimal planners used.

To generate the input data to our MIP model, we have
executed every planner p ∈ S with every instance problem
i ∈ I under the same conditions of the IPC 2011 seq-opt

5These domains are: barman, elevators, floortile, nomystery,
openstacks, parcprinter, parking, pegsol, scanalyzer, sokoban, tidy-
bot, transport, visitall and woodworking.

39

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

track, this is, allowing each planner to solve every planning
task with a time bound equal to 1800 seconds and a memory
bound equal to 6 GB of memory. From all generated data,
we have only considered the runtime rt(p, i), the maximum
memory used m(p, i), and whether the problem has been
solved or not q(p, i).

The score of the IPC 2011 seq-opt track only measures the
number of solved problems. But we also want to optimize
the time spent by the sequential portfolio, keeping the high-
est number of solved problems. However, we cannot know
in advance a good configuration of the weights w1, w2 and
w3 to this goal. Therefore, we have run a set of systematic
tests with different configurations to analyze the results and
have picked up the best one.

Good values for our target are w1 = 1, w2 = 0.04 and
w3 = 0 as shown in Table 2. This configuration solves 200
instance problems and spends less time than other configura-
tion that also solve 200 problems. Hence, we have selected
these weights to configure the optimal static sequential port-
folio for the IPC 2011 seq-opt data, which is shown in Ta-
ble 3.

The execution sequence of this sequential portfolio (and
of all sequential portfolios obtained by the MIP model) has
not been defined by the MIP task. It only assigns an execu-
tion time to each planner, which can be zero. The definition
of the execution sequence is simply based on the initial order
in which the planners are specified. Given that the optimal
track of the IPC only considers coverage, the order does not
affect the result.

w1 w2 w3 Solved problems Time Memory
1 0 0 200 1800 5696.67
1 0.04 0 200 1705 5696.67
1 0.2 0 186 548 5380.7

0.8 0.4 0 175 302 5305.7
1 0.2 0.2 166 265 778.61
1 0.6 0 163 168 1327.25
1 0.4 0.4 156 173 381.86

0.8 0.4 0.8 151 163 247.56
0.6 0.8 0 151 87 1207.9
0.6 0.4 0.6 147 115 247.56
0.6 0.8 0.8 140 72 243.65
0.6 0.8 1 126 49 99.3

Table 2: Results of the most representative configurations
for MIP model. For each configuration, the table shows the
number of solved problems, the time spent (seconds) and
memory used (MB) by the obtained sequential portfolio.

So far, the reference used to measure the performance of
new sequential portfolios for optimal planning was FDSS,
the winner of IPC 2011 seq-opt track. FDSS solved 185
problems in the last IPC and this result is very likely to be
used in the future to decide whether a new portfolio is bet-
ter or not. However, it does not show how far the portfo-
lio is from the optimal configuration in this particular set
of planning tasks. Instead, we propose to use the number
of problems solved by a linear combination of the entrants

Planner Allotted time (s)
CPT4 1
LM-cut 55
M&S-bisim 1 138
M&S-bisim 2 170
IFork Init 104
Gamer 1237
Total Time 1705

Table 3: Configuration of optimal sequential portfolio.

of the IPC 2011 as the score to beat in practice. This re-
sults from the consideration that all planners in the last IPC
are state-of-the-art planners and that a linear combination of
their performance is a reasonable estimator of the expected
performance of state-of-the-art planners.

Empirical analysis of the utility of training
problems to configure sequential portfolios
Once the optimal static sequential portfolio for the IPC 2011
seq-opt data has been configured, we have analyzed the
utility of the training problems. To perform this task we
have defined twelve sets of training problems, where each
one contains instances from the IPC 2011 seq-opt that were
solved by a maximum number of planners. The first set is
composed of all problems that were solved by at most one
planner. The second set is composed of all problems that
were solved by at most two planners, and so on. We have
defined twelve sets because we have used a set of twelve
planners to configure the optimal static sequential portfolio
for the IPC 2011 seq-opt track. Figure 1 shows the problem
distribution for the twelve sets of training problems.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6 7 8 9 10 11 12 13

S
o
lv

e
d
 p

ro
b
le

m
s

Maximum number of planners

Problem distribution

Figure 1: Problems distribution for the twelve sets of train-
ing instances.

We have executed our MIP model with each of the twelve
training problem sets. The results in Table 4 show the same
performance (measured in coverage, time and memory) for
the sequential portfolios obtained using all sets of training
problems except for the first one (which is composed of all

40

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

problems that were solved by at most one planner). These
sequential portfolios have the same configuration, which is
the optimal configuration for the IPC 2011 seq-opt track, as
shown in Table 5. Therefore, the minimum set of training
problems necessary to configure the optimal portfolio for the
competition contains only 27 problems (those which were
solved by at most two planners). This fact empirically con-
firms our initial hypothesis: not all training problems have
the same utility and the best set of training problems should
contain few instances with a high utility. Based on our initial
classification, those instances should belong to the second
category: problems with medium difficulty.

Max. Planners Solved problems Time Memory
1 16/18 1499 6144
2 24/27 1705 5696.67
3 26/29 1705 5696.67
4 36/39 1705 5696.67
5 49/52 1705 5696.67
6 55/58 1705 5696.67
7 58/61 1705 5696.67
8 72/75 1705 5696.67
9 88/91 1705 5696.67

10 100/103 1705 5696.67
11 175/178 1705 5696.67
12 200/203 1705 5696.67

Table 4: Results of our model using the twelve sets of train-
ing problems. For each set, identified by the maximum
number of planners that solve its instances, the table shows
the ratio between number of solved problems and size of
the problem set, the time spent (seconds) and memory used
(MB) by the obtained sequential portfolio.

Planner Allotted time (s)
First training set Remaining sets

CPT4 1 1
LM-cut 0 55
M&S-bisim 1 0 138
M&S-bisim 2 157 170
IFork Init 104 104
Gamer 1237 1237

Table 5: Sequential portfolios obtained using the twelve sets
of training problems.

Conclusions and future work
We have presented a general method based on MIP to define
the baseline for a specific set of problems, against which
the real performance of planners can be measured. We have
applied this method over all IPC 2011 seq-opt problems and
we have shown that the real challenge consists of generating
portfolios/planners that could solve more than 200 problems
when being trained with this data set. The reason is that
any portfolio solving less problems falls below the results

achievable by learning a portfolio with the solution of a MIP
task.

In addition to this prior work, we have performed an em-
pirical analysis to examine if all training problems have the
same utility to configure sequential portfolios. The results
show that not all problems have the same utility. We have
reached exactly the same configuration when running the
MIP task with either 27 problems or 280 problems. The
sequential portfolio obtained (under the same conditions of
the IPC 2011 seq-opt track) is the optimal portfolio for both
sets of problems.

In the future we will perform a theoretical analysis based
on sensitivity analysis of training problems to determine the
accuracy of our hypothesis.

Additionally, we will try to analyze the utility of sequen-
tial portfolios for different time limits. Commonly, the se-
quential portfolios have only been tested using the IPC rules.
These rules define a time limit of 1800 seconds to solve ev-
ery problem. Some sequential portfolios have shown high
performance using this time limit. But if these sequential
portfolios are executed with a different time limit, their per-
formance is just unknown. In particular, we are interested in
finding out whether it is possible or not to derive sequential
portfolios that solve at least as many instances as all entrants
in the same amount of time or even less.

Finally, we want to study the order of the execution se-
quence for the optimal static sequential portfolio. We have
obtained a randomly sorted sequential portfolio that solves
200 problems of the IPC 2011 seq-opt track. To solve each
of these problems, the portfolio spends at most 1705 sec-
onds. This runtime depends on the execution sequence.
Therefore, we will analyze whether there is an order of the
execution sequence for spending, on average, the minimum
execution time.

Acknowledgments
This work has been supported by the INNPACTO pro-
gram from the Spanish government associated to the
MICINN project IPT-370000-2010-8 and different Span-
ish research departments through projects TIN2008-06701-
C03-03, TIN2011-27652-C03-02, TIN2010-08861-E and
TRA2009 0080.

References
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling, (ICAPS
2009). AAAI.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, 176–183.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast down-
ward stone soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning 28–35.

41

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. J. Artif. Intell. Res.
(JAIR) 17:1–3.
Roberts, M., and Howe, A. E. 2009. Learning from planner
performance. Artif. Intell. 173(5-6):536–561.

42

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

“Type Problem in Domain Description!”
or, Outsiders’ Suggestions for PDDL Improvement

Robert P. Goldman and Peter Keller
SIFT, LLC

Minneapolis, MN USA
{rpgoldman,pkeller} at sift.net

Introduction
The International Planning Competition has been tremen-
dously successful in advancing the state of the art in auto-
mated planning systems. Planning systems have become
far more capable, and are now readily available to inter-
ested users. Recent developments in techniques for com-
piling problems to PDDL (Baier, Fritz, and McIlraith 2007;
Alford, Kuter, and Nau 2009; Baier, Bacchus, and McIlraith
2007; Palacios and Geffner 2007, e.g.,) further extend the
utility of PDDL planning systems. We feel that the state of
the art is approaching that of techniques such as mathemati-
cal programming solvers, which can be used to solve a wide
variety of problems. We have ourselves been experimenting
with such uses of PDDL planners, in areas including cyber
attack planning for adversary plan recognition and searching
for plan counterexamples (Goldman, Kuter, and Schneider
2012). Our experience in these efforts guides our remarks
here.

As with mathematical programming, the gateway to use
of planning systems is the modeling language, in this case
PDDL (Ghallab et al. 1998; Edelkamp and Hoffmann 2004;
Hoffmann and Edelkamp 2005; Haslum 2011; Fox and Long
2003; Long and Fox 2003; Gerevini and Long 2005). To
achieve the potential of wide use, the modeling language
needs to do more to meet the users. In particular, the model-
ing language needs to have better expressive power, must be
easier to author, and should be better standardized.

In this paper we describe obstacles to planner employ-
ment from outside the IPC community, based on our expe-
riences attempting to use existing PDDL planners. We hope
that this different perspective will bring to the fore concerns
that might otherwise be backgrounded. In particular, as out-
side users, the ability to design new domains and problems
is a central concern to us, whereas in the IPC proper, dif-
ficulties in formulating problems, and especially difficulties
in modeling pre-existing problems in PDDL, are amortized
over the community as a whole. Members of the community
whose efforts focus on efficiently solving problems which
they are presented may not feel these modeling issues as
keenly. An outside perspective may also raise some issues
that have fallen into the background for those more accus-
tomed to working in the IPC community.

In the following sections, we discuss some challenges
posed by the current state of the PDDL standard, ambigu-

ities in PDDL syntax, issues with the PDDL type system,
and the problem of planner-specific PDDL dialects. We
make some modest suggestions about how the state of af-
fairs in these areas could be improved. We have purposely
kept these suggestions modest and incremental, particularly
when discussing expressive limitations of PDDL. We have
tried to be sensitive to the resource limitations of the com-
munity; interested readers will have to look elsewhere for
more utopian suggestions.

PDDL standard issues
A primary challenge with the PDDL standard is that it is
only available through a historical reading of the available
documents. All versions of the specification since the orig-
inal (Ghallab et al. 1998) are substantially patches to the
original document. The most complete of the successors
is the excellent article on PDDL 2.1 (Fox and Long 2003),
but even this document appeals to the original specification,
and focuses primarily on the extensions in PDDL 2.1, no-
tably the addition of durative actions. The PDDL 3.1 docu-
ments (Haslum 2011; Kovacs 2011) are little more than re-
visions to earlier BNF grammars.

With this structure, the informal algorithm for answering
questions about PDDL is to start with the most recent speci-
fication (or the specification corresponding to a planner that
one wishes to use), and search backwards, chronologically,
until an answer is encountered. Not only is this a laborious
process, it is not always obvious when a given later doc-
ument overrides an earlier one. Our experience trying to
resolve questions about the type system of PDDL (see else-
where in this document) shows that even persons intimately
involved in the IPC may have differing interpretations.

Two related issues have to do with the nature of the speci-
fication itself. One is that, with the possible exception of the
original specification, the specifications have not been writ-
ten as specifications. The 2.1 specification is a journal article
primarily concerned with the semantics of durative actions,
and the PDDL 3.1 documents are primarily revisions to the
grammar. As PDDL grows in acceptance, it deserves a spec-
ification that is a specification, as with other programming
languages, if for no other reason than to provide a specifica-
tion that is organized and indexed for reference use.

The second issue is that the specification efforts to date
have concentrated their efforts in two areas. The first is

43

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

at the semantic level, in specification of the transition re-
lationship. In addition to specifying the basics, a great deal
of effort has gone into specifying the transition relationship
when concurrent actions are permitted, both in durative and
non-durative frameworks. The issues here can be subtle,
and while there have been some critiques of design choices,
overall the PDDL 2.1 specification is admirably clear (Fox
and Long 2003). In later work, a similar amount of care went
into specifying the interaction between the transition relation
and the evaluation of preferences (Gerevini and Long 2005).
The second area of focus has been the syntactic specifica-
tion of PDDL, and here we feel that the efforts have been
less successful. We discuss this in the following section. We
also find that aspects of the language that don’t fit neatly
into either the transition relationship or the syntax, notably
the type system, have been less well-served.

We do understand that improving the standardization and
the standard document requires a substantial effort, and that
there are challenges to rewarding this effort. In particular, in
a community that is primarily motivated by refereed publi-
cation, expending effort on a document that will not be so
published is challenging. No doubt this is substantially re-
sponsible for the way that PDDL standards have been devel-
oped as a sequence of “patch files.” Since we have argued
that the current state of affairs is undesirable, and we are
unable to provide novel incentives, we can simply propose
that the process of updating the standard be eased. Main-
taining a readily available copy of the latest (complete) stan-
dard in an easy-to-edit and readily “diff-able” form such as
LATEX should minimize the effort of developing a new full
standard, making it much more of a piece with developing a
simple “patch file” revision. This might also have the ben-
efit of making the standard revision process “as simple as
it can be, but no simpler.”1 We may well find that requir-
ing full standardization will not permit the introduction of
new facilities whose semantics are uncertain, as opposed to
permitting a mere specification of syntax.

Before we continue, we would like to mention the VAL
PDDL validation program (Howey, Long, and Fox 2004),
which provides an additional resource for understanding the
PDDL standard. We have found the validate program in
the VAL suite to be quite useful in debugging our domain de-
signs, notably debugging poorly-modeled operators. How-
ever, validate has some limitations. First, although it is
very helpful in evaluating the correctness of plans, with re-
spect to executability and goal achievement, it does not pro-
vide a similar amount of guidance in identifying syntactic
problems in domain and problem models. For the latter, we
have found no real substitute for running such files through
the parsers of validate and multiple planners (especially
FF (Hoffman 2001) and FD (Helmert 2006)). Unfortunately,
as we point out below, while these three programs all sup-
port the ADL dialect of PDDL, their interpretations of this
dialect diverge in ways that cause them to disagree about
the validity of PDDL domains and problems. We eventually
found it necessary to patch the VAL suite to provide an in-
terpretation of the type system that agreed with that used by

1Roger Sessions, attributed to Albert Einstein.

FD. We discuss this further below.

Syntax issues
One issue that complicates the understanding of PDDL is
the issue of repetition. For example, BNF does not provide
a notation powerful enough to specify whether a type can
have only a single declaration, or whether it can have mul-
tiple declarations. It is clear that a single type declaration
may designate only a single supertype, but does PDDL per-
mit multiple inheritance (multiple supertypes) in the case of
multiple declarations, as in the following example:
:types (subtype - supertype1

subtype - supertype2
...)

There are several similar issues, for example, whether pred-
icates permit arity or type overloading (are multiple declara-
tions for the same predicate name permitted?). The ques-
tion of unordered constructs is a case where BNF is not,
or at least may not be, a sufficiently powerful notation to
capture some of the syntax of the language. The issue of
repetition, in contrast, is one where syntax and semantics
come together, and we see the problems of attempting to ad-
dress questions about the meaning of the language with only
a quite limited meta-syntactic notation.

We conjecture that the authors of these specifications have
appealed to intuitions about what is “natural,” and that as the
language is exposed to a wider and wider audience, these in-
tuitions are less likely to be shared among the audience. For
example, questions of overloading the same name as op-
erator and predicate, overloading/polymorphism, etc., may
arise if PDDL spreads to communities that see different as-
sumptions as “natural.”

We suggest that the use of BNF may have led to more
parsimony in the formulation of the PDDL grammar than is
appropriate. For example, one of the non-terminals in the
grammar is <type>, and one of its production rules is:
<type> ::= (either <primitive-type>+)

Such a type definition makes perfect sense for a predicate’s
argument, as in:
(has_id ?proc - process ?id - (either uid gid))

for an operating system process that may have both a user-
id (uid) and a group-id (gid), but its semantics are uncer-
tain when it is applied to a constant/object or to a type. At
the expense of expanding the grammar, we suggest that its
categories could profitably be refined.

We conclude with some minor suggestions for improve-
ments to the PDDL syntax. One is to improve the syntax of
type declarations. The current syntax has two undesirable
features: First, when revising existing domain and problem
descriptions it is all too easy to accidentally have a newly-
intoduced type expression “take over” additional entities to
their left, because of the strong associativity. Second, the
asymmetry which forces the definition of “top” classes to
the end of the type declarations, in order to avoid being
“grabbed up” by type declarations to their right. We agree
that maintaining backward compatibility in syntax is desir-
able above almost all other considerations, but feel that a

44

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

less-ambiguous extension could be introduced for those who
want to use it. For example, the use of parentheses for group-
ing could mitigate some of the low precedence of the - type-
declaration operator. Another thing that would help (see our
discussion of the type system, below), would be restoration
of the top object type, and issuing warnings about un-
typed entities. The introduction of an alternative type dec-
laration operator, in addition to the hyphen, and either mak-
ing it strictly binary, or allowing the use of parentheses for
grouping on its left hand side, might also be an improve-
ment.

Another possible improvement would be to provide an
easier syntax for cost-based planning. Currently, cost-based
planning is specified by the :action-costs require-
ment, which signals limitations on the use of the quite ex-
pressive numeric fluents syntax. This adds a great deal
of complexity both to parsing (especially for planners that
do not wish to support numeric fluents) and to the domain
modeling. By contrast, the SHOP2 planner has a notation
that simply adds an optional :cost keyword to operators.
Adding such a facility to PDDL might be helpful.

The PDDL type system
The aspect of PDDL that has been the biggest barrier to us
in getting our tests to work has been the PDDL type system.
In our experience, there is a wide variation in understanding
of how the PDDL type system is supposed to work: what
syntactic expressions are permitted, and what are the se-
mantics of the constructs. One obstacle has been difference
of opinion about how the type system changed in the sub-
stantial PDDL redesign between PDDL 1.x and PDDL 2.1.
The discussion in this section draws heavily on extensive
correspondence about the PDDL type system – particularly
about the issue of type introspection – with Patrik Haslum,
Malte Helmert, and Derek Long. We are grateful to them
for their guidance and patience in fielding our questions. In
this section we discuss problems with the semantics of the
PDDL type system in the following areas: (1) the use of
the either construct for disjunction; (2) the open question
of whether or not PDDL permits multiple inheritance; (3)
the use of object as the top type of the type hierarchy;
(4) another open question concerning whether or not PDDL
permits type introspection.

Either construct
We have previously mentioned the either construct as
a place where the grammar formalism may have led to a
construct’s generalization beyond a position where it has a
clear semantics. When used in providing type constraints on
predicate or operator parameters, and quantified variables,
either is innocuous. However, if it is used in two other lo-
cations where the grammar permits, its semantics becomes
problematic. For example, what does it mean to say:

(:types airplane - (either vehicle toy)...)

or

(:objects insider - (either good evil)...)

Patrik Haslum2 suggests that the former should indicate
that the extension of airplane should be a subset of the
union of the extensions of vehicle and toy. A problem
with this is that it, like the second example, permits uncer-
tainty about the “true” type of a constant, which seems in-
compatible with the grounding semantics of existing PDDL
planners. In the presence of such constants, one would have
to resort to either an over- or under-approximation of the set
of applicable actions, since it would not be clear whether,
for example, an airplane was an acceptable instantiation
for a variable of type vehicle. With quantified variables,
further uncertainty would be added to interpretation of con-
ditional effects, and to quantified preconditions. Our corre-
spondence with Helmert, Haslum and Long suggests a con-
sensus that either should be eliminated from any context
other than variable type constraints.

Multiple inheritance
As we mentioned earlier, we have not been able to deter-
mine with certainty whether multiple inheritance is permit-
ted in PDDL. We were inclined to the interpretation that
repeated definitions of the same name were not acceptable
PDDL, which would rule out polymorphism in predicates,
actions, functions, and would also rule out multiple inher-
itance. However, we find a comment in the validate
source code that seems to suggest that it is permitted to have
types with multiple supertypes. Given the very limited forms
of inference licensed by the PDDL type system, it is likely
that permitting multiple inheritance would be benign. How-
ever, we suggest two cautions in this regard. First, in the
presence of a grammar that does not distinguish between
type designators used to specify supertypes, and type des-
ignators used to specify variable types (cf., our discussion
of syntax and of the either construct), this could lead to
permitting objects and variables to have multiple types, and
the semantics there are less clear. The programming lan-
guage Common Lisp, for example, permits classes to have
multiple superclasses, but requires objects to have a single
class (Bobrow et al. 1988; American National Standards In-
stitute and Information Technology Industry Council 1996).
The second caution is that a syntax that requires redundant
definition such as

(:types subtype - supertype1
subtype - supertype2 ...)

seems far worse for comprehension than a syntax that offers
explicit conjunction:
(:types subtype - (and supertype1 supertype2)

...)

Top type
The original PDDL specification says that entities not ex-
plicitly typed are assigned the type object, “. . . every
physical object is an object.” (Ghallab et al. 1998,
p.6) There seems to be substantial confusion about whether
object is a type name in PDDL. The PDDL 2.1 specifica-
tion does not mention it, as far as we can determine, and it

2Personal communication.

45

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

does not appear in the BNF for PDDL 2.1. The latest version
of VAL (4.2.08) does not recognize it as the top of the ob-
ject type hierarchy3. On the other hand, the Fast Downward
translator specifically indicates that untyped entities (except
numerical fluents) are of type object, and makes object
available as a token of the language (rather than using an in-
accessible internal symbol for the top type). Further, the
PDDL 3.1 grammar by Kovacs (Kovacs 2011) explicitly in-
cludes the terminal object as an expansion for the nonter-
minal <primitive-type>.

We have found the ability to work with the top type help-
ful in our work, particularly in programmatically generating
PDDL domains and problems, so we urge that its presence
be confirmed. It is particularly important to have access to a
top type, since (at least according to validate) type spec-
ifiers for predicates, etc., are no longer optional, when the
:typing requirement is in place. This positive require-
ment does not seem fully clear in the grammar, primarily
because there does not seem to be a negation construct in
the requirements specification notation. So in the PDDL 2.1
grammar we see:

<typed list (x)> ::= x∗

<typed list (x)> ::= :typing

x+ - <type> <typed list (x)>

and it is not clear whether the use of :typing in the second
rule overrides the first rule, or adds to it. The description of
the option in the PDDL 2.1 grammar, “Allow type names in
declarations of variables” to us suggests the addition inter-
pretation instead of overriding. Furthermore, in the PDDL
1.2 document, we are told that additional material “...is in-
cludable only if the domain being defined has declared a re-
quirement for that flag.” (Ghallab et al. 1998, p. 3) The same
two rules are preserved in the PDDL 3.1 grammar, as is the
gloss of the :typing requirement. We prefer the more per-
missive interpretation, but feel that one way or another, the
specification should be clarified. We suggest that a negated
form of the superscripting operator, indicating that a pro-
duction is forbidden, in presence of a particular feature, be
added to the PDDL grammar formalism. For example, if one
wished to forbid non-durative actions from appearing in do-
mains with durative actions, one might modify the grammar
from:

<structure-def> ::= <action-def>
<structure-def>
::=:durative−actions <durative-action-def>

...

to

<structure-def>
::=(not :durative−actions) <action-def>

<structure-def>
::=:durative−actions <durative-action-def>

...

3validate will accept the string object as a type name,
but does not recognize it as the supertype of all other types in its
typechecker.

Type introspection
The original PDDL specification states that “an atomic type
name is just a timeless unary predicate, and may be used
wherever such a predicate makes sense.” (Ghallab et al.
1998, p.6) There is not general agreement on whether this
part of the specification has been overridden or not. In our
correspondence, Malte Helmert felt that this was still ac-
tive, and Fast Downward permits the use of type names as
unary predicates. Derek Long, on the other hand, felt that
the PDDL 2.1 specification had quite clearly eliminated this
construct from the language. We feel that this construct,
which serves to provide a kind of type introspection, is help-
ful in domain engineering, and we would like to see it un-
ambiguously supported in the language.

Doing without type introspection can lead to quite labo-
rious rewrites to a domain. Consider an example which we
encountered when modeling a cyber attack domain (a vari-
ant of the work by Boddy, et al. (Boddy et al. 2005)). We
had an operator that captured what happens when a program
is started, looking something like this:

(:action RUN_PROGRAM
:parameters (?O - host

?H - human
?P - program)

...)

Now we wished to reflect the fact that there are particular
attack tools, that are a kind of program, that would only
be run by a person who is evil, where evil is a subtype
of human. With type introspection, we can capture this rel-
atively easily:

(:action RUN_PROGRAM
:parameters (?O - host

?H - human
?P - program)

:precondition (and
(imply (malware ?P)

(evil ?H))
...)

...)

Similarly, there are cases where conditional effects may rely
on the types of certain parameters, or the presence or ab-
sence of an object of a particular type. Some of these sit-
uations can be modeled by adding additional unary predi-
cates which are “type-like,” but this makes it more difficult
to formulate consistent initial states, a task which is already
challenging.

To capture this same information without type introspec-
tion requires extensive modification of the domain model.
It is not sufficient to simply split RUN PROGRAM into
RUN PROGRAM and RUN MALWARE, since the fact that
malware is a subtype of program, and evil is a sub-
class of human means that RUN PROGRAM will apply to
malware, as well as normal software. We must now intro-
duce a mutually-exclusive decomposition of program into
malware and non malware in order to capture the same
domain constraints. Doing this in such a way that operators
with parameters known only to be of type program still

46

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

work, can be very ticklish – careful thought must be given
to the typing of every predicate involving program type
arguments, or such operators will fail to type correctly.

With assistance from Derek Long, we have developed a
patch to VAL 4.2.08 that provides the option to accept PDDL
that incorporates unary type predicates. We have made this
patch available to the VAL developers, and would be happy
to provide it to other interested parties.

Adding type introspection of this sort suggests further that
the community might want to extend PDDL to support a lim-
ited species of type inference. Consider this example:

(:action typed-action
:parameters (?x - supertype)
:precondition (implies (type ?x) P)
...)

The question is, in P, are we allowed to assume that ?x is of
type, or must we continue to assume only that it is of type
supertype? It is clear that the former inference is sound,
and there are readily available type inference algorithms that
are more than capable of making such inferences. Further,
the usefulness of type introspection might be substantially
limited absent this kind of “narrowing” type inference. The
concern on the other side is that adding type inference might
substantially raise the bar for implementing an IPC planner
with more than STRIPS expressive power.

Idiolects
A final concern to outsiders trying to make use of PDDL
planners is the proliferation of idiolects4, usually undocu-
mented sub-dialects of PDDL that correspond to a particu-
lar piece of software. In multiple examples above, we have
mentioned differences between the three PDDL software
suites that we have used most extensively: FF, Fast Down-
ward, and VAL. We had to modify our PDDL-generating
programs to honor the FF parser’s restrictions on placement
of newlines (and it is worth saying that we were well re-
warded for doing so, since FF’s parser has excellent error
messages). Idiolects can be especially difficult for program-
mers when combined with minimal error reporting.

Related issues are the fact that the IPC has tended to avoid
parts of the PDDL language that have been documented, but
not widely supported by planners. We certainly understand
the motivation for this – it would not be much of a com-
petition otherwise. Nevertheless, when one comes from the
outside, it would be very helpful to know which parts of the
language, although in the specification, are unlikely to be
supported by planners, and if supported, may not function
reliably. Annotating such parts of the language would be
very helpful. It might be well to prune the set of feature
combinations, or at least document which are of primary in-
terest to the competition.

The community could take a number of simple steps to
reduce the prevalence of idiolects. One would be to provide

4”The speech of an individual, considered as a linguistic pat-
tern unique among speakers of his or her language or dialect,” The
Free Dictionary, http://www.thefreedictionary.com/
idiolect.

a test suite for PDDL parsing, with different settings, cor-
responding to feature combinations. We hope it would not
be a major extra burden for planner builders to provide an
interface to simply parse and accept or reject PDDL inputs.
Indeed, if there were such a test suite, planner programmers
might find it was a substantial help in developing their plan-
ners. Outside users could, in a pinch, use such a test suite
to determine what languages a planner might accept. This
would be particularly helpful when trying to find a plan-
ner that accepts some of the more experimental features of
PDDL.

Expressive power
We urge planner developers to support the higher ends of
the expressive spectrum of PDDL. Our experience has con-
vinced us that simple STRIPS is insufficient for modeling
most, if not all, problems of interest. Even when a domain
can be captured in STRIPS, the burden of doing so is ex-
treme. We find that the extensions provided by ADL and,
to a lesser extent, by derived predicates, are a substantial
help in such modeling. There are some techniques for com-
piling away ADL and derived predicate constructs, but the
best are internal to planners. Also, such compilation often
involves grounding a domain against a particular problem,
which means that STRIPS cannot be used as a primary mod-
eling language.

We have found that in complex domains, with many ob-
jects that have multiple properties, it can be quite difficult to
generate complete and consistent initial state descriptions.
We have developed the rudiments of a macro notation that
supports partially-automated generation of the set of propo-
sitions that describes the state of an object in a domain. Our
work in this area was inspired by the work by Boddy, et al.
on cyber attack planning (Boddy et al. 2005), which used
the m4macro preprocessor to assemble domain and problem
definitions from multiple, simpler files.5 Our work has used
the Common Lisp programming language, because it al-
lows us to work with the s-expression structure of the PDDL
model, rather than requiring more primitive string manipu-
lations. With slightly more effort, similar facilities could be
built in dynamic languages such as Python or ECMA Script.

As PDDL moves towards modeling ever more complex
domains, it may be useful to incorporate some such facil-
ity in the language. Note that such a facility need not be
built into the planners proper, since this kind of preprocess-
ing may be done entirely prior to more problem-sensitive
operations such as grounding. That means that ease in mod-
eling could be achieved without complicating the work of
IPC entrants.

Conclusions
Our experience has shown that, under the impetus pro-
vided by the International Planning Competition, planning
software has become mature enough to be more and more
widely used as a general problem-solving tool. Critical to
making planning technology more usable is the modeling

5Sample cyber attack domains, with the m4 macros, may be
found in the 2008 IPC resources.

47

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

language, PDDL. We have outlined some challenges the
modeler faces when using PDDL, and have made some sug-
gestions for improving its standardization.

References
Alford, R.; Kuter, U.; and Nau, D. S. 2009. Translating
HTNs to PDDL: A small amount of domain knowledge can
go a long way. In Proceedings of the International Joint
Conference on Artificial Intelligence.
American National Standards Institute, and Information
Technology Industry Council. 1996. American National
Standard for information technology: programming lan-
guage — Common LISP: ANSI X3.226-1994. American Na-
tional Standards Institute.
Baier, J.; Bacchus, F.; and McIlraith, S. 2007. A heuris-
tic search approach to planning with temporally extended
preferences. In Proceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-07),
1808–1815.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Ex-
ploiting procedural domain control knowledge in state-of-
the-art planners. In Proceedings of the Seventeenth Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS-07), 144–151.
Bobrow, D. G.; DeMichiel, L. G.; Gabriel, R. P.; Keene, S.;
Kiczales, G.; and Moon, D. A. 1988. Common Lisp Object
System specification. Document 88-003, X3J13 Standards
Commitee (ANSI Common Lisp).
Boddy, M. S.; Gohde, J.; Haigh, T.; and Harp, S. A. 2005.
Course of action generation for cyber security using classi-
cal planning. In Biundo, S.; Myers, K. L.; and Rajan, K.,
eds., International Conference on Automated Planning and
Scheduling, 12–21. AAAI.
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. report00195, Institut für Informatik, Univer-
sität Freiburg.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Gerevini, A., and Long, D. 2005. Plan constraints and pref-
erences in PDDL3. Technical Report RT 2005-08-47, Dept.
of Electronics for Automation, University of Brescia, Bres-
cia, Italy.
Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – the planning domain definition language. Techni-
cal Report CVC TR-98-003, Yale Center for Computational
Vision and Control, New Haven, CT.
Goldman, R. P.; Kuter, U.; and Schneider, A. 2012. Using
classical planners for plan verification and counterexample
generation. In Proceedings of AAAI Workshop on Problem
Solving Using Classical Planning. To appear.
Haslum, P. 2011. Changes in PDDL 3.1. From IPC 2008
website.

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191–246.
Hoffman, J. 2001. FF: The fast-forward PLanning system.
The AI Magazine 22(1):57–62.
Hoffmann, J., and Edelkamp, S. 2005. The deterministic
part of IPC-4: An overview. Journal of Artificial Intelligence
Research 24:519–579.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In Proceedings ICTAI, 294–301. IEEE
Computer Society.
Kovacs, D. L. 2011. BNF definition of PDDL 3.1. From
IPC 2011 web site.
Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research 20:1–59.
Palacios, H., and Geffner, H. 2007. From conformant into
classical planning: Efficient translations that may be com-
plete too. In Boddy, M. S.; Fox, M.; and Thiébaux, S., eds.,
ICAPS, 264–271. AAAI.

48

ICAPS 2012 Proceedings of the 3rd Workshop on the International Planning Competition

