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Foreword 
 
 

State-space search guided by heuristics, automatically derived from the problem representation, has 
been one of the most popular, and arguably one of the most successful, approaches to domain-
independent planning in the last decade. While there has been significant developments in the design 
of planning heuristics, such that there are now many different kinds of heuristics, and some theories 
of how they relate to each other have begun to emerge, there is also a growing realisation that the 
search algorithm plays an equally important role in the approach. Recent work has highlighted some 
of the weaknesses of some search algorithms, but also the rich opportunities for exploiting synergies 
between the heuristic calculation and the search to improve both, drawing on the fact that domain-
independent planning offers a declarative description of the state space (not just a "black box" 
successor function). 
  
The workshop on Heuristics and Search for Domain-Independent Planning (HSDIP) follows in the 
tradition of the "Heuristics for Domain-Independent Planning (HDIP)"  workshop series that was held 
at ICAPS 2007, 2009 and 2011. However, since the number contributions to the workshop relating to 
search (not just heuristics) has steadily grown, the ICAPS 2012 workshop widens the scope to 
explicitly encourage work on search for domain-independent planning. 
 
 
Patrik Haslum, Malte Helmert, Erez Karpas, Carlos Linares López,  
Gabriele Röger, Jordan Thayer, and Rong Zhou 
HSDIP 2012 Organizers 
June 2012 
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Deeply Preferred Operators: Lazy Search Meets Lookahead

Roei Bahumi and Carmel Domshlak and Erez Karpas
Faculty of Industrial Engineering & Management, Technion

Abstract

Heuristics in state-space search are primarily used to estimate
the distance from states to the goal. In domain-independent
heuristic-search planning, using extra information derived
from the heuristic computation to mark some successors as
preferred, and then biasing the search towards the preferred
successors, resulted in significant improvements in planning
performance. Preferred operators, however, help to discrimi-
nate only between the immediate successors of the evaluated
state. We propose a simple and effective technique that takes
advantage of more of the information provided by the heuris-
tic computation. This technique, called lazy lookahead, con-
sists of two components: A generalization of preferred oper-
ators to deeper descendants of the evaluated states, and a suit-
able generalization of deferred heuristic evaluation (aka lazy
search) to such “deeply preferred” descendants. Our evalu-
ation shows that employing lazy lookahead results in better
performance than using standard preferred operators.

Introduction
Heuristic state-space search is one of the most prominent
approaches to domain independent planning. For satisficing
planning, the most common such approach is to use greedy
best-first search, guided by heuristic functions. Heuristics
are used primarily to estimate the distance from search states
to the goal. The search algorithm can then use these distance
estimates to choose a state which is likely to be closer to the
goal, and thus hopefully to find a solution faster.

One of the most important advances in satisficing plan-
ning was the introduction of helpful actions in the FF plan-
ner (Hoffmann and Nebel 2001), where FF’s relaxed plan
was used not only for estimating the distance to the goal, but
also to mark a few successors of the evaluated state as “help-
ful”, in the sense of, “more likely to lead towards the goal”.
This concept was later generalized under the name of pre-
ferred operators (Helmert 2006), and was found especially
helpful when used with lazy search (also called deferred
evaluation, Richter and Helmert 2009). In lazy search, a
state is evaluated not when it is generated, but when it is se-
lected for expansion and removed from the open list. Lazy
search aims at reducing the number of expensive heuristic
evaluations: many states in the last layer of the search do not
need to be evaluated, and preferred operators help focusing
the evaluation on the more promising such states.

While which operators are considered preferred varies be-
tween the specific search components, the set of preferred
operators of a given state always appears to be a subset of
operators applicable at that state. At least in principle, this
property appears to be unnecessarily limiting. Consider, for
example, a state s for which a relaxed plan ρ+ is generated.
It is possible that ρ+ (considered in terms of the original ac-
tions) is actually a valid plan from s to a goal state, and thus
it provides us with the overall solution to the problem. Nev-
ertheless, even using preferred operators, the search would
need to evaluate at least every state along ρ+ until the goal
is found, despite the fact that we already have a solution at
hand. Furthermore, it is possible that when the successor of
s along ρ+ is evaluated, a completely different relaxed plan
will be generated for it, leading the search off the solution
path that was already discovered.

Previous work has noted this, and suggested using FF’s
relaxed plan ρ+ from state s for lookahead from s on-
wards (Vidal 2004). Specifically, an action sequence π ap-
plicable at state s is constructed from ρ+, and then the state
s′ reached by π from s, called a lookahead state, is added
to the open list, along with the regular successors of s. The
weak point of such a lookahead is that often it is only some
prefix of π that takes us closer to the goal, while the remain-
ing part of π goes off in the wrong direction. In that case,
adding only the end state achieved by π from s would prob-
ably not be the best thing to do.

Here we propose a technique that takes advantage of
such heuristically-suggested paths π, that is, “preferred se-
quences” of real actions induced by the heuristic computa-
tion. This technique, called lazy lookahead, consists of two
components. First, it extends the notion of preferred opera-
tors into what we call deeply preferred operators, which lead
not only to the immediate successors of state s, but rather to
all the states along the heuristically-suggested path π from s.
Second, it extends the machinery of lazy search to properly
support such deeply preferred descendants. Comparing to
various approaches to satisficing heuristic-search planning
that are based on standard notions of preferred operators and
lazy search, our technique aims at reducing the number of
heuristic evaluations even further, by obviating the need to
compute heuristic estimates for states at various depths, not
just in the last layer of the search. Our empirical evaluation
shows that searching with lazy lookahead indeed results in
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significant runtime and memory improvements, and even in-
creases the number of planning tasks being solved.

Lazy Search Meets Lookahead
We consider planning tasks Π = 〈P,A, cost, s0, G〉 formu-
lated in STRIPS with action costs, where P are propositions,
A are (standard syntax and semantics) actions, s0 ⊆ P is the
inital state, and G ⊆ P is the goal (Fikes and Nilsson 1971).
The cost cost(π) of an action sequence π = 〈a0, a1, . . . , an〉
is
∑n

i=0 cost(ai). An action sequence π is an s-path if it is
applicable in state s; the state resulting from applying an s-
path π in s is denoted by sJπK. An s-path is an s-plan if
G ⊆ s0JπK. In basic satisficing planning, the objective is to
find an s0-plan as efficiently as possible.

Lazy Lookahead
As previously mentioned, heuristics can provide us with
more than just an estimate of the distance from state s to
the goal. For now, let us assume that an (imperfect) oracle
provided us with some s-path π = 〈a1, a2, . . . an〉, which
is likely to lead towards the goal. We call such a path π a
heuristically-suggested path, and later we discuss usage of
a distinct class of heuristics as a respective oracle. In any
case, given such π, the current mechanisms for supporting
preferred operators allows us to “favor” the immediate suc-
cessor sJ〈a1〉K of s, biasing the search towards expanding
it. However, these mechanisms cannot assist us with “fa-
voring” the indirect successors {sJ〈a1, . . . , ai〉K}ni=2 of s,
despite their purported attractiveness suggested via π.

Aiming at taking advantage of as much of the infor-
mation provided by the heuristic computation as possi-
ble, we propose a simple new mechanism for prefer-
ring “deeper” states along the simulated execution of
the heuristically-suggested paths that we refer to as lazy
lookahead. Given a heuristically-suggested s-path π =
〈a1, . . . , an〉, lazy lookahead adds to the open list all the
states {sJ〈a1, . . . , ai〉K}ni=1, with the lazy heuristic estimate
of sJ〈a1, . . . , ai〉K being set to the true heuristic value of s,
adjusted by the cost of the actions {a1, . . . , ai}. That is, for
1 ≤ i ≤ n, hlazy(sJ〈a1, . . . , ai〉K) = h(s)−∑i

j=1 cost(aj).
Note that the adjusted heuristic estimate differs from what

is normally done in lazy search, where the successors of
state s are added to the open list with a heuristic estimate
of h(s) (Richter and Helmert 2009). The reason for this dif-
ference is that we want the “deeper” states to be expanded
earlier, as they are more likely to be closer to a goal state.
In contrast, lazy search only adds states on the same level,
making this argument irrelevant. We also note that it is,
of course, possible to simply perform an eager lookahead
by evaluating each state along the simulated execution of π
at s before adding these states to the open list. However,
as heuristic computation is typically much more expensive
than state generation, we believe this effort is very unlikely
to pay off. For example, if the last state sJπK along that
simulated execution is already a goal state, then search with
lazy lookahead finishes immediately, with no need to evalu-
ate all the intermediate states {sJ〈a1, . . . , ai〉K}n−1i=1 . Even if
the last state sJπK is not a goal state, but it has a lower true

heuristic estimate than h(s), the search will continue from
there, again, without the need to evaluate all the intermedi-
ate states.

Of course, there is no guarantee that a heuristically-
suggested path leads anywhere near the goal. Consider
the following scenario, where the search reaches a large
heuristic plateau: State s is evaluated, and a heuristically-
suggested path leading to state s′ is generated. s′ is evalu-
ated next and found to have the same heuristic estimate as
state s, and a heuristically-suggested path leading to state
s′′ is generated, and so on. This adds numerous states to
the open list, as each heuristically-suggested path adds all
the states along its simulation to the open list. In this sce-
nario, the open list fills up with “junk” states, which might
go much deeper than what search without lookahead would
need to expand to escape the bad region. Having this poten-
tial negative effect of the lookahead in mind, we have also
evaluated a variant of the lazy lookahead that we call condi-
tional lookahead. The basic idea is simply to apply looka-
head only for a selection of the expanded states. A simple
and intuitive selection condition we have evaluated empiri-
cally aimed at preventing sequential lookahead that does not
show any improvement. Specifically, we only look ahead
from state s if it meets one of the following criteria:

1. s has been generated via the “regular” search, not via a
heuristically-suggested path.

2. s was generated via a heuristically-suggested path from
state s′, and h(s) < h(s′).

These conditions prevent us from performing deeper and
deeper lookahead, without any sign of improvement. Of
course, more involved conditions, which might also be based
upon information from the heuristic h, can be found even
more beneficial in practice.

Generating Heuristically-Suggested Paths
Having described the way we suggest exploiting
heuristically-suggested paths in the context of best-first
search, we proceed with considering means for generating
such heuristically-suggested paths. A natural option that we
adopt here is to extract heuristically-suggested paths from
the artifacts of computation of a certain class of heuristics—
those that are based on solving a simplified version of the
planning task at hand. Examples of such heuristics include
FF’s relaxed plan heuristic (Hoffmann and Nebel 2001),
and abstraction heuristics such as PDBs (Culberson and
Schaeffer 1998), merge and shrink (Helmert, Haslum, and
Hoffmann 2008), and implicit abstraction heuristics (Katz
and Domshlak 2010). What all of these heuristics have in
common is that the heuristic value for state s is based upon
a solution to a simpler, but still a planning, problem. While
the state-of-the-art abstraction heuristics listed above avoid
storing these solutions explicitly in order to reduce their
memory overhead, the relaxed-plan FF heuristic generates
such a solution every time it is evaluated. Note that this
solution does not have to be a linear sequence of actions,
but can rather comprise a partially ordered set of actions.
The procedure we describe next is general, and can be used
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with any heuristic that is based upon estimating the cost of
such a partially ordered set of actions.

Given a partially ordered relaxed plan ρ+ from state s,
we attempt to find an applicable action sequence π which is
compatible with that partially ordered plan. Our procedure
attempts to apply actions from ρ+, while keeping track of
the current heuristically-suggested path, and of the state that
is reached by it. An action from ρ+ is eligible to be tried
if all of its predecessors in ρ+ have already been added to
π. The partially ordered plan ρ+ is traversed according to
some linear order compatible with it, and checks whether
an eligible action is applicable at the state sJπK reached by
the current heuristically-suggested path. If an applicable ac-
tion a was found, we update the currently reached state to
sJπ · 〈a〉K, and we update π to π · 〈a〉. Once a complete pass
over ρ+ is accomplished, we go back to the beginning of
ρ+, and perform another pass, as some previously inappli-
cable actions might now become applicable. The procedure
terminates after a complete pass over ρ+, in which no ac-
tion was added to the heuristically-suggested path π. Note
that traversing ρ+ according to different orders might lead
to different heuristically-suggested path.

It is possible to employ some sophisticated tactics for
choosing the linear order in which the partially ordered plan
ρ+ shall be traversed; for instance, some of such possi-
ble tactics in the context of FF relaxed plans are discussed
in a related context by Vidal (2004). In our evaluation,
however, our objective was to separate between the basics
and optimizations, and thus we have implemented two sim-
ple choices: either try actions according to some arbitrary,
implementation-dependent order, or choose the next eligible
action at random. The only optimization we do apply is us-
ing the layer structure of FF’s relaxed plan so that the linear
order on actions is compatible with the order of the layers,
and choosing at random from actions in the same layer. As
the empirical evaluation will demonstrate, even these simple
choices suffice to improve over the baseline lazy search with
the FF heuristic.

Empirical Evaluation
In order to evaluate lazy lookahead empirically, we im-
plemented it on top of the Fast Downward planning sys-
tem (Helmert 2006), and conducted experiments on all do-
mains from IPC 1998–2008, except MOVIE and ASSEMBLY. All
of the experiments reported here were conducted on a single
core of an Intel E8400 CPU, with a time limit of 30 minutes,
and a memory limit of 1.5 GB.

As the current implementations of abstraction heuristics
do not support obtaining a concrete solution for the abstrac-
tion from each state, we only evaluated the effect of lazy
lookahead on search using FF’s relaxed plan heuristic. In
all of the experiments here, we used lazy greedy best-first
search (with lazy lookahead, in our configurations) using
boosted dual queues (Richter and Helmert 2009) and pre-
ferred operators (deeply preferred operators in our config-
urations). All of the states which were generated by the
lazy lookahead procedure have been distinguished as pre-
ferred. We compare the baseline relaxed plan heuristic with
using both (unconditional) lazy lookahead (denoted by LL)

domain rnd-LL LL rnd-CLL CLL FF

airport (50) 38 37 35 38 37
depot (22) 20 19 18 19 19
elevators (30) 30 19 25 12 11
logistics98 (35) 35 33 35 35 33
mystery (30) 16 15 16 16 16
openstacks (30) 6 6 6 6 6
optical-telegraphs (48) 3 3 3 3 2
parcprinter (30) 17 27 18 26 21
pathways (30) 22 20 22 21 29
philosophers (48) 48 48 40 20 42
pw-notankage (50) 44 43 43 43 41
pw-tankage (50) 43 41 41 40 40
psr-large (50) 16 15 16 15 15
psr-middle (50) 42 43 44 43 42
schedule (150) 150 150 150 150 149
sokoban (30) 29 28 28 28 28
storage (30) 19 17 19 17 20
transport (30) 30 30 30 30 21
trucks (30) 17 16 17 16 18
woodworking (30) 29 30 30 30 27

TOTAL (shown domains) 654 640 636 608 617

Table 1: Number of tasks solved, per domain and overall.
Domains where all approaches solved the same number of
problems are not shown.
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Figure 1: Anytime profile of different approaches.
Each line shows the number of problems solved by each ap-
proach (y-axis), under different timeouts (x-axis).

and conditional lazy lookahead (denoted by CLL). For each
such method, we have two variants of partial order plans
linearization: random (denoted with the prefix rnd-) and ar-
bitrary (no prefix).

Table 1 shows the number of problems solved using each
approach, in each domain. We omitted here the domains in
which all the approaches solved all the tasks in the domain.
These results show that greedy best first search using the ran-
domized variant of both conditional and unconditional lazy
lookahead solves overall more problems than the baseline,
and that adopting lazy lookahead was beneficial on more do-
mains than domains in which it hurt the performance.

A more detailed examination of the results shows that ran-
domization in the lookahead greatly helps in ELEVATORS, and
greatly hurts in PARCPRINTER. One possible reason for this is
that the arbitrary action ordering in PARCPRINTER is actually
very good for the relaxed plan, while in ELEVATORS it is very
bad. However, overall, randomization performs better than
using the arbitrary order.

Another observation is that conditional lookahead does
not seem to pay off, and does not seem to perform as well as
(unconditional) lookahead. This is likely to do with the extra
overhead associated with conditional lookahead, where we
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domain rnd-LL LL rnd-CLL CLL FF

airport 0.81 0.63 0.82 0.65 0.72
blocks 0.71 0.7 0.69 0.58 0.7
depot 0.59 0.55 0.63 0.55 0.36
driverlog 0.7 0.68 0.72 0.71 0.32
elevators 0.93 0.35 0.46 0.12 0.11
freecell 0.76 0.74 0.65 0.66 0.37
grid 0.87 0.59 0.62 0.62 0.44
gripper 0.76 0.88 0.93 0.94 0.22
logistics00 0.82 0.7 0.78 0.78 0.1
logistics98 0.83 0.51 0.8 0.58 0.06
miconic 0.83 0.95 0.77 0.91 0.17
mprime 0.81 0.72 0.58 0.62 0.29
mystery 0.66 0.71 0.81 0.73 0.48
openstacks 0.53 0.52 0.57 0.44 0.76
optical-telegraphs 0.51 0.72 0.17 0.04 0.07
parcprinter 0.46 0.65 0.5 0.59 0.49
pathways 0.89 0.82 0.8 0.8 0.12
pegsol 0.47 0.55 0.6 0.56 0.71
philosophers 0.82 1 0.02 0.03 0.04
pw-notankage 0.48 0.53 0.58 0.57 0.55
pw-tankage 0.59 0.56 0.48 0.45 0.39
psr-large 0.82 0.84 0.88 0.87 0.91
psr-middle 0.84 0.84 0.88 0.89 0.91
psr-small 0.66 0.67 0.73 0.73 1
rovers 0.84 0.81 0.87 0.85 0.07
satellite 0.76 0.87 0.82 0.9 0.12
scanalyzer 0.78 0.85 0.5 0.48 0.29
schedule 0.73 0.69 0.74 0.67 0.11
sokoban 0.72 0.62 0.72 0.72 0.85
storage 0.64 0.62 0.82 0.78 0.81
tpp 0.93 0.59 0.48 0.32 0.14
transport 0.83 0.75 0.36 0.27 0.16
trucks 0.46 0.38 0.69 0.46 0.52
woodworking 0.74 0.8 0.75 0.83 0.42
zenotravel 0.83 0.87 0.75 0.86 0.2

NORM. AVG 0.73 0.69 0.66 0.62 0.4

Table 2: Generated states: average metric scores.

need to keep track of how each state was reached (via looka-
head or not), and of the heuristic value of the state where
the respective lookahead started (if it was reached via looka-
head).

However, the number of problems solved after 30 minutes
does not tell the complete tale. Figure 1 shows the number
of problems solved by each approach, under different time-
outs. As the results show, deeply preferred operators help,
no matter which timeout is used, with an even greater ad-
vantage over the baseline relaxed plan heuristic when the
timeout is smaller.

Finally, we wish to explore the impact of using deeply
preferred operators on the number of generated states, as
well as on the number of heuristic evaluations performed.
Tables 2 and 3 give the metric score of the number of gen-
erated and evaluated state, respectively, over the problems
solved by all 5 configurations. The metric score for config-
uration c on some problem is v∗/vc, where vc is the value
of configuration c (number of generated or evaluates stated),
and v∗ is the best value of any configuration on that problem.
Thus the best value for each problem is assigned a metric
score of 1, and generating twice as many states would lead to
a score of 0.5. For each domain we report the average score,
as well as the average across all domain averages. As these
tables show, using lazy lookahead significantly reduces both
the number of generated states, as well as the number of
evaluated states, and this across all the four settings of lazy
lookahead.

domain rnd-LL LL rnd-CLL CLL FF

airport 0.84 0.66 0.85 0.7 0.53
blocks 0.75 0.75 0.69 0.59 0.57
depot 0.61 0.56 0.62 0.54 0.32
driverlog 0.7 0.68 0.72 0.7 0.28
elevators 0.93 0.35 0.44 0.12 0.1
freecell 0.75 0.75 0.62 0.66 0.3
grid 0.87 0.59 0.56 0.58 0.3
gripper 0.76 0.88 0.94 0.92 0.11
logistics00 0.79 0.68 0.75 0.77 0.07
logistics98 0.83 0.51 0.8 0.59 0.06
miconic 0.83 0.95 0.77 0.91 0.15
mprime 0.82 0.72 0.61 0.65 0.32
mystery 0.7 0.73 0.8 0.73 0.47
openstacks 0.62 0.6 0.59 0.48 0.68
optical-telegraphs 0.51 0.74 0.14 0.03 0.04
parcprinter 0.41 0.59 0.48 0.56 0.38
pathways 0.92 0.83 0.76 0.79 0.15
pegsol 0.53 0.63 0.63 0.57 0.59
philosophers 1 1 0.02 0.02 0.02
pw-notankage 0.52 0.56 0.59 0.58 0.5
pw-tankage 0.59 0.58 0.47 0.46 0.37
psr-large 0.89 0.9 0.93 0.92 0.9
psr-middle 0.9 0.91 0.93 0.93 0.91
psr-small 0.98 0.98 1 0.99 0.97
rovers 0.84 0.85 0.85 0.88 0.06
satellite 0.77 0.87 0.82 0.9 0.11
scanalyzer 0.79 0.85 0.5 0.47 0.26
schedule 0.74 0.68 0.73 0.66 0.12
sokoban 0.87 0.79 0.79 0.8 0.7
storage 0.76 0.74 0.86 0.82 0.77
tpp 0.91 0.57 0.42 0.3 0.07
transport 0.83 0.75 0.34 0.25 0.13
trucks 0.42 0.35 0.66 0.46 0.58
woodworking 0.74 0.8 0.71 0.82 0.45
zenotravel 0.79 0.82 0.74 0.85 0.19

NORM. AVG 0.76 0.72 0.66 0.63 0.36

Table 3: Evaluated states: average metric scores.
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Abstract
We introduce a width parameter that bounds the com-
plexity of classical planning problems and domains,
along with a simple but effective blind-search proce-
dure that runs in time that is exponential in the prob-
lem width. We show that many benchmark domains
have a bounded and small width provided that goals
are restricted to single atoms, and hence that such prob-
lems are provably solvable in low polynomial time. We
then focus on the practical value of these ideas over the
existing benchmarks which feature conjunctive goals.
We show that the blind-search procedure can be used
for both serializing the goal into subgoals and for solv-
ing the resulting problems, resulting in a ‘blind’ plan-
ner that competes well with a best-first search planner
guided by state-of-the-art heuristics. In addition, ideas
like helpful actions and landmarks can be integrated as
well, producing a planner with state-of-the-art perfor-
mance.

Introduction
Various approaches have been developed for explaining the
gap between the complexity of planning (Bylander 1994),
and ability of current planners to solve most existing bench-
marks in a few seconds (Hoffmann and Nebel 2001; Richter
and Westphal 2010). Tractable planning has been devoted
to the identification of planning fragments that due to syn-
tactic or structural restrictions can be solved in polynomial
time; fragments that include for example problems with sin-
gle atom preconditions and goals, among others (Bylan-
der 1994; Bäckström 1996). Factored planning has ap-
pealed instead to mappings of planning problems into Con-
straint Satisfaction Problems, and the notion of width over
CSPs (Amir and Engelhardt 2003; Brafman and Domsh-
lak 2006). The width of a CSP measures the number
of variables that have to be collapsed to ensure that the
graph underlying the CSP becomes a tree (Freuder 1982;
Dechter 2003). The complexity of a CSP is exponential in
the problem width. A notion of width for classical planning
using a form of Hamming distance was introduced in (Chen
and Giménez 2007), where the distance is set to the num-
ber of problem variables whose value needs to be changed

∗To appear at ECAI-2012.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

in order to increase the number of achieved goals. These
proposals, however, do not appear to explain the apparent
simplicity of the standard domains.

A related thread of research has aimed at understanding
the performance of modern heuristic search planners by an-
alyzing the characteristics of the optimal delete-relaxation
heuristic h+ that planners approximate for guiding the
search for plans (Hoffmann 2005; 2011). For instance, the
lack of local minima for h+ implies that the search for plans
(and hence the global minimum of h+) can be achieved by
local search, and this local search is tractable when the dis-
tance to the states that decrement h+ is bounded by a con-
stant. This type of analysis has shed light on the charac-
teristics of existing domains where heuristic search plan-
ning is easy, although it doesn’t address explicitly the con-
ditions under which the heuristic h+ is easy to compute, nor
whether it’s the use of this heuristic that makes these do-
mains easy.

The aim of this paper is to explore a new width notion for
planning that can be useful both theoretically and practically.
More precisely, the contributions of the paper are:

1. a new width notion for planning problems and domains;
2. a proof that many of the existing domains have a bounded

and low width when goals are restricted to single atoms;
3. a simple, blind-search planning algorithm (IW) that runs

in time exponential in the problem width;
4. a blind-search planner that uses IW for serializing a prob-

lem into subproblems and for solving the subproblems,
which is competitive with a best-first search planner us-
ing state-of-the-art heuristics;

5. a state-of-the-art planner that integrates new ideas and
old.

The organization of the paper follows this structure, pre-
ceded by a review of basic notions in planning.

Planning
The classical model for planning S = 〈S, s0, SG, A, f〉 is
made up of a finite set of states S, an initial state s0, a set of
goal states SG, and actions a ∈ A(s) that deterministically
map one state s into another s′ = f(a, s), where A(s) is
the set of actions applicable in the state s. The solution to a
classical planning model is a sequence of actions a0, . . . , am
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that generates a state sequence s0, s1, . . . , sm+1 such that
ai ∈ A(si), si+1 = f(ai, si), and sm+1 ∈ SG.

A classical planning problem P defines a classical model
in compact form through a set of variables. We assume a
Strips language P = 〈F, I,O,G〉, where F is the set of
boolean variables, atoms, or fluents, I is the set of atoms
characterizing the initial state, O is the set of actions, and G
is the set of goal atoms. All definitions below extend easily
to other planning languages provided that states are valua-
tions over a set of variables.

We assume that action costs are all 1, so that plan cost is
plan length, and the optimal plans are the shortest ones. We
write P (t) to denote the planning problem that is like P but
with goal t. The cost of the goal t in P is the cost of an
optimal plan for P (t).

Width
A state s is reachable from the initial state s0 = I in P , if
there is a state trajectory s0, s1, . . . , sn, such that si+1 is a
successor of si for some action ai, and s = sn. Since this
reachability relation is exponential in the number of atoms,
we define a different reachability relation over tuples (con-
junctions) of atoms t of bounded size. The key question is
when a tuple t′ can be regarded as a ‘successor’ of a tuple
t in P . If this is taken to represent the presence of an ac-
tion a in P such that the regression of t through a is in t′,
the reachability relation on tuples ends up being too weak.
A stronger reachability relation on tuples can be obtained if
we assume that both t and t′ are achieved optimally. We
will define indeed that t′ is a successor of t if every optimal
plan for t can be extended into an optimal plan for t′ by just
adding one action. In this way, the ‘side-effects’ of the op-
timal plans for t can be used to achieve t′ optimally from
t. This is formalized below in terms of tuple graphs, where
T i stands for the collection of tuples from P with size no
greater than a given positive integer i:

Definition 1 For P = 〈F, I,O,G〉 , Gi is the graph with
vertices from T i defined inductively as follows:

1. t is a root vertex in Gi iff t is true in I ,
2. t → t′ is a directed edge in Gi iff t is in Gi and for every

optimal plan π for P (t) there is an action a ∈ O such that
π followed by a is an optimal plan for P (t′).

In other words, the presence of the tuple t′ of at most i
atoms in the graph Gi indicates that either t′ is true in I or
that there is another tuple t of at most i atoms in Gi such that
all the optimal plans π for t yield optimal plans for t′, once
a suitable action a is appended to π.

The graph Gi is acyclic because an edge t → t′ implies
that the optimal cost for achieving t′ is the optimal cost of
achieving t plus 1. Since we are associating plan cost with
plan length, this means also that a tuple at depth k in the
graph has optimal cost k.

Let us now say that a goal formula G1 implies goal for-
mula G2 in a problem P , if all the optimal plans for G1 are
also optimal plans for G2. Notice that this is not the stan-
dard logical implication that requires the formula G1 ⊃ G2

to be true in all reachable states, and hence, an invariant.

For example, the goal G1 = {hold(b)} implies the goal
G2 = {clear(a)} in Blocks World if on(b, a) is true ini-
tially, yet hold(b) ⊃ clear(a) is not an invariant.

Provided with this notion of implication, we define the
width of a planning problem P and, more generally, the
width of an arbitrary goal formula φ relative to P as follows:

Definition 2 For a formula φ over the fluents in P that is
not true in the initial situation I , the width of φ relative to P
is the min w such that Gw contains a tuple that implies φ. If
φ is true in I , its width is 0.

Definition 3 The width of a planning problem P , w(P ), is
the width of its goal G relative to P .

As in the case of graphical models, the width of a problem
give us a bound on the complexity of solving the problem:

Theorem 4 If w(P ) = i, P can be solved optimally in time
that is exponential in i.

Of course, the crucial question is whether there are inter-
esting planning problems that have a bounded, and hopefully
small width. The answer is yes. Indeed, most domain bench-
marks appear to have a small width independent of the size
of the problems, provided that the goal G is restricted to a
single atom. Of course, this result doesn’t settle the com-
plexity of the existing benchmarks where goals are not sin-
gle atoms, yet as far as we know, it’s the first formal result
that places the complexity of these benchmarks squarely on
the goal structure, and not on the domain structure. That is,
if a domain has a low width when goals are single atoms,
then when a domain instance is not easy, it can only be due
to conjunctive goals.

We state the result about the width of a few domains. For
most other benchmark domains, the same result seems to
hold, but we have not carried out the proofs. Later on, how-
ever, we will report experiments that bear on this issue.

Theorem 5 The domains Blocks, Logistics, and n-puzzle
have a bounded width independent of the problem size and
initial situation, provided that the goals are restricted to sin-
gle atoms.

It turns out indeed that for single atom goals, the width
of Blocks, Logistics and n-puzzle is at most 2. We omit
the proofs for lack of space, but for illustration purposes we
prove w(G) = 1 for any goal G = ontable(b) in Blocks.

Clearly, ifG is true in the initial situation, the tupleGwill
belong to the graph Gi for i = 1. Thus, assume that G is not
true initially, and let b1, . . . , bn−1 be the blocks on top of b,
starting from the top, and let b = bn. We can then just show
that the path

clear(b1), hold(b1), ontable(b1), hold(b2), . . . , ontable(bn)

makes it into G1. For a path t0, t1, . . . , tn to be in G1 when
t0 is true in the initial situation, we just need to show that
any optimal plan for ti can be extended by means of a sin-
gle action into an optimal plan for ti+1, i = 0, . . . , n − 1.
This is trivial in this case, as the optimal plans for hold(bi)
can always be extended with the action putdown(bi) into
optimal plans for ontable(bi), while the optimal plans for
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ontable(bi) from the above initial situation can all be ex-
tended with the action unstack(bi+1, bi+2) into optimal
plans for hold(bi+1). It’s important to notice that without
the restriction to optimal plans this reasoning would not get
through.

Basic Algorithm: Iterated Width Search
We turn now to the planning algorithm that achieves the
complexity bounds expressed by Theorem 4. The algorithm,
called Iterated Width search or IW, consists of a sequence of
calls IW(i) for i = 0, 1, 2, . . . over a problem P until the
problem is solved. Each iteration IW(i) is an i-width search
that is complete for problems whose width is bounded by
i and has complexity is O(ni), where n is the number of
problem variables. If P is solvable and its width is w, IW
will solve P in at most w + 1 iterations with a complexity
O(nw). IW(i) is a plain forward-state breadth-first search
with just one change: right after a state s is generated, the
state is pruned if it doesn’t pass a simple novelty test that
depends on i.

Definition 6 A newly generated state s produces a new tu-
ple of atoms t iff s is the first state generated in the search
that makes t true. The size of the smallest new tuple of atoms
produced by s is called the novelty of s. When s does not
generate a new tuple, it’s novelty is set to n + 1 where n is
the number of problem variables.

In other words, if s is the first state generated in all the
search that makes an atom p true, its novelty is 1. If s does
not generate a new atom but generates a new pair (p, q), its
novelty is 2, and so on. Likewise, if s does not generate a
new tuple at all because the same state has been generated
before, then its novelty is set to n + 1. The higher the nov-
elty measure, the less novel the state. The iterations IW(i)
are plain breadth-first searches that treat newly generated
states with novelty measure greater than i as if they were
‘duplicate’ states:

Definition 7 IW(i) is a breadth-first search that prunes
newly generated states when their novelty measure is greater
than i.

Notice that IW(n), when n is the number of atoms in the
problem, just prunes truly duplicate states and it is therefore
complete. On the other hand, IW(i) for lower i values prunes
many states and is not. Indeed, the number of states not
pruned in IW(1) is O(n) and similarly, the number of states
not pruned in IW(i) is O(ni). Likewise, since the novelty of
a state is never 0, IW(0) prunes all the children states of the
initial state s0, and thus IW(0) solves P iff the goal is true in
the initial situation. The resulting planning algorithm IW is
just a series of i-width searches IW(i), for increasing values
of i:

Definition 8 Iterated Width (IW) calls IW(i) sequentially
for i = 0, 1, 2, . . . until the problem is solved or i exceeds
the number of problem variables.

Iterated Width (IW) is thus a blind-search algorithm sim-
ilar to Iterative Deepening (ID) except for two differences.
First, each iteration is a pruned depth-first search in ID, and

Domain I we = 1 we = 2 we > 2

8puzzle 400 55% 45% 0%
Barman 232 9% 0% 91%
Blocks World 598 26% 74% 0%
Cybersecure 86 65% 0% 35%
Depots 189 11% 66% 23%
Driver 259 45% 55% 0%
Elevators 510 0% 100% 0%
Ferry 650 36% 64% 0%
Floortile 538 96% 4% 0%
Freecell 76 8% 92% 0%
Grid 19 5% 84% 11%
Gripper 1275 0% 100% 0%
Logistics 249 18% 82% 0%
Miconic 650 0% 100% 0%
Mprime 43 5% 95% 0%
Mystery 30 7% 93% 0%
NoMystery 210 0% 100% 0%
OpenStacks 630 0% 0% 100%
OpenStacksIPC6 1230 5% 16% 79%
ParcPrinter 975 85% 15% 0%
Parking 540 77% 23% 0%
Pegsol 964 92% 8% 0%
Pipes-NonTan 259 44% 56% 0%
Pipes-Tan 369 59% 37% 3%
PSRsmall 316 92% 0% 8%
Rovers 488 47% 53% 0%
Satellite 308 11% 89% 0%
Scanalyzer 624 100% 0% 0%
Sokoban 153 37% 36% 27%
Storage 240 100% 0% 0%
Tidybot 84 12% 39% 49%
Tpp 315 0% 92% 8%
Transport 330 0% 100% 0%
Trucks 345 0% 100% 0%
Visitall 21859 100% 0% 0%
Woodworking 1659 100% 0% 0%
Zeno 219 21% 79% 0%
Summary 37921 37.0% 51.3% 11.7%

Table 1: Effective width of single goal instances obtained
from existing benchmarks by splitting problems with N
atomic goals intoN problems with single goals. I is number
of resulting instances. The other columns show percentage
of instances with effective width 1, 2, or greater.

a pruned breadth-first search in IW. Second, each iteration
increases pruning depth in ID, and pruning width or novelty
in IW.

From the considerations above it is straightforward to
show that IW like ID is sound and complete. On the other
hand, while IW(w) is optimal for a problem P of width w,
IW is not necessarily so. The reason is that IW may solve P
in an iteration IW(i) for i smaller than w.1

1As an illustration, the goal G of width 2 is achieved non-
optimally by IW(1) when I = {p1, q1} and the actions are ai :
pi → pi+1 and bi : qi → qi+1 for i = 1, . . . , 5, along with
b : p6 → G and c : p3, q3 → G. Indeed, IW(2) achieves G
optimally at cost 5 using the action c, yet this action is never ap-
plied in IW(1), where states that result from applying the actions
ai when qj is true for j > 1 are pruned, and states that result from
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Nonetheless the completeness and optimality of IW(w)
for problems with width w provides the right complexity
bound for IW:

Theorem 9 For solvable problems P , the time and space
complexity of IW are exponential in w(P ).

It’s important to realize that this bound is achieved without
knowing the actual width of P . This follows from the result
below, whose proof we omit for lack of space:

Theorem 10 For a solvable problem P with width w,
IW(w) solves P optimally in time exponential in w.

The algorithm IW(w) is guaranteed to solve P if w(P ) =
w, yet as discussed above, the algorithm IW does not assume
that this width is known and thus makes the IW(i) calls in
order starting from i = 0. We refer to the min value of i for
which IW(i) solves P as the effective width of P , we(P ),
which is never higher than the real width w(P ).

The effective width we(P ) provides an approximation of
the actual width w(P ). While proving formally that most
benchmark domains have bounded width for single atom
goals is tedious, we have run the algorithm IW to compute
the effective width of such goals. The results are shown in
Table 1 . We tested domains from previous IPCs. For each
instance with N goal atoms, we created N instances with
a single goal, and run IW over each one of them. The total
number of instances is 37921. For each domain we show
the total number of single goal instances, and the percentage
of instances that have effective widths we equal to 1, 2, or
greater than 2. The last row in the table shows the average
percentage over all domains: 37% with we = 1, 51% with
we = 2, and less than 12% with we > 2. That is, on av-
erage, less than 12% of the instances have effective width
greater than 2. Actually, in most domains all the instances
have effective width at most 2, and in four domains, all the
instances have effective width 1. The instances with a ma-
jority of atomic goals with an effective width greater than 2
are from the domains Barman, Openstacks, and Tidybot (the
first and last from the 2011 IPC).

Iterated Width (IW) is a complete blind-search algo-
rithm like Iterative Deepening (ID) and Breadth-First Search
(BrFS). We have also tested the three algorithms over the
set of 37921 single goal instances above. The results are
shown in Table 2 . With memory and time limits of 2GB
and 2h, ID and BrFS solve less than 25% of the instances,
while IW solves more than 90%, which is almost as many
as a Greedy Best First Search guided by the additive heuris-
tic (also shown in the Table). The result suggests that IW
manages to exploit the low width of these problems much
better than the other blind-search algorithms. We will see
below that a simple extension suffices to make IW compet-
itive with a heuristic planner over the standard benchmark
instances that feature joint goals.

applying the actions bi when pj is true for j > 1 are pruned too.
As a result, IW(1) prunes the states with pairs such as (p3, q2) and
(p2, q3), and does not generate states with the pair (p3, q3), which
are required for reaching G optimally. IW(1) however reaches G
at the non-optimal cost 7 using the action b.

# Instances IW ID BrFS GBFS + hadd

37921 34627 9010 8762 34849

Table 2: Blind-search algorithm IW compared with two other
blind-search algorithms: Iterative Deepening (ID) and Breadth-
First Search (BrFS). Numbers report coverage over benchmark do-
mains with single atomic goals. Also included for comparison the
figure for heuristic Greedy Best First Search (GBFS) with hadd.

Serialization
The fact that single goal atoms can be achieved quite ef-
fectively in most benchmarks domains by a pruned breadth-
first search that does not look at the goal in any way, sug-
gests that the complexity of benchmarks comes from con-
junctive goals. Indeed, this has been the intuition in the field
of planning since its beginnings where goal decomposition
was deemed as a crucial and characteristic technique. The
analysis above formalizes this intuition by showing that the
effective width of single atom goals in existing benchmarks
is low. This old intuition also suggests that the power of
planners that can handle single goals efficiently can be ex-
ploited for conjunctive goals through some form of decom-
position.

Serialized Iterated Width is a search algorithm that uses
the iterated width searches both for constructing a serial-
ization of the problem P = 〈F, I,O,G〉 and for solving
the resulting subproblems. While IW is a sequence of i-
width searches IW(i), i = 0, 1, . . . over the same problem
P , SIW is a sequence of IW calls over |G| subproblems Pk,
k = 1, . . . , |G|. The definition of SIW takes advantage of the
fact that IW is a blind-search procedure that doesn’t need to
know the goals of the problem in advance; it just needs to
recognize them in order to stop. Thanks to this feature IW is
used both for decomposing P into the sequence of subprob-
lems Pk and for solving each one of them. The plan for P is
the concatenation of the plans obtained for the subproblems.

Definition 11 Serialized Iterated Width (SIW) over P =
〈F, I,O,G〉 consists of a sequence of calls to IW over the
problems Pk = 〈F, Ik, O,Gk〉, k = 1, . . . , |G|, where

1. I1 = I ,
2. Gk is the first consistent set of atoms achieved from Ik

such that Gk−1 ⊂ Gk ⊆ G and |Gk| = k; G0 = ∅
3. Ik+1 represents the state where Gk is achieved, 1 < k <
|G|.
In other words, the k-th subcall of SIW stops when IW

generates a state sk that consistently achieves k goals from
G: those achieved in the previous subcall and a new goal
from G. The same is required from the next subcall that
starts at sk. The state sk consistently achieves Gk ⊆ G
if sk achieves Gk, and Gk does not need to be undone in
order to achieve G. This last condition is checked by test-
ing whether hmax(sk) = ∞ is true in P once the actions
that delete atoms from Gk are excluded (Bonet and Geffner
2001). Notice that SIW does not use heuristic estimators to
the goal, and does not even know what goal Gk is when IW
is invoked on subproblem Pk: it finds this out when IW gen-
erates a set of atoms G′ such that Gk−1 ⊂ G′ ⊆ G and
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Serialized IW (SIW) GBFS + hadd

Domain I S Q T M/Awe S Q T
8puzzle 50 50 42.34 0.64 4/1.75 50 55.94 0.07
Barman 20 1 – – – – –
Blocks World 50 50 48.32 5.05 3/1.22 50 122.96 3.50
Cybersecure 30 – – – – – –
Depots 22 21 34.55 22.32 3/1.74 11 104.55 121.24
Driver 20 16 28.21 2.76 3/1.31 14 26.86 0.30
Elevators 30 27 55.00 13.90 2/2.00 16 101.50 210.50
Ferry 50 50 27.40 0.02 2/1.98 50 32.88 0.03
Floortile 20 – – – – – –
Freecell 20 19 47.50 7.53 2/1.62 17 62.88 68.25
Grid 5 5 36.00 22.66 3/2.12 3 195.67 320.65
Gripper 50 50 101.00 3.03 2/2.00 50 99.04 0.36
Logistics 28 28 54.25 2.61 2/2.00 28 56.25 0.33
Miconic 50 50 42.44 0.08 2/2.00 50 42.72 0.01
Mprime 35 27 6.65 84.80 2/2.00 28 17.92 204.76
Mystery 30 27 6.47 42.89 2/1.19 28 7.60 15.44
NoMystery 20 – – – 6 – –
OpenStacks 30 13 105.23 0.53 3/1.80 7 112.42 6.49
OpenStacksIPC6 30 26 29.43 108.27 4/1.48 30 32.14 23.86
ParcPrinter 30 9 16.00 0.06 3/1.28 30 15.67 0.01
Parking 20 17 39.50 38.84 2/1.14 2 68.00 686.72
Pegsol 30 6 16.00 1.71 4/1.09 30 16.17 0.06
Pipes-NonTan 50 45 26.36 3.23 3/1.62 25 113.84 68.42
Pipes-Tan 50 35 26.00 205.21 3/1.63 14 33.57 134.21
PSRsmall 50 25 13.79 28.37 4/2.27 44 18.04 4.99
Rovers 40 27 38.47 108.59 2/1.39 20 67.63 148.34
Satellite 20 19 38.63 216.69 2/1.29 20 34.11 8.44
Scanalyzer 30 26 26.81 33.96 2/1.16 28 28.50 129.42
Sokoban 30 3 80.67 7.83 3/2.58 23 166.67 14.30
Storage 30 25 12.62 0.06 2/1.48 16 29.56 8.52
Tidybot 20 7 42.00 532.27 3/1.81 16 70.29 184.77
Tpp 30 24 82.95 68.32 3/2.03 23 116.45 199.51
Transport 30 21 54.53 94.61 2/2.00 17 70.82 70.05
Trucks 30 2 31.00 4.58 2/2.00 8 34.50 14.08
Visitall 20 19 199.00 0.91 1/1.00 3 2485.00 174.87
Woodworking 30 30 21.50 6.26 2/1.07 12 42.50 81.02
Zeno 20 19 34.89 166.84 2/1.83 20 35.11 101.06
Summary 1150 819 44.4 55.01 2.5/1.6 789 137.0 91.05

Table 3: Blind-Search SIW vs. Heuristic GBFS with hadd over real benchmarks (with joint goals). I is number of instances, S
is number of solved instances, Q is average plan length, T is average time in seconds. M/A we stand for max and avg effective
width per domain. T and Q reported for problems solved by both planners. Shown in bold are the numbers S, Q, or T that one
planner improves over the other by more than 10%.

|G′| = k. It then sets Gk to G′. This is how SIW manages
to use IW for both constructing the serialization and solving
the subproblems.

The SIW algorithm is sound and the solution to P can be
obtained by concatenating the solutions to the problems P1,
. . . , Pm, where m = |G|. Like IW, however, SIW does not
guarantee optimality. Likewise, while the IW algorithm is
complete, SIW is not. The reason is that the subgoal mech-
anism implicit in SIW commits to intermediate states from
which the goal may not be reachable. Of course, if there are
no dead-ends in the problem, SIW is complete.

We have compared experimentally the blind-search al-
gorithm SIW to a baseline heuristic search planner using a
Greedy Best First Search (GBFS) and the additive heuristic
(Bonet and Geffner 2001). Neither planner is state-of-the-
art, as neither uses key techniques such as helpful actions or

landmarks (Hoffmann and Nebel 2001; Richter and West-
phal 2010). Still, the comparison shows that the non-goal
oriented form of pruning in IW and the simple form of de-
composition in SIW are quite powerful; as powerful indeed,
as the best heuristic estimators.

SIW and GBFS are both written in C++ and use Metric-
FF as an ADL to Propositional STRIPS compiler (Hoffmann
2003). The experiments were conducted on a dual-processor
running at 2.33 GHz and 2 GB of RAM. Processes time or
memory out after 30 minutes or 2 GB. The results are sum-
marized in Table 3 . Out of 1150 instances, SIWsolves 30
problems more, it’s usually faster, and produces shorter so-
lutions.

Table 3 shows also the highest and average effective
widths of the subproblems that result from the serializations
generated by SIW. The maximal effective width is 4, which
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occurs in two domains: 8puzzle and PSRsmall. On aver-
age, however, the effective width is between 1 and 2, ex-
cept for four domains with effective widths between 2 and
3: Sokoban (2.58), PSRsmall (2.27), Grid (2.12), and TPP
(2.03).

State-of-the-art Performance
While the blind-search SIW procedure competes well with a
greedy best-first search planner using the additive heuristic,
neither planner is state-of-the-art. Since state-of-the-art per-
formance is important in classical planning, we show next
that it is possible to deliver such performance by integrat-
ing the idea of novelty that arises from width considerations,
with known techniques such as helpful actions, landmarks,
and heuristics. For this we switch to a plain forward-search
best-first search planner guided by an evaluation function
f(n) over the nodes n given by

f(n) = novelha(n) (1)

where novelha(n) is a measure that combines novelty and
helpful actions, as defined below. In addition, ties are broken
lexicographically by two other measures: first, usg(n), that
counts the number of subgoals not yet achieved up to n, and
second, hadd(n), that is the additive heuristic.

The subgoals are the problem landmarks (Hoffmann, Por-
teous, and Sebastia 2004) derived using a standard poly-
nomial algorithm over the delete-relaxation (Zhu and Gi-
van 2003; Keyder, Richter, and Helmert 2010). The count
usg(n) is similar to the landmark heuristic in LAMA
(Richter, Helmert, and Westphal 2008), simplified a bit: we
use only atomic landmarks (no disjunctions), sound order-
ings, and count a top goal p as achieved when goals q that
must be established before q have been achieved (Lipovet-
zky and Geffner 2011).

The novelha(n) measure combines the novelty of n and
whether the action leading to n is helpful or not (Hoffmann
and Nebel 2001). The novelty of n is defined as the size
of the smallest tuple t of atoms that is true in n and false
in all previously generated nodes n′ in the search with the
same number of unachieved goals usg(n′) = usg(n). Ba-
sically, nodes n and n′ in the search with different number
of unachieved goals, usg(n) 6= usg(n′), are treated as be-
ing about different subproblems, and are not compared for
determining their novelty. The novelty of a node novel(n)
is computed approximately, being set to 3 when it’s neither
1 nor 2. Similarly, if help(n) is set to 1 or 2 according
to whether the action leading to n was helpful or not, then
novelha(n) is set to a number between 1 and 6 defined as

novelha(n) = 2[novel(n)− 1] + help(n) . (2)

That is, novelha(n) is 1 if the novelty of n is 1 and the
action leading to n is helpful, 2 if the novelty is 1 and the
action is not helpful, 3 if the novelty is 2 and the action is
helpful, and so on. Basically, novel states (lower novel(n)
measure) are preferred to less novel states, and helpful ac-
tions are preferred to non-helpful, with the former criterion
carrying more weight. Once again, the criterion is simple
and follows from performance considerations.

We call the resulting best-first search planner, BFS(f ),
and compare it with three state-of-the-art planners: FF,
LAMA, and PROBE (Hoffmann and Nebel 2001; Richter,
Helmert, and Westphal 2008; Lipovetzky and Geffner
2011).2 Like LAMA, BFS(f ) uses delayed evaluation, a
technique that is useful for problems with large branching
factors (Richter and Helmert 2009).

Table 4 compares the four planners over the 1150 in-
stances. In terms of coverage, BFS(f ) solves 5 more prob-
lems than LAMA, 18 more than PROBE and 161 more than
FF. Significant differences in coverage occur in Sokoban,
Parking, NoMystery and Floortile where either LAMA or
BFS(f ) solve 10% more instances than the second best plan-
ner. The largest difference is in NoMystery where BFS(f )
solves 19 instances while LAMA solves 11.

Time and plan quality averages are computed over the in-
stances that are solved by BFS(f ), LAMA and PROBE. FF
is excluded from these averages because of the large gap
in coverage. LAMA and PROBE are the fastest in 16 do-
mains each, and BFS(f ) in 5. On the other hand, BFS(f )
finds shorter plans in 15 domains, PROBE in 13, and LAMA
in 10. The largest differences between BFS(f ) and the
other planners are in 8puzzle, Parking, Pipesworld Tankage,
Pipesworld Non Tankage, and VisitAll.

The results show that the performance of BFS(f ) is at the
level of the best planners. The question that we address next
is what’s the contribution of the four different ideas com-
bined in the evaluation function f(n) and in the tie-breakers;
namely, the additive heuristic hadd(n), the landmark count
usg(n), the novelty measure novel(n), and the helpful ac-
tion distinction help(n). The last two terms are the ones
that determine the evaluation function f(n) in (1) through
the formula (2).

Table 5 shows the result of a simple ablation study. The
first row shows the results for the planner BFS(f ) as de-
scribed above, while the following rows show results for
the same planner with one or several features removed: first
delayed evaluation, then the additive heuristic, helpful ac-
tions, and novelty. This is achieved by setting help(n) = 0,
hadd(n) = 0, and novel(n) = 1 respectively in (1) and
(2) for all n. As it can be seen from the table, the great-
est drop in performance arises when the novelty term is
dropped. In other words, the novelty measure is no less
important in the BFS(f ) planner than either the helpful ac-
tion distinction or the heuristic. The most important term
of all however is the usg(n) that counts the number of un-
achieved goals, and whose effect is to ‘serialize’ the best-
first search to the goal without giving up completeness (as
SIW). Moreover, the definition of the novelty measure in (2)
uses the usg(n) count to delimit the set of previously gen-
erated states that are considered. Yet BFS(f ′) with the eval-
uation function f ′ = usg(n), i.e., without any of the other
features, solves just 776 instances. On the other hand, with
the term novelha(n) added, the number jumps to 965, sur-
passing FF that solves 909 problems. This is interesting as
BFS(f ′) uses no heuristic estimator then.

2FF is FF2.3, while PROBE and LAMA are from the 2011 IPC.
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BFS(f ) PROBE LAMA’11 FF
Domain I S Q T S Q T S Q T S Q T

8puzzle 50 50 45.45 0.20 50 61.45 0.09 49 58.24 0.18 49 52.61 0.03
Barman 20 20 174.45 281.28 20 169.30 12.93 20 203.85 8.39 – – –
Blocks World 50 50 54.24 2.40 50 43.88 0.23 50 88.92 0.41 44 39.36 66.67
Cybersecure 30 28 39.23 70.14 24 52.85 69.22 30 37.54 576.69 4 29.50 0.73
Depots 22 22 49.68 56.93 22 44.95 5.46 21 61.95 46.66 22 51.82 32.72
Driver 20 18 48.06 57.37 20 60.17 1.05 20 46.22 0.94 16 25.00 14.52
Elevators 30 30 129.13 93.88 30 107.97 26.66 30 96.40 4.69 30 85.73 1.00
Ferry 50 50 32.94 0.03 50 29.34 0.02 50 28.18 0.31 50 27.68 0.02
Floortile 20 7 43.50 29.52 5 45.25 71.33 5 49.75 95.54 5 44.20 134.29
Freecell 20 20 64.39 13.00 20 62.44 41.26 19 68.94 27.34 20 64.00 22.95
Grid 5 5 70.60 7.70 5 58.00 9.64 5 70.60 4.84 5 61.00 0.27
Gripper 50 50 101.00 0.37 50 101.00 0.06 50 76.00 0.36 50 76.00 0.03
Logistics 28 28 56.71 0.12 28 55.36 0.09 28 43.32 0.35 28 41.43 0.03
Miconic 50 50 34.46 0.01 50 44.80 0.01 50 30.84 0.28 50 30.38 0.03
Mprime 35 35 10.74 19.75 35 14.37 28.72 35 9.09 10.98 34 9.53 14.82
Mystery 30 27 7.07 0.92 25 7.71 1.08 22 7.29 1.70 18 6.61 0.24
NoMystery 20 19 24.33 1.09 5 25.17 5.47 11 24.67 2.66 4 19.75 0.23
OpenStacks 30 29 141.40 129.05 30 137.90 64.55 30 142.93 3.49 30 155.67 6.86
OpenStacksIPC6 30 30 125.89 40.19 30 134.14 48.89 30 130.18 4.91 30 136.17 0.38
ParcPrinter 30 27 35.92 6.48 28 36.40 0.26 30 37.72 0.28 30 42.73 0.06
Parking 20 17 90.46 577.30 17 146.08 693.12 19 87.23 363.89 3 88.33 945.86
Pegsol 30 30 24.20 1.17 30 25.17 8.60 30 25.90 2.76 30 25.50 7.61
Pipes-NonTan 50 47 39.09 35.97 45 46.73 3.18 44 57.59 11.10 35 34.34 12.77
Pipes-Tan 50 40 40.48 254.62 43 55.40 102.29 41 48.60 58.44 20 31.45 87.96
PSRsmall 50 48 22.15 2.62 50 21.40 0.08 50 18.31 0.36 42 16.71 63.05
Rovers 40 40 105.08 44.19 40 109.97 24.19 40 108.28 17.90 40 100.47 31.78
Satellite 20 20 36.05 1.26 20 37.05 0.84 20 40.75 0.78 20 37.75 0.10
Scanalyzer 30 27 29.37 7.40 28 25.15 5.59 28 27.52 8.14 30 31.87 70.74
Sokoban 30 23 220.57 125.12 25 233.48 39.63 28 213.00 58.24 26 213.38 26.61
Storage 30 20 20.94 4.34 21 14.56 0.07 18 24.33 8.15 18 16.28 39.17
Tidybot 20 18 62.94 198.22 19 53.50 35.33 16 62.31 113.00 15 63.20 9.78
Tpp 30 30 112.33 36.51 30 155.63 58.98 30 119.13 18.12 28 122.29 53.23
Transport 30 30 107.70 55.04 30 137.17 44.72 30 108.03 94.11 29 117.41 167.10
Trucks 30 15 26.50 8.59 8 26.75 113.54 16 24.12 0.53 11 27.09 3.84
Visitall 20 20 947.67 84.67 19 1185.67 308.42 20 1285.56 77.80 6 450.67 38.22
Woodworking 30 30 41.13 19.12 30 41.13 15.93 30 51.57 12.45 17 32.35 0.22
Zeno 20 20 37.70 77.56 20 44.90 6.18 20 35.80 4.28 20 30.60 0.17
Summary 1150 1070 87.93 63.36 1052 98.71 49.94 1065 98.67 44.35 909 67.75 51.50

Table 4: BFS(f ) vs. LAMA, FF, and PROBE. I is number of instances, S is number of solved instances, Q is average plan
length, T is average time in seconds. T and Q averages computed over problems solved by all planners except FF, excluded
because of the large gap in coverage. Numbers in bold show performance that is at least 10% better than the other planners.

Discussion

We have introduced a width parameter that bounds the com-
plexity of classical planning problems along with an iterative
pruned breadth-first algorithm IW that runs in time exponen-
tial in the problem width. While most benchmark domains
appear to have a bounded and small width provided that
goals are restricted to single atoms, they have large widths
for arbitrary joint goals. We have shown nonetheless that
the algorithm derived for exploiting the structure of plan-
ning problems with low width, IW, also pays off over bench-
marks with joint goals once the same algorithm is used for
decomposing the problems into subproblems. Actually, the
resulting blind-search algorithm SIW is competitive with a
baseline planner based on a Greedy Best First Search and
the additive heuristic, suggesting that the two ideas under-
lying SIW, novelty-based pruning and goal decomposition,

are quite powerful. We have also shown that it is possible to
integrate the notion of novelty derived from width consid-
erations, with existing planning techniques for defining the
evaluation function of a novel best-first search planner with
state-of-the-art performance. Moreover, we have shown that
the new technique contributes to the performance of this
planner no less than helpful actions or heuristic estimators.

The notion of width is defined over graphs Gm whose ver-
tices are tuples of at most m atoms. This suggests a relation
between the width of a problem and the family of admissi-
ble hm heuristics which are also defined over tuples of at
most m atoms (Haslum and Geffner 2000). A conjecture
that we considered is whether a width of w implies that hw
is equal to the optimal heuristic h∗. The conjecture however
is false.3 It turns out that for this correspondence to be true,

3A counterexample is due to Blai Bonet. Consider a problem P
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I S % S Q T
BFS(f ) 1150 1070 93% 82.80 62.89
No Delayed Eval 1150 1020 89% 80.67 65.92
No Heuristic 1150 965 84% 100.47 32.43
No Helpful Actions 1150 964 84% 81.82 64.20
No Novelty 1150 902 78% 86.40 46.11

Table 5: Ablation study of BFS(f ) when some features are
excluded. Delayed evaluation excluded from second and fol-
lowing rows, in addition to feature shown. Columns show
number of instances (I), number of instances solved (S), %
solved (%S), and average plan lengths (Q) and times in sec-
onds (T).

an additional clause is needed in the definition of the heuris-
tic hm; namely, that hm(t) is no lower than hm(t′) when t′
is a tuple of at most m atoms that implies t in the sense de-
fined in Section 3. Yet, checking this implication in general
is intractable.

In this paper, we have only considered planning problems
where actions have uniform costs. Some of the notions and
algorithms developed in the paper, however, extend naturally
to non-uniform costs provided that the breadth-first search in
IW is replaced by a uniform-cost search (Dijkstra).

Acknowledgments. H. Geffner is partially supported by
grants TIN2009-10232, MICINN, Spain, and EC-7PM-
SpaceBook.

References
Amir, E., and Engelhardt, B. 2003. Factored planning. In
Proc. IJCAI-03.
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Abstract

Inspired by probabilistic path planning, we contribute a plan-
ning approach that probabilistically balances heuristics and
past plans as guidance to planning search. Our ERRT-PLAN
algorithm generates multiple search branches probabilisti-
cally choosing to extend them towards the current goal or to-
wards actions or goals of a past given plan. We have defined
domains to show where current techniques could be trapped.
Also, we show experimental results with a variety of domains,
where we show the strengths of ERRT-PLAN.

Introduction and Related Work

As the complexity of planning is realized, researchers cre-
ate a variety of planning approaches to try to increase the
scalability horizon of their planning search. We view three
different classes of domain-independent approaches to au-
tomated planning, as we sketch in Figure 1.1 Given a do-
mainD, and a new problem P , planners can extract domain-
independent heuristics to guide their search. Such “Planning
from scratch” has shown to be very efficient in large classes
of problems, as is the case of forward-chaining search using
a combination of a well-informed heuristic, coming from a
relaxed planning graph (Hoffmann & Nebel 2001). “Plan-
ning with learning” can in addition rely on training expe-
rience as compiled into domain-dependent heuristics. And
“Planning with reuse” can use specific past solution plans.

In this work, we focus on planning with reuse, as we assume
that a similar past solution plan may be available in several
situations where the new planning problem naturally just de-
viates from a past problem, as for example may be the case
when there is a need for replanning during plan execution.

Thus, according to the three classes of domain-independent
guidance defined in Figure 1, the closest related works to the
one presented in this paper are reuse approaches. They could

1We leave out from this classification all domain-dependent
planning approaches, as Hierarchical Task Networks (Nau et al.
2003) or approaches based on manually defined domain-dependent
heuristics (Bacchus & Kabanza 2000).
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Figure 1: A view of planning according to search guidance.

be classified in turn as single plan reuse and multiple plans
reuse. In the first category, we find all techniques that reuse
only one plan, and this is the category where our work lies
in. It mainly focuses on replanning and uses the current plan
in execution to guide the search for the new plan. So, when
the execution of a plan fails, the planner is invoked to gener-
ate a new plan from the current state and plan and the goals.
As an example, LPG-ADAPT (Fox et al. 2006) focuses on re-
planning with minimum changes to previous plans using the
LPG planner. They adapted LPG plan-modification heuris-
tics, trying to maximize the reused actions in the new plan.
We have in common that both approaches rely on stochas-
tic search, and in reusing the plan from a previous search.
However, their goal is to maximize the reused actions (plan
stability), while ours is guiding the new search by using pre-
vious plans, not necessarily requiring plan stability. Thus, as
we show in the experiments, they find problems even if the
previous problem was very similar to the new one. We also
add goal-reuse, which is not considered by them.

In the second category, multiple plans reuse, we find case-
based reasoning applied to planning or case-based plan-
ning approaches (Veloso & Carbonell 1993; Kambhampati
& Hendler 1992; Serina 2010; De la Rosa, Garcı́a-Olaya, &
Borrajo 2007). But, we focus only on the reuse of one so-
lution, as the approaches in the previous paragraph. So, we
do not deal here with other CBR tasks as the computation of
a similarity metric, or the efficient storage of past cases, and
any reasonable previous approach would work well with our
approach.
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At this time, we therefore assume that a past plan is given
that is found to be similar to the new problem, and address
the question on how the planner should reuse the past solu-
tion plan in its new search for a solution to the new prob-
lem. All of the past case-based planning or planning with
reuse approaches, to our knowledge, proceed by trying to
adapt the past plan with the hope that such adaptation will
lead to improved search time, and with no significant sacri-
fice to plan quality. However, given the unpredicted effect
of the fact that the past planning problem is only similar to
the new problem, the adaptation process is known not to be
guaranteed neither to save planning effort nor to hold plan
quality (Nebel & Koehler 1995). But it is also the case that
being guided by a past solution plan has the potential (not
the guarantee) to be beneficial. Our planning with reuse al-
gorithm differs from past algorithms in the fact that it con-
siders both the potential “danger” and “benefit” of using a
similar past plan.

Concretely, we contribute in this paper a probabilistic
planning with reuse approach inspired by the ERRT algo-
rithm (Bruce & Veloso 2002).2 Our ERRT-PLAN algorithm
probabilistically balances an heuristic-based guided search
for a solution to the new problem and a past-plan guided
search. The algorithm generates multiple search branches
probabilistically choosing to extend them towards the cur-
rent goal or towards actions or goals of a past given plan.
Basically, ERRT-PLAN expands its search probabilistically
as: heuristic search towards the goal of the current prob-
lem; reuse of an action of the past plan; and heuristic search
towards a goal of the past plan. Through this probabilis-
tic choice, ERRT-PLAN considers the past plan as a bias
to its search for a new problem, and it does not try to de-
terministically adapt it. The past plan is hence present in
the search as waypoints to direct the new search. As such,
interestingly ERRT-PLAN can probabilistically both be well
guided and not misguided by the past plan. There have been
other approaches in planning that are based on the “Plan-
ning from Scratch” paradigm and RRT (Burfoot, Pineau, &
Dudek 2006; Alcázar, Veloso, & Borrajo 2011). However,
they belong to a different category as we do “Planning with
Reuse”.

The paper is organized as follows. First, ERRT is presented.
We then present the ERRT-PLAN planning algorithm and
show examples and results in two especially designed do-
mains to show its advantages with respect to heuristic for-
ward search from scratch. We then focus on conceptu-
ally comparing with examples our ERRT-PLAN with LPG-
Adapt (Fox et al. 2006), as an available planner with reuse.3
We also include some results using domains of the IPC.

2The RRT (Rapidly exploring Random Trees) algo-
rithm (LaValle & Kuffner 2001) efficiently searches by sampling
its space. ERRT (Execution extended RRT) (Bruce & Veloso
2002) further successfully includes past experience in the sampled
search.

3We thank the authors of (Fox et al. 2006) for making the plan-
ner available to us and informing us on how to run it appropriately.

We draw conclusions summarizing the contributions of the
work, while discussing the general aspect of our probabilis-
tic commitment as not specific to our approach but of poten-
tial use to any other current planning technique.

Path Planning. Extended RRT

We introduce the basic components on top of which we
build our solution: the ERRT technique and the new search
method. The heuristic planner we use is a re-implementation
of the METRIC-FF planner (Hoffmann 2003). It uses
forward-chaining search with the relaxed planning graph
heuristic, and has several implemented search algorithms.
As FF, our ERRT-PLAN search algorithm is built on top of
EHC followed by a call to A∗ in case EHC fails. We use this
scheme given that these techniques (heuristic and forward
search techniques) are a backbone of most current planners.

Extended RRT (ERRT) is an extension over the standard
RRT algorithm (LaValle & Kuffner 2001) targeted at effi-
cient replanning. ERRT stores waypoints of a path, i.e.,
states in a path, and probabilistically reuses them in the next
search (Bruce & Veloso 2002). ERRT takes as input an ini-
tial state, a goal state, a set of waypoints (states that were
part of the solution path from a previous search) and two
probabilities: p is the probability that at a given search step
ERRT will focus on the goal state; and r is the probability
with which at a given search step ERRT will focus on a pre-
vious waypoint (instead of the goal state). Finally, with a
probability of 1−p−r, it will focus towards a random state.
The random target ensures a level of exploration of poten-
tial benefit in path planning with obstacles. Note that the
three sources (goal, past plan, and random) act as “biases”
to the new ERRT search. Through the adjustment of the dif-
ferent probabilities, the algorithm gives preference to one
or another bias, e.g., if the environment and the goal are of
low dynamics, then a high value of r is desirable, as the new
search may be quite similar to the past one. In contrast, if the
dynamics are high, a high value of p captures a preference
to a new search rather than plan reuse.

ERRT-PLAN

We now present our ERRT-PLAN algorithm, inspired by
ERRT, but now suitable for classical task planning problems.
We can use this algorithm with any search technique, but in
this paper we have used it in combination with EHC. We will
first define the main concepts.

Definition1. A planning problem is a tuple < P,A, I,G >,
where P is a set of propositions, A is a set of grounded ac-
tions, I ⊆ P is the initial state andG ⊆ P is the set of goals.
As in STRIPS planning, each action a ∈ A is represented as
three sets: pre(a) ⊆ P , add(a) ⊆ P and del(a) ⊆ P (pre-
conditions, adds and deletes).
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Definition2. A plan π = {a1, a2, . . . , an} is an ordered set
of grounded actions ai ∈ A, that achieves a goal state from
the initial state I (G ⊆ δ(an, δ(an−1, . . . δ(a1, I) . . .))).4

Definition3. Given a plan π, the set of weakest precondi-
tions, wpi, of any given action ai ∈ π is the set of proposi-
tions that are required to be true in the state before applying
ai, so that the goals can be achieved from ai by applying the
actions in the remaining of the plan {ai+1, . . . , an}.

The standard way of computing this set for each action in the
plan consists of performing goal regression on the totally-
ordered plan. Since there might be parallel paths to achieve
the goals, we use a slightly different version of weakest pre-
conditions. First, we compute a partially-ordered plan from
the totally-ordered plan returned by most current planners.
Then, we compute the weakest preconditions of each ac-
tion on the remaining of the branch of the partially-ordered
plan from that action towards the goal. In the partially-
ordered plan, two ficticious actions are inserted at the be-
ginning, ao, and at the end of the plan, a∞. The weakest
preconditions are usually computed by goal regression as:
wpi = pre(ai) ∪

⋃
aj∈T (ai)

pre(aj) ∩ si. pre(ai) are the
preconditions of action ai, T (ai) is the set of actions in the
transitive closure of causal links from ai to the end action
a∞ (all actions that come after ai in the same branch of the
partial plan), and si is the state before applying ai. One
last improvement is that we remove from that set those lit-
erals that are static (no action adds or deletes them). As we
will see next, we will use the weakest preconditions of each
action in the plan as potential subgoals to focus on during
search.

The Algorithm

The algorithm is an adaptation of ERRT. Figure 25 shows
the top-level ERRT-PLAN algorithm, which takes as input the
planning problem (i.e., the initial state I and set of goals G),
the domain description (i.e., the set of actions A), and our
new ERRT-PLAN specific probabilities for node expansion:
p towards the goal; ra (action-reuse) towards an action of
the past plan; and rg = 1 − p − ra (goal-reuse) towards a
goal in the past plan, as we further explain below. A last in-
put W (waypoints) contains the solution (plan) represented
as an ordered set of pairs of actions and their weakest pre-
conditions, ai, wpi:

W = [(a0, wp0), (a1, wp1), . . . , (ak, wpk)]. Action-reuse
targets some ai while goal-reuse targets some wpi.

There are two main differences between ERRT and ERRT-
PLAN. First, in ERRT-PLAN, the distance between nodes is

4The function δ(ai, Sj) returns the state after applying action
ai in state Sj .

5For the sake of clarity, we do not show the failure conditions,
but they relate to dead-ends or reaching resource bounds (time or
memory).

function ERRT-PLAN(I,G,A, p, ra,W ): plan

I: initial state
G: goal state
A: set of domain actions
p: probability of selecting EHC in the expansion of each node
ra: probability of doing action-reuse

(rg = 1− (p+ ra): will be the probability of doing goal-reuse)
W = [(a0, wp0), (a1, wp1), . . . , (ak, wpk)]:

array of actions ai and their weakest preconditions wpi

tree = {I}
while not(CloseEnough(tree,G)) do

i: UniformRandom in [0.0 .. 1.0]
if 0 < i < p
then tree = expand-tree(EHC,I,G,A, φ,tree)
else if p < i < p+ ra

then tree = expand-tree(action-reuse,I,G,A,W ,tree)
else tree = expand-tree(goal-reuse,I,G,A,W ,tree)

return Extract-plan(tree)

Figure 2: The ERRT-PLAN algorithm.

computed according to the planning heuristic. The function
CloseEnough checks whether the goal is true in the heuris-
tically closest node of the tree. The second difference relates
to the representation of states and goals. While in ERRT both
states and goals are represented as vectors of N dimensions,
in planning, initial states and goals are represented as sets of
literals. Furthermore, goals in task planning are partial de-
scriptions of states, so they cannot be used interchangeably
with states as in ERRT.

ERRT-PLAN carries the planning search expanding its search
tree using three possible biases, namely using EHC, action-
reuse, or goal-reuse. The search tree keeps multiple open
nodes (internal and leaves), and all such nodes are candi-
dates for expansion. At each iteration, one of the nodes in
the open list is found to be the closest to the chosen target
and is expanded. The children of expanded nodes are not
added to the search tree immediately. They remain as chil-
dren until the search chooses to expand one of them and adds
it to the tree. As in the ERRT algorithm, the expansion of
the tree includes the three main functions to: choose a target
(ChooseTarget); compute the closest node to the chosen tar-
get (Nearest); and extend such closest node (Extend). We
now present these three functions for the EHC, action-reuse,
and goal-reuse expansions.

• The EHC expansion corresponds to:
– ChooseTarget selects the goal G as the current target;
– Nearest returns the closest open node to the chosen tar-

get;
– Extend iteratively generates the children of nearest,

and as soon as one returns a heuristic value less than
nearest, it stops and adds that node to the tree. If no
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child is better than nearest, it performs a breadth-first
search until it finds a better one. This is implemented
similarly as in METRIC-FF by first expanding succes-
sors that are helpful actions (actions that are thought to
be relevant to achieve the goals and can be directly ap-
plied in the current state).6 If that fails, then we switch
to non-helpful ones. As in (Burfoot, Pineau, & Dudek
2006), we set a limit on the number of nodes in this ex-
pansion. We start with a limit of 100 nodes, and then
we increase it by 50, every time we perform a breadth-
first search. Also, we add to the tree the path from near-
est to the best node in that search (even if it is not better
than the nearest heuristic value).

• The action-reuse expansion corresponds to:

– ChooseTarget selects the goal G as the current target;
– Nearest and Extend are done jointly. Nearest returns

the first open node in which an action ai from the past
plan can be applied. In each node, we keep a pointer
of the last action of the previous plan that was appli-
cable in that node. We start searching for applicable
actions at nodes whose pointer leads to actions closer
to the end of the previous plan. If node ni has a pointer
to action ak and node nj has a pointer to action am,
and m > k, then we first try to find an applicable ac-
tion in node nj starting at positionm+1 of the previous
plan. If an applicable action is found, then we try to ap-
ply as many actions as possible from the previous plan.
We set the pointer to the position of the last applied
action, so next time we start looking for applicable ac-
tions from that action on. When we create a node, its
pointer is initialized to 0. And once we reach the end of
the previous plan in a node, then that node is not tried
again for action reuse, and we try the other nodes in
the search tree. If no applicable action is found at any
node, we do an EHC expansion. This allows solving
some problems even in the case of using pure action
reuse (p = 0, ra = 1.0, rg = 0) and when the previous
solution does not solve completely the new problem.

• The goal-reuse expansion corresponds to:

– ChooseTarget selects a goal from the previous search.
It randomly selects the weakest preconditions of ac-
tions of the previous solution that have a later position
than the one referred to by a global pointer, in the same
spirit as the action-reuse (in this case we keep a global
pointer instead of a node-dependent pointer). So, if the
pointer is g, we randomly pick one weakest precondi-
tions set from < wpg+1, . . . , wpk >. If none is avail-
able (g ≥ k), then it returns the goals of the current
problem G.

– Nearest computes the heuristic distance from each
node in the search tree and the selected target, and re-
turns the node with the lowest heuristic value. If more
than one, then the deepest one is preferred. Given that
the computation of the heuristic distance of each node

6They are computed at the same time as the heuristic value of
nodes.

in the tree towards a given goal (the problem goals or
one of the weakest preconditions of the previous solu-
tion) can be repeated many times, we cache in a hash
table the results of those heuristic computations.

– Extend expands the nearest node, if not already ex-
panded, and adds one of the successors according to
EHC. So, this is exactly the same behavior as the Ex-
tend function of the EHC expansion.

Experiments

In this section we will show through several examples the
benefits of the approach when dealing with tasks for which
ERRT-PLAN outperforms other approaches. In particular, we
compare against a baseline planner, FF, and a re-planning
algorithm, LPG-ADAPT. We focus our study on the fea-
tures of the tasks that make it particularly difficult for them.
More specifically we will present examples for the following
cases:

• heuristic search approaches might fail, and the previous
plan can help on solving the task

• but, strongly relying on past plans might also not be al-
ways beneficial:
– LPG-ADAPT does not remove unnecessary parts of past

plans
– some small difference in the initial state makes LPG-

ADAPT generate non-optimal plans
– small differences in the goals make LPG-ADAPT use

parts of the previous plan, but there is a better solution
to solve the difference if you do not use those parts

– past plans are reused, while other parts are dynamically
build by the planner

We have used 0.0, 0.3, 0.7 and 1.0 as parameters values for
both p and ra (resulting on the same range of values for rg),
removing those configurations with p + ra + rg > 1.0.
Since ERRT-PLAN is stochastic, we run each ERRT-PLAN
configuration five times and show the median of the results.
The base configuration in most experiments was the stan-
dard FF algorithm (EHC followed by A∗ in case no solu-
tion was found) with the relaxed planning graph heuristic.
It can also be seen as a special case of ERRT-PLAN, when
p = 1.0, ra = 0.0, rg = 0.0. We used a time bound of 600s
and a memory bound of 3Mb.7

On Solving Difficult Planning Tasks

As it is well known, no single technique is better than the
others in all domains. For instance, one of the best domain-
independent heuristics for planning, the relaxed plan heuris-

7No problem could not be solved due to exceeding the memory
bound.
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tic of FF that is used one way or another in most current plan-
ners, can lead a greedy search algorithm to dead-ends. Un-
fortunately, many real world tasks present dead-ends. Some
planners, as FF or LAMA, try to avoid dead-ends by resorting
to best-first search and/or combining it with other heuris-
tics. But in some domains, even with a very good heuristic,
best-first search can expand an arbitrarily large number of
nodes (Helmert & Roger 2008). The knowledge on previ-
ous plans can help guide the planner to avoid those dead-
ends or exploring a huge useless area of the state space. In
this section, we show that ERRT-PLAN stochastically selects
whether to reuse parts of the previous plans or to build some
parts from scratch. This allows ERRT-PLAN to solve tasks
with dead-ends and show how we can improve over the com-
bination of the relaxed plan graph heuristic+EHC on those
domains by using ERRT-PLAN.

We contribute a new planning domain, NewGrid, similar to
the ones used by the path-planning community, where we
define two new planning tasks. We show that these tasks
are well targeted at illustrating the features of our technique.
This domain is a proof-of-concept of the problems of the
combination of EHC +planning graph heuristic.8 In this do-
main, a robot has to reach any of the several positions that
have gold on them. Gold is stored on closed boxes that can
be opened by a key that the robot carries at the beginning.
The world is defined as a grid with walls and obstacles.
Walls can never be traversed. Obstacles can be traversed,
but once they are traversed by the robot, the robot loses the
key that it carries. Thus, once the robot traverses a cell with
an obstacle, it cannot open any box, resulting in a dead-end
(no goal is reachable from those states). Given that losing
the key appears as a delete effect, the relaxed plan heuristic
does not detect those situations. So, the combination of the
relaxed plan heuristic and any non-backtraking search tech-
nique (as, for instance, EHC) leads to dead-ends. Obstacles
can be thought in general as places where we lose our non-
renewable resources, or highly dangerous areas in other do-
mains. Figure 3 shows examples of scenarios of this domain
with two goals (G) and one obstacle (O) (a), three goals and
two obstacles (b), and one goal and several obstacles (c and
d). The robot appears as R.

In this domain, and in some others also, given that EHC is a
very greedy search algorithm, the order in which the nodes
are studied is very relevant. This aspect influences the be-
havior of EHC-based planners. So, we created two types of
tasks in the NewGrid domain to highlight the difficulties that
we can find using it: the L (a and b) and Cup tasks (c and d).
The names refer to the shape of the cells without obstacles.
Figure 3 shows an example of training and test problems for
both tasks. These tasks could not be solved by EHC because
it tried to eagerly follow the shortest path to the goal. Thus,
it does not notice that when traversing the obstacles it loses
the key and cannot solve the problem. If we follow another

8Similar domains, as GoldMiner or Matching Blocksworld, can
be found in the first learning track of the IPC held at ICAPS’08
(http://eecs.oregonstate.edu/ipc-learn/).
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Figure 3: Example tasks in the L and Cup tasks in the New-
Grid domain. (a) training L problem, (b) example of 6 × 6
L task with one corridor, (c) training Cup problem, and (d)
Cup task with 10 columns. R is the robot, O represents an
obstacle and G a goal.

algorithm after failing (as FF does using A∗), it can take it
a huge amount of time to find the solution, given that the
heuristic continues to force the search algorithm to select
nodes that are in the wrong direction. In the case of the L
tasks (a) and (b), given that EHC evaluates the successors of
a node in a given order, if it decides to move to the places
where gold comes after passing though an obstacle, it will
find dead-ends. And, if a planner switches to A∗ (as it is the
case of FF), it might be that we have a high number of dead-
end corridors branching out of that part of the search tree, so
that it can take a long time to find the right branch. If, by
chance, the order of the successors makes it to move to the
right on (a) or (b), we can always create the complementary
version in which all the corridors are on the bottom part and
branching from it will lead to dead-ends.

In the second task, that we call the Cup task, the heuristic
finds that going directly towards the only goal is better than
going first to the left of the wall. So, EHC will never find
a solution of this task. If we change to A∗ and the space
among the walls is sufficiently large, it will have to explore
all that area before going to the left of the wall. So, the time
to solve the problem grows quadratically with the size of that
area,9 as shown in the following experiments.

For these tasks, we generated problems by increasing size
of the grid from 10 × 10 to 70 × 70 in increments of 10
in the L task. We also added a number of corridors that
would branch out of the corridor going up (the one with the
obstacle) that would be N − 4 where N is the number of
rows/columns. Those corridors also hold gold at their ends,
but always with an obstacle before them. In the Cup task,
we fixed the number of rows and set the number of columns
from 10 to 150 (in steps of 10) with the same structure for
the walls and obstacles, and the same relative positions for

9We assume full duplicate detection is performed.
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the robot (always starts at (0,3)) and gold position (always
at (N − 1,7)). In these two tasks, we solved the training
problems (a) and (c) with the reimplementation of FF (EHC
followed by A∗ where EHC could not solve either task).

Then, using the solution to these two simple problems (Fig-
ure 3(a) and (c)), we tried to solve the test problems with FF
and with the ERRT-PLAN configurations. Figure 4 shows the
time employed to solve the Cup task. The time spent to solve
the problems is in most configurations four/five times less
than the one employed by FF, where EHC could not solve
a single problem and it had to always resort to A∗. One
of the potential drawbacks of ERRT-PLAN with respect to
EHC could be the extra nodes that it keeps in memory. In
the case of these experiments, the number of nodes explored
by ERRT-PLAN was linear to (even almost the same as) the
number of steps in the solution. The reason why time grows
non-linearly is that the heuristic computation (FF heuristic)
grows non-linearly with the size of the grid. It goes from
an average of 0.001s per evaluation with N = 10 to around
100s in the case of N = 150. We also changed the initial
position of the robot (by moving it one and two positions
to the right), and of the goal (one position to the right) and
results were similar.

Figure 4: Time to solve problems on the NewGrid domain
for the Cup task. ERRT-PLAN results are the median of plan-
ning time.

Figure 5 shows the time to solve problems in the L task.
With respect to solvability, FF could not solve problems
starting on 40−36, even after resorting to A∗. In the case of
ERRT-PLAN, most configurations can solve problems of up
to 70− 56 in the given time bound.

Strong Bias Towards Previous Plans Might Not
Help

In the previous section, we have shown that guidance from
the past plan can help planners to find solutions avoiding re-
peating the same mistakes as before. However, on the other

Figure 5: Time to solve problems on the NewGrid do-
main for the L task with maximum number of corridors (N
rows/columns, N − 4 corridors). ERRT-PLAN results are the
median of planning time.

extreme, strongly relying on the past plan sometimes can
also be a bad choice. In this section, we show that replan-
ning systems as LPG-ADAPT find difficulties, because they
are too tied to the previous plan. In fact, it starts the search
in the plan graph space from the initial node representing
the past plan. And it tries to diverge as little as possible
from that plan by using stochastic local search with multi-
ple restarts and an evaluation function that is biased towards
maintaining stability (minimizing the difference of the new
plan with respect to the previous plan). We show three ex-
amples where this scheme does not work well, because LPG-
ADAPT returns bad quality solutions.

Avoiding Removing Past Actions. In the first example, it
tries to avoid removing actions from the past plan, since it
focuses on maximizing plan stability. So, sometimes the so-
lutions contain unnecessary actions. Consider, for instance,
the Unnecessary-past-steps domain on Figure 6. We first
give LPG-ADAPT the solution to a previous problem that is
only composed of action a1. If we now give it the problem
with I={g2} and G={g+}, LPG-ADAPT generates the solu-
tion π={a1,a3,a1+}. In this solution, a1 is not needed, given
that g+ is achieved with a1+, and its preconditions are g2
that is true in the initial state, and p3 that is achieved by a3.
But, LPG-ADAPT tries to reuse as much as possible from the
previous plan in order to solve the new problem. This is just
a simple example of this behavior, but it is very easy to make
the previous solution as long as we want and it still keeps the
previous solution there. LPG-ADAPT is reluctant to remove
that part of the previous plan, since it adds g2 that is needed
for applying a1+, even if in the new problem this plan is not
needed because g2 is true in the initial state. On the con-
trary, all configurations of ERRT-PLAN are able to find the
right plan, getting rid of the unnecessary actions.
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a1
Pre:
Adds: g1,g2
Dels:

a1+
Pre: g2,p3
Adds: g+
Dels:

a2+
Pre: p4,p5
Adds: g+
Dels:

a3
Pre:
Adds: p3
Dels:

a4
Pre:
Adds: p4
Dels:

a5
Pre:
Adds: p5
Dels:

Figure 6: Unnecessary-past-steps domain that shows how
LPG-ADAPT generates plans with unnecessary actions.

Small Difference on Initial States. In the second example,
a small variation in the initial state makes the previous plan
highly suboptimal, but LPG-ADAPT returns the same previ-
ous plan, without noticing. Consider for instance two new
simple tasks in the NewGrid domain graphically shown in
Figure 7. The robot should go from its initial position, R, to
the goal position, G. Suppose we use the plan for the prob-
lem on the left to bias the solution of the problem in the right
where suddenly a new direct path appears – the obstacle in
(0,1) disappears. LPG-ADAPT always selects the previous
path to solve the problem. If asked for multiple solutions,
then it finds the new path, but it returns suboptimal solu-
tions (by repeating states, for instance). In the case of ERRT-
PLAN, it consistently finds the new optimal path. Note that
the corridor to the right might be as long as we want, and
LPG-ADAPT behavior always selects that plan, instead of the
new one. Also, one might call LPG-ADAPT for multiple so-
lutions, but then we have created an arbitrary number of new
holes in the wall going to the right, and it takes LPG-ADAPT
a long time until discovering the optimal solution.

R

G

(a)

R

G

(b)
Figure 7: (a) is the past problem and its solution and (b) is
the same problem, except for a small difference in the initial
state (the path in the left is not blocked). In (b), LPG-ADAPT
solution is represented by the dashed line and ERRT-PLAN
solution is shown by the solid line.

Small Difference on Goals. In the third example, a small
variation in the goals makes LPG-ADAPT reuse past of the
previous plan, without noticing there is a better solution.
We base our example in the domains presented in (Veloso
& Blythe 1994). More specifically, we merge the Labori-
ously linkable domain with our previous Unnecessary-past-
steps domain. The Linkability-Hidden domain is shown in
Figure 8. Suppose the solution to the previous problem is
again π ={a1} and the new problem is I={} and G={g+}.
LPG-ADAPT starts with a plan graph that contains a1 and
tries to build a solution from that point on. The only actions

that add g+, the only goal now, are a1+ and a2+. The eval-
uation function of LPG-ADAPT thinks a1+ is a better option
since g2 is already true (through a1), g* can be achieved in
one step with a*, and it thinks that p3 can be achieved in
three steps (ap1, ap2 and ap3). On the other side, a2+ seems
a worse option since it needs one step for achieving g3, an-
other for g* and three steps to achieve q3 (aq1, aq2 and aq3).
So, it selects a1+, which is the unoptimal solution, as shown
in Figure 9.

a1
Pre:
Adds: g1,g2
Dels:

a1+
Pre: g2,p3,g*
Adds: g+
Dels:

a2+
Pre: g3,q3,g*
Adds: g+
Dels:

a3
Pre:
Adds: g3
Dels:

a*
Pre:
Adds: g*
Dels:

ap1
Pre: g*
Adds: p1
Dels: g*

ap2
Pre: p1,g*
Adds: p2
Dels: p1,g*

ap3
Pre: p2,g*
Adds: p3
Dels: p2,g*

aq1
Pre:
Adds: q1
Dels:

aq2
Pre: q1
Adds: q2
Dels: q1

aq3
Pre: q2
Adds: q3
Dels: q2

Figure 8: Linkability-Hidden domain to show how LPG-
ADAPT generates suboptimal plans with small variations of
the goals.

0.0000: (A1) [D:1.00; C:1.00]
0.0000: (A*) [D:1.00; C:1.00]
1.0000: (AP1) [D:1.00; C:1.00]
2.0000: (A*) [D:1.00; C:1.00]
3.0000: (AP2) [D:1.00; C:1.00]
4.0000: (A*) [D:1.00; C:1.00]
5.0000: (AP3) [D:1.00; C:1.00]
6.0000: (A*) [D:1.00; C:1.00]
7.0000: (A1+) [D:1.00; C:1.00]

0: (A3 ) [1]
1: (AQ1 ) [1]
2: (AQ2 ) [1]
3: (AQ3 ) [1]
4: (A* ) [1]

LPG-ADAPT plan ERRT-PLAN plan

Figure 9: Plans generated by LPG-ADAPT and ERRT-PLAN
on the problem.

In fact ap1+ needs seven steps for achieving p3, but those
steps are hidden by the deletion of g* in all actions, as well
as deleting the previously achieved proposition. This was
the main difference between the behavior of total-order non-
linear planners, as PRODIGY, and partial-order planners, as
UCPOP. The latter tried to eagerly achieve open precondi-
tions with actions from the current partial plan, failing in this
case. We have presented the simplest case where the previ-
ous plan was composed of only one action and one goal, g1.
But, the same phenomena happens when the previous solu-
tions have another thousand actions in the plan achieving a
set of goals of any size, and we made the small change in
the goals of changing g1 for g+. Even if this domain seems
far fetched, consider now that g* is a renewable resource as
fuel, and then it matches the behavior of many real world
domains. Again, the configurations of ERRT-PLAN are able
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to find the right solution, given that for it the previous plan
is not the starting point of a local search, but a guidance that
can be used or not as needed.

Combining Reuse of Past Plans with Planning

We have also performed experiments in the Satellite and
Rovers IPC domains,10 In Satellite, we used the given 20
IPC problems, and generated three variations of each prob-
lem by adding a random goal (so, the total number of prob-
lems per domain was 60). Then, we solved each original
problem with FF for a seed plan and used its solution for
solving each newly generated problem with FF and each
ERRT-PLAN configuration.

In Figure 10 we show the planning time of FF and ERRT-
PLAN in the last problem of the IPC of the Satellite do-
main, pfile20, given that the rest of problems were solved
in less than 1 second. We run each ERRT-PLAN configura-
tion five times and show the median. The configuration with
ra = 1.0 could not solve the problems, while the rest could
solve most of the runs (114 runs out of 123). As we can
see, the configurations with no action reuse (ra = 0.0) have
worse performance, while the rest are two orders of magni-
tude better than FF.

Figure 10: Median of the planning time of five runs for three
modifications of pfile20 of the Satellite domain.

In Figure 11 we show the results on the Rovers domain.
We used in this case four problems of the IPC (p30 to p33)
as representatives of medium complexity problems (solving
time greater than a few seconds and less than 600 seconds).
The setting is the same as the previous experiments. Again,
we see the same behavior as in the Satellite domain: config-
urations with no action reuse have bad performance, while
the rest can obtain up to two orders of magnitude improve-
ment over FF.

In Figure 12 we show the results on the Zenotravel domain
of the most difficult problems of the competition, pfile16

10International Planning Competition.

Figure 11: Median of the planning time of five runs for three
modifications of problems p30 to p33 of the Rovers domain.

to pfile20. And we see the same behavior as in the previous
domains: two orders of magnitude improvement on planning
time and worse results by ra = 0.0 configurations.

Figure 12: Median of the planning time of five runs for three
modifications of problems pfile16 to pfile20 of the Zeno-
travel domain.

In summary, we can see how using both reuse approaches at
the same time improves over using only one of them (ra =
0.0 or rg = 0.0). In general, using action-reuse is a better
strategy than using goal-reuse. The reason is that, in the
extreme, goal-reuse ends up being almost the same as EHC
given that when the goal-reuse pointer reaches the end of the
previous plan, there are no more goals to point to, and the
goals of the new problem are always selected. But, action-
reuse by itself does not have a good behavior either, because
once actions of the previous plan have been reused, we still
might need to do some extra work to achieve the new goals.
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So, the combination of both goal- and action-reuse makes
the approach robust and compensate EHC drawbacks. Also,
we can see that almost all configurations use much less time
than pure EHC: two orders of magnitude less in many cases.

Conclusions and Future Work

We have presented a new approach to planning that stochas-
tically uses either a greedy planning heuristic or prior knowl-
edge in the form of actions or goals to achieve. Given that
nor current planning heuristics and search techniques, nor
previous knowledge (plans) are proved to be always correct,
we use them as biases, and use probability values that drive
the search direction. Results show that our ERRT-PLAN ap-
proaches are able to successfully address difficult open ques-
tions in planning such as how to efficiently use knowledge
of a previous plan to solve new similar problems. This work
opens further avenues of research, including the use of any
other search technique, instead of programming it on top of
EHC as best-first techniques. In addition, any multiple bi-
ases can be stochastically included in ERRT-PLAN, such as
different heuristics or specific human guidance.
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Alcázar, V.; Veloso, M.; and Borrajo, D. 2011. Adapting
an RRT for automated planning. In Borrajo, D.; López,
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Abstract

Temporal Fast Downward (TFD) is a successful temporal
planning system that is capable of dealing with numerical val-
ues. Rather than decoupling action selection from schedul-
ing, it searches directly in the space of time-stamped states,
an approach that has shown to produce plans of high quality
at the price of coverage. To increase coverage, TFD incorpo-
rates deferred evaluation and preferred operators, two search
techniques that usually decrease the number of heuristic cal-
culations by a large amount. However, the current definition
of preferred operators offers only limited guidance in prob-
lems where heuristic estimates are weak or where subgoals
require the execution of mutex operators. In this paper, we
present novel methods of how to refine this definition and
show how to combine the diverse strengths of different sets
of preferred operators using a restarting procedure incorpo-
rated into a multi-queue best-first search. These techniques
improve TFD’s coverage drastically and preserve the average
solution quality, leading to a system that solves more prob-
lems than each of the competitors of the temporal satisficing
track of IPC 2011 and clearly outperforms all of them in terms
of IPC score.

Introduction
Temporal Planning is an important generalization of classi-
cal planning that allows to model many applications more
realistically by taking into account not only causal depen-
dencies between actions but also their temporal interactions.
It is a growing research area and there are many interesting
approaches that tackle its challenges. LPG (Gerevini, Saetti,
and Serina 2003) is based on stochastic local search in the
space of action graphs. Crikey3 (Coles et al. 2008) employs
heuristic forward search interleaving planning and schedul-
ing via Simple Temporal Networks. CPT4 (Vidal 2011a) is
a planning system based on partial order causal links that is
optimal for the conservative semantics of Smith and Weld
(Smith and Weld 1999). A common approach to temporal
planning, as for example taken by SGPlan (Hsu and Wah
2008), YAHSP2 (Vidal 2011b) and DAEYAHSP (Dréo et al.
2011), is to consider only logical dependencies between ac-
tions first while temporal dependencies are taken into ac-
count just afterwards to find an appropriate scheduling for
the chosen actions. While having the potential of being very
fast due to the possibility of utilizing successful techniques
from the much more investigated field of classical planning,

such approaches are doomed to fail in temporally expres-
sive domains (Cushing et al. 2007), and suffer from severe
drawbacks in temporally simple problems, as choosing the
wrong actions might render the final solutions to be purely
sequential and therefore of very low quality.

Another approach as for example taken by Sapa (Do and
Kambhampati 2003b), LMTD (Hu, Cai, and Yin 2011), or
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009), is to perform forward search in the space of
time-stamped states, where at each search state either a new
action can be started or time can be advanced to the end
point of an already running action, thereby combining action
selection and scheduling. Also, POPF2 (Coles et al. 2011;
2010) performs a forward search, using a partial order rather
than a total order like Sapa and TFD do. While these ap-
proaches are usually very good in terms of quality, their cov-
erage on current benchmarks is typically relatively low.

As a first step to increase its coverage, TFD incorpo-
rates preferred operators and deferred evaluation (Richter
and Helmert 2009). The general idea of preferred operators
is to favor operators that are part of a solution for the heuris-
tic abstraction of the problem. Deferred evaluation post-
pones heuristic computations from the point where a search
node is generated to the point where it is expanded, rating
nodes with the estimate of their predecessor during search.
Thereby, the number of heuristic calculations is decreased
by a large amount at the price of informativeness. Even more
than in classical planning, in temporal planning the heuristic
computation is the bottleneck of search, and indeed it turns
out that the use of deferred evaluation and preferred opera-
tors increases the performance of TFD enormously. Unfor-
tunately, this improvement does not occur uniformly over all
planning domains. Instead, there are problems where using
preferred operators and deferred evaluation worsens results.

The first contribution of this paper consists in novel meth-
ods that strengthen the selection criteria for preferred opera-
tors. Different methods have strengths on different domains
and some of them clearly increase TFD’s coverage on their
own. On their downside, all new methods have in common
that they produce solutions of lower quality than the original
definition. This leads to the second contribution, a restarting
procedure embedded in a multi-queue best first search that,
besides further increasing coverage, regains the lost quality.
Our resulting system is able to overcome the disadvantage of
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searching in the space of time stamped states, i.e., low cov-
erage, while maintaining its major advantage, high solution
quality.

The remainder of this paper is structured as follows: In
the next section we describe TFD with an emphasis on its
heuristic. The subsequent section presents our novel selec-
tion criteria for preferred operators and a multi-queue search
algorithm featuring restarts. Afterwards, we present detailed
experiments before we conclude. Related work is referred to
throughout the paper whenever it fits.

Temporal Fast Downward
Temporal Fast Downward (TFD) (Eyerich, Mattmüller, and
Röger 2009) is a domain-independent progression search
planner built on top of the classical planner Fast Down-
ward (Helmert 2006). It extends the original system by
supporting durative actions as well as numeric and object
fluents. TFD solves a planning task in three phases: As
a first step, the Boolean PDDL encoding is translated into
a finite-domain representation similar to SAS+ (Bäckström
and Nebel 1996; Helmert 2009). Afterwards, in a knowl-
edge compilation step, several internal data structures are
generated. The scope of this paper is the third part, a best-
first progression search. For the sake of simplicity, we only
deal with non-numerical fluents. Note, however, that all our
results can be generalized to the numeric case straightfor-
wardly.

In the following, we use the definition of Eyerich et. al.
of a temporal SAS+ planning task (Eyerich, Mattmüller, and
Röger 2009), a tuple Π = 〈V, s0, s?,A,O〉, where V is a set
of state variables. The initial state s0 is given by a vari-
able assignment (a state) over all fluents in V and the set of
goal states s? is defined by a partial state (a state restricted
to a subset of fluents) over V . Analogously to the Boolean
setting, we identify such variable mappings with the set of
atoms v=w that they make true. For an atom x we write
var(x) to denote the variable associated with x. A is a finite
set of axioms and O is a finite set of durative actions.

A durative action a = 〈C ,E , δ〉 consists of a triple C =
〈C`,C↔,Ca〉 of partial states (called its start, persistent,
and end condition, respectively), a tuple E = 〈E`,Ea〉 of
start and end effects, and a duration variable δ ∈ V . E` and
Ea are finite sets of conditional effects 〈c, e〉. Their effect
condition c = 〈c`, c↔, ca〉 is defined analogously to C. A
simple effect e is of form v=w.

A time-stamped state S = 〈t, s,E ,C↔,Ca〉 consists of
a time stamp t ≥ 0, a state s, a set E of scheduled effects,
and two sets C↔ and Ca of persistent and end conditions.
A scheduled effect 〈∆t, c↔, ca, e〉 consists of the remain-
ing time ∆t ≥ 0 (until the instant when the effect triggers),
persistent and end effect conditions c↔ and ca over V , and a
simple effect e . The conditions in C↔ and Ca are annotated
with time increments ∆t ≥ 0 and have to hold until instant
t + ∆t (exclusively) for persistent conditions and at instant
t+ ∆t for end conditions.

A durative action is applicable in a time-stamped state S
if it can be integrated into S in a consistent way (Eyerich,
Mattmüller, and Röger 2009). The successors of a time-
stamped state are generated by either inserting an applicable

durative action at the current time point or by increasing the
time-stamp to the earliest time point where a scheduled ac-
tion ends.

For guiding the search, TFD uses a variant of the
(inadmissible) context-enhanced additive heuristic (hcea)
(Helmert and Geffner 2008) extended to cope with numeric
variables and durative actions. To make hcea useful for tem-
poral planning, Eyerich et. al. show how to transform du-
rative actions to several types of so-called instant actions
(Helmert and Geffner 2008), which we assume to be given
in this paper. Instant actions are sets of effects of the form
v=w′, z → v=w, where v is a variable, z is a partial state
not mentioning v, and w and w′ are values for v. Such an
effect means that if the current state s satisfies z and maps
v to w′, then the successor state s′, resulting from the appli-
cation of the operator, maps v to w (while all mappings that
are not changed by any effect of the operator stay the same).
We also write a : v=w′, z → v=w to make clear that the
rule is an effect of the instant action a.

Given a state s and an atom v=w, we denote with s[v=w]
the state that is like s except for variable v, which it maps
to w. Similarly, we write s[s′] where s′ is a partial state to
denote the state that is like s′ for variables defined in s′ and
like s for all other variables.

For a time-stamped state s and a goal specification s?, the
cost-sensitive variant of hcea is defined as

hcea(s)
def
=
∑

x∈s?
hcea(x|xs),

where xs is the atom that refers to var(x) in state s and
hcea(x|xs) estimates the costs of changing the value of
var(x) from the value it has in s to the one required in s?.

The context-enhanced additive heuristic makes the under-
lying assumption that for any atom x conditions referring
to var(x) are achieved first, while all other conditions are
evaluated in the resulting state s′′, leading to the following
definition:

hcea(x|x′) def
=





0 if x = x′

min
o:x′′,z→x

(
c(o, s′′) +

hcea(x′′|x′) +∑

xi∈z
hcea(xi|x′′i )

)
else

where c(o, s) is the cost of applying operator o in state s.
The state s′′ is the state after reaching x′′ from x′. Note that
with the minimum of the empty set being infinity, hcea(x|x′)
might also be infinity and if it is, there is no plan that satisfies
the goal in the original task.

In this definition, the first case is trivial. In the second
case, the first summand, c(o, s′′), captures the cost of ap-
plying the minimizing operator o in state s′′, the second one
estimates the cost of achieving x′′ from x′, and the third one
the cost of making all other conditions z of the rule true. In
this third term, atom x′′i is the atom associated with var(xi)
in the state that results from achieving x′′ from x′.

To reschedule solutions in order to reduce their makespan,
the TFD version used for this paper features a partial-order
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lifting procedure that is inspired by the work of Do and
Kambhampati and Coles et. al. (Do and Kambhampati
2003a; Coles et al. 2009) and extended to be able to deal
with conditional effects.

Preferred Operators
Conceptually, the idea of preferred operators is to trans-
fer information about which operator’s application seems
to be promising from the heuristic abstraction to the actual
search. This concept was first realized by McDermott by de-
termining favored actions in the context of greedy regression
graphs as those applicable actions that are part of the min-
imal cost subgraph achieving the goals (McDermott 1996;
1999). Hoffmann and Nebel have defined helpful actions in
their FF planner as those actions that achieve a fact required
by an action in the relaxed plan that appears in the first layer
of the planning graph (Hoffmann and Nebel 2001). FF con-
siders only helpful actions in its first attempt of finding a so-
lution and switches to a complete greedy best-first search if
it fails. Another approach is used in Fast Downward, where
besides the usual open list containing all applicable opera-
tors there is a separate open list containing only preferred
operators. Different strategies of how to best combine these
two open list have been investigated (Richter and Helmert
2009; Röger and Helmert 2010).

Using the definition of the context-enhanced additive
heuristic, the set P(s) of preferred operators is defined as

P(s)
def
=
⋃

x∈s?
P(x|xs),

where

P(x|x′) def
=





{} if x = x′ or hcea(x|x′)=∞

{o} if ∃ o : x′, w → x :

hcea(x|x′) = c(o, s′)
⋃

xi∈w
P(xi|x′i) if ∃ o : x′, w → x :

hcea(x|x′) =
(
c(o, s′)+

∑

xi∈w
hcea(xi|x′i)

)

P(x′′|x′) if ∃x′′ : hcea(x′′|x′)
+hcea(x|x′′) = hcea(x|x′)

Each condition additionally requires the previous condi-
tions to be unsatisfied. We furthermore assume that no ac-
tion with zero cost exists and that, if the existentially quan-
tified conditions are satisfied for more than one operator or
atom, an arbitrary one is chosen.

The first case is trivial. The second case defines an oper-
ator o that transforms x′ to x with cost equal to hcea(x|x′)
(which means that all its preconditions have to be satisfied)
as preferred. The third case is similar to the second one ex-
cept that some of the operator’s preconditions are not sat-
isfied. In that case, preferred operators are recursively de-
fined over these preconditions. In the last case, x′ cannot be

changed to x by a single operator but only via an intermedi-
ate state, so preferred operators are recursively defined over
this state.

In its default configuration, TFD uses a straight-forward
adaptation of the boosted dual queue approach for preferred
operators of Fast Downward (Helmert 2006). As can be seen
in the experiments section, preferred operators work best in
the context of deferred evaluation. However, there are cer-
tain domain characteristics for which that is not the case.
Especially in problems where goals are conflicting, requir-
ing mutex operators, the preferred operator handling of TFD
does not yield good results in the context of deferred evalu-
ation.

The main reason for this poor behavior is that hcea com-
putes costs of subgoals independently from each other. In
that way, a set of preferred operators might contain mutex
operators each leading to a successor state with the same
heuristic estimate (due to deferred evaluation) while the suc-
cessors of each successor have a higher heuristic estimate.
To see this, think of a problem in an elevators domain where
we have two goals g1 and g2 to transport two passengers p1
and p2 from their common starting location f5 to their de-
sired floors f1 and f10, respectively. When investigating the
subproblems independently from each other, as hcea does,
it might be meaningful to use the same elevator e1, located
at f5, to transport both p1 and p2. In such a situation, both
the operators move-down(e1, f5, f1), leading to state s1, and
move-up(e1, f5, f10), leading to state s2, are preferred, and
since we use deferred evaluation, s1 and s2 share the same
heuristic estimation. When s1 is expanded, however, e1 has
started to move to f1 in order to satisfy g1, and the heuris-
tic realizes that g2 becomes more expensive (potentially to
a higher degree than the amount that g1 becomes cheaper),
leading to a worse overall state evaluation for all successors
of s1. Things are analogously for expanding s2. In such a
situation a potentially very large set of states has to be visited
before the search actually progresses in the right direction.

Our new selection strategies are basically methods to in-
telligently narrow the set of preferred operators, motivated
by examples like the one above: If by using only preferred
operators a planning task is rendered incomplete anyway,
and if generating preferred operators for all subgoals at once
can lead to situations where the search gets stuck, why not
limit ourselves to generating preferred operators for only up
to n subgoals? Of course, the obvious questions are which
and how many operators out of a set of preferred ones we
should choose. We have found three narrowing strategies
to be useful in practice: To utilize only the preferred opera-
tors that correspond to the first n yet unsatisfied goals, called
O, or to choose the preferred operators corresponding to the
n goals that are cheapest or most expensive to satisfy ac-
cording to the heuristic, called C and E , respectively. More
concretely, a narrowing strategy Xn(s) is defined as

Xn(s)
def
=

⋃

x∈X⊆s?
P(x|xs)

with an appropriate X of cardinality n chosen according to
the selection strategy of X . For O, this strategy is defined
such that x ≤O y for all x ∈ X, y ∈ (s? \ X) holds for
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some appropriate ordering relation ≤O. For C it has to hold
that hcea(x|xs) ≤ hcea(y|ys) for all x ∈ X, y ∈ (s? \ X),
and for E it has hold that hcea(x|xs) ≥ hcea(y|ys) for all
x ∈ X, y ∈ (s? \X).

Basically, all narrowing strategies examine the current
state s and choose up to n goals xi from s? to compute
preferred operators for: O determines the first n unsatisfied
goals (according to an appropriate ordering relation ≤O),
while C and E determine the heuristic cost of each subgoal
as if it would be the only goal to satisfy (as said, this is done
by hcea anyway) and choose the n that are cheapest and most
expensive, respectively. Note that with small n the search is
driven to satisfy the goals more sequentially, however, each
goal might be satisfied by parallel action applications.

Finding a good ordering relation for O is very much re-
lated to the more general task of detecting goal orderings
(Köhler and Hoffmann 2000). In this paper, we restrict our-
selves to the natural ordering that is defined by the order in
which variables occur in the problem description and defer
the interesting question of how to combine our technique
with goal ordering detection techniques to future work.

As we will show in the experiments section, utilizing our
new techniques in TFD pays off in terms of coverage. Un-
fortunately, the produced solutions are typically of a lower
quality than those of the original definition as the search is
driven to satisfy goals more sequentially. Additionally, it
can be observed that the different narrowing strategies have
strengths in different domains. Motivated from these two
facts, we have developed an algorithm that incorporates sev-
eral narrowing strategies into a best-first search framework
that uses an own open list for each strategy, as outlined in
Algorithm 1.

The algorithm is based on the boosted dual-queue best-
first search approach of Fast Downward (Helmert 2006). It
maintains a set of open lists, each associated with a corre-
sponding selection method. It has been shown that alternat-
ing between different open lists is a good idea if the open
lists contain operators ordered by different heuristics (Röger
and Helmert 2010). In our context, however, alternating did
not work well, so we have chosen a priority based approach
where each open list is associated with a priority and at each
search step the algorithm selects the non-empty list with the
highest priority (lines 1 and 28). The search keeps track of
the number of steps that were performed since the last time
progress has been made (progress is made if a state is ex-
tracted from a list that has a lower heuristic estimate than
each other state that has previously been taken from that
list). If more than K steps have been made without mak-
ing progress, the search restarts (lines 10–12), boosting a
different open list each time by giving it a high initial prior-
ity while all other lists start with priority zero. If the search
has restarted with each open list being initially boosted once,
it switches to a round robin selection mode (line 12, details
have been omitted from the pseudocode to ensure readabil-
ity). During successor generation, nodes are inserted into the
appropriate open lists according to their associated selection
strategies (lines 24–27). Note that using a regular open list
containing all applicable successors (which is done in our
implementation) ensures completeness of the algorithm on

Algorithm 1: Best-first search with restarts, deferred
evaluation, and several open lists in a priority based
multi-queue approach.

activeList = chooseOpenListToStartWith()1
forall open in openLists do2

open.priority = 03
activeList.priority += V4
activeList.add(s0)5
closedList← ∅6
lastProgressAtStep = 0, currentStep = 07
while activeList is not empty do8

currentStep += 19
if (currentStep - lastProgressAtStep) >K then10

activeList = nextOpenListToBoost()11
restartAtLine2() or switchToRoundRobinMode()12

s← activeList.pop()13
activeList.priority -= 114
if s 6∈ closedList then15

closedList.add(s)16
if s |= G then17

return s as solution18
h = s.compute heuristic()19
f = s.timestamp + h20
if makes progress(s) then21

activeList.priority += V22
lastProgressAtStep = currentStep23

forall child states s′ of s do24
forall open in openLists do25

if open.matches(s′) then26
open.add(s′, f )27

activeList = selectList()28
return no solution found29

temporally simple problems.
For the two parameters of the algorithm we have found

K = 3000 and V = 1000 to work well in practice (these
parameters, however, are quite robust and we got reasonable
results for a wide range of values for both K and V ). Note
that the algorithm can be called from outside in an anytime
fashion where the makespan of previously found solutions
can be used to prune the search space.

Experiments
In our first experiment1 we show the influence that deferred
evaluation and preferred operators have on the search per-
formance of TFD.

Results showing IPC score2 and coverage (in parentheses)
on IPC 2011 benchmarks are presented in Table 1. With-
out preferred operators, switching from eager (’e’) to de-
ferred evaluation (’d’) speeds up the search by saving a lot
of heuristic computations but reduces guidance, altogether

1All our experiments were run on AMD Opteron 2.3 GHZ Dual
Core processors with a memory limit of 2 GB and a timeout of 30
minutes.

2If Q∗ is the makespan of a reference solution, a planner pro-
ducing a solution of makespan Q receives Q∗/Q points of IPC
score. For all our experiments the best known plans (including
ours) are used as reference.
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IPC 2011 e d Pe Pd
CREWPLANNING 0.0 (0) 0.0 (0) 19.9 (20) 19.9 (20)
ELEVATORS 0.0 (0) 0.0 (0) 0.0 (0) 1.0 (1)
FLOORTILE 4.0 (5) 4.1 (5) 4.9 (5) 4.9 (5)
MATCHCELLAR 1.0 (1) 1.0 (1) 15.6 (20) 15.6 (20)
OPENSTACKS 17.8 (20) 16.7 (20) 17.8 (20) 17.7 (20)
PARCPRINTER 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
PARKING 13.7 (17) 10.2 (14) 7.1 (9) 12.2 (16)
PEGSOL 17.9 (18) 18.0 (18) 17.9 (18) 17.9 (18)
SOKOBAN 2.9 (3) 2.9 (3) 2.9 (3) 2.9 (3)
STORAGE 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TMS 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0)
TURNANDOPEN 12.0 (14) 10.7 (13) 12.5 (17) 13.3 (20)
Overall 69.2 (78) 63.7 (74) 98.6 (112) 105.3 (123)

Table 1: Results on IPC 2011 benchmarks measuring the
influence of deferred evaluation and preferred operators in
regular TFD, showing IPC score and coverage (in parenthe-
ses). Used abbreviations are ’P’ for preferred operators, ’d’
for deferred evaluation, and ’e’ for eager evaluation.

leading to a slightly worse performance. This drawback,
however, can be overcome by incorporating preferred op-
erators (’Pd’). With preferred operators bringing back some
of the lost guidance, the advantages of the reduced compu-
tational effort of deferred evaluation can be fully exploited,
leading to both a much higher coverage and IPC score. Note
that using preferred operators increases performance also in
the context of eager evaluation (’Pe’), but to a lesser degree,
so that combining preferred operators and deferred evalua-
tion clearly is the best option.

For our second experiment we have implemented the
methods presented in Section to narrow the set of preferred
operators. Results for Cn, En, and On with 1 ≤ n ≤ 3 are
shown in Table 2.

It can be seen that C and O yield very promising results
with a higher coverage compared to the original method, es-
pecially in ELEVATORS and PARCPRINTER. The reason for
the good performance in ELEVATORS seems to be that by
narrowing the set of preferred operators the weakness of the
heuristic to switch between subgoals during search can be
overcome by focusing on a specific goal. In doing so, it is
better to focus on the cheapest goal (C) than on an arbitrary
one (O). It is useless, however, to focus on the most expen-
sive goal (E), as this changes to often during search. In PAR-
CPRINTER both the cheapest and the most expensive goal
vary a lot during search, so it is best to focus on a fixed goal
like O does. Unfortunately, O does yield very bad results
in CREWPLANNING, where a specific goal ordering needs
to be respected that O is not aware of. Here, techniques to
detect goal orderings (Köhler and Hoffmann 2000) might be
very helpful. While coverage can be increased using our new
techniques, their produced solutions are typically of lower
quality than those of the original method as they drive the
search to satisfy goals more sequentially. This fact becomes
apparent especially in OPENSTACKS, a domain for which
it is very easy to find a solution but the range of quality is
very high and it is important to start the right actions first in

IPC 2011 C1 C2 C3 E1 E2 E3 O1 O2 O3

CREWPLANNING 14.2 15.5 15.6 0.0 2.4 1.6 0.0 2.4 4.2
19 20 20 0 3 2 0 3 5

ELEVATORS 15.1 10.5 7.5 0.0 0.0 0.0 13.4 7.0 4.5
18 12 8 0 0 0 18 10 6

FLOORTILE 4.3 4.9 4.7 4.4 5.2 4.5 4.8 4.8 4.0
5 5 5 5 6 5 5 5 4

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 3.6 5.0 6.4 14.2 14.4 15.3 4.0 6.1 7.8
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 0.0 0.0 0.0 0.0 0.0 9.4 2.7 1.7
1 0 0 0 0 0 10 3 2

PARKING 14.0 14.9 11.4 8.9 8.6 9.0 6.7 8.5 7.5
17 19 14 12 12 12 9 11 10

PEGSOL 17.7 17.4 18.5 18.6 18.8 18.8 18.4 19.0 19.3
18 18 19 19 19 19 19 20 20

SOKOBAN 3.8 3.9 2.9 2.9 2.9 2.9 3.8 3.9 2.9
4 4 3 3 3 3 4 4 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 10.1 10.0 10.8 8.8 8.6 8.6 11.0 8.4 8.6
20 20 20 12 12 12 19 14 14

Overall 99.5 97.7 93.3 73.4 76.5 76.2 87.2 78.5 76.1
142 138 129 91 95 93 124 110 104

Table 2: Performance of new selection strategies on IPC
2011 benchmarks. Gray rows show IPC scores, white rows
coverage.

order to create concurrent solutions. Interestingly, E works
quite well in this domain, as the actions that are needed to
be started first in order to create a compact solution are also
the most expensive ones.

Another interesting observation is that in the good per-
forming methods C and O it is advantageous to concentrate
on a smaller set of subgoals, while the converse holds for the
poor performing method E . This is due to the fact that with
increasing size of the preferred operators set, the original set
is resembled more and more.

The most important observation that can be made from
this experiment has motivated the design of the search pro-
cedure presented in the previous section: Different selection
strategies have strengths in different domains and it appears
to be very desirable to combine these strengths in a gen-
eral way. Table 3 shows results of an implementation of
Algorithm 1 combining narrowing strategies with a queue
containing the original preferred operators (P). The method
that profits the most from this combination is O1, with the
most important factor being the gain in CREWPLANNING.
Besides, the other versions profit also, especially in terms of
quality. Both PC and PO achieve higher IPC scores than P
alone. Table 4 shows that the power of combining selections
strategies can be exploited even further, with PO1C1E1
achieving both the highest coverage and IPC score.
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IPC 2011 PC1 PC2 PC3 PE1 PE2 PE3PO1PO2PO3

CREWPLANNING 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9 19.9
20 20 20 20 20 20 20 20 20

ELEVATORS 15.1 7.7 6.5 0.0 0.0 0.0 13.4 4.3 0.9
18 9 7 0 0 0 18 6 1

FLOORTILE 4.6 4.7 4.5 4.4 4.5 4.3 4.5 4.5 4.4
5 5 5 5 5 5 5 5 5

MATCHCELLAR 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6
20 20 20 20 20 20 20 20 20

OPENSTACKS 17.9 18.0 18.3 18.5 18.7 18.6 18.0 17.7 18.1
20 20 20 20 20 20 20 20 20

PARCPRINTER 1.0 1.0 1.8 0.0 0.0 0.0 9.3 0.9 0.0
1 1 2 0 0 0 10 1 0

PARKING 13.9 15.7 13.4 10.9 11.5 11.1 11.9 12.9 12.3
18 20 17 15 15 15 16 17 16

PEGSOL 17.9 17.9 18.5 17.9 18.4 18.5 18.7 18.5 18.6
18 18 19 18 19 19 19 19 19

SOKOBAN 2.9 2.9 2.9 3.0 2.9 2.9 3.0 2.9 2.9
3 3 3 3 3 3 3 3 3

STORAGE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TMS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0 0 0 0 0 0 0 0

TURNANDOPEN 13.9 13.2 13.2 13.0 13.4 12.9 14.2 13.7 12.6
20 19 19 18 19 18 20 19 18

Overall 122.6116.6114.5103.1104.8103.8128.4110.8105.3
143 135 132 119 121 120 151 130 122

Table 3: Combining narrowing strategies with the original
selection strategy (P) via restarting as described in Algo-
rithm 1. Gray rows show IPC scores, white rows coverage.

To see how these improvements affect the performance
of TFD relatively to other temporal planning systems, we
compared both the original TFD and TFD enriched with our
new techniques to the participants of the temporal satisfic-
ing track of IPC 2011 that achieved at least one point in the
competition. For this experiment, we did not re-run the other
planning systems, but use the raw results of the competition
directly.3 Table 5 presents IPC scores (gray rows) and cover-
age (white rows). It can be seen that PO1C1E1 clearly out-
performs all competitors both in terms of coverage and IPC
score. Note that for some planners the scores presented in
this paper vary from the scores they received in the competi-
tion as we did find better plans for many problems and used
them as reference plans to compute all scores. For exam-
ple, CPT4, which is optimal for the conservative semantics
of Smith and Weld (Smith and Weld 1999), produced some
non-optimal plans in Floortile and Parcprinter. This was not
recognized as its plans were the best of those generated dur-
ing the competition.

3IPC 2011 has been run on INTEL Xeon 2.93 GHz Quad Core
processors with a memory limit of 6 GB and a timeout of 30 min-
utes. Note that TFD (like most processes) generally runs faster on
such a system than on the system we used to generate our results, so
the comparison is in favor of the planning systems that participated
in the competition.

IPC 2011 PC1O1 PC1E1 PO1E1 PO1C1E1
CREWPLANNING 19.9(20) 19.9(20) 19.9(20) 19.9(20)
ELEVATORS 13.4(18) 15.4(18) 13.4(18) 13.4(18)
FLOORTILE 4.8(5) 4.6(5) 4.7(5) 4.8(5)
MATCHCELLAR 15.6(20) 15.6(20) 15.6(20) 15.6(20)
OPENSTACKS 17.9(20) 18.2(20) 18.3(20) 17.9(20)
PARCPRINTER 9.5(10) 0.9(1) 9.5(10) 9.5(10)
PARKING 14.1(18) 13.8(17) 12.0(16) 14.6(19)
PEGSOL 18.6(19) 18.5(19) 18.3(19) 18.6(19)
SOKOBAN 2.9(3) 3.0(3) 2.9(3) 2.9(3)
STORAGE 0.0(0) 0.0(0) 0.0(0) 0.0(0)
TMS 0.0(0) 0.0(0) 0.0(0) 0.0(0)
TURNANDOPEN 14.0(20) 13.2(19) 14.1(20) 14.0(20)
Overall 130.7(153) 123.1(142) 128.7(151) 131.2(154)

Table 4: IPC scores and coverage (in parentheses) of com-
bining more than one narrowing strategy via restarting as
described in Algorithm 1.

In another experiment, presented in Table 6, we focus on
quality by comparing TFD featuring our techniques, called
TFD+, pairwise to all other planners of IPC 2011, only con-
sidering problems where both planners have found a solu-
tion by computing the ratio between the makespan of those
solutions. Scores greater than 1.0 therefore indicate that we
found plans of higher quality. It can be seen that our plans
offer the highest quality throughout all domains.

Finally, in our last experiment we show that the good per-
formance of our techniques is not only a phenomenon on
a specific benchmark set, but occurs on a wider range of
domains. Therefore, we use the benchmark suites of IPCs
2006 and 2008 (excluding Pathways and TPP, where not
only makespan but a more complex metric needs to be op-
timized, a feature TFD cannot deal with yet). Results are
presented in Table 7. Note that only for the benchmark set
of 2008 reference plans are used. In this experiment the ti-
tle of this paper is reflected very well: Coverage is increased
drastically while the average plan quality is even slightly im-
proved.

Conclusion
In this paper we have presented novel methods to narrow
sets of preferred operators. Embedding these methods in
the search framework of TFD increases its coverage at the
price of quality. This drawback, however, can be overcome
by utilizing a restarting strategy that is incorporated into a
priority-based multi-queue best-first search framework. We
have implemented these techniques and have shown empir-
ically that combining them increases the coverage of TFD
by a huge amount and preserves the average quality of the
produced plans, leading to a system that solves more prob-
lems than each of the competitors of the temporal satisficing
track of IPC 2011 and clearly outperforms all of them in
terms of IPC score. Furthermore, we have shown that these
excellent behavior also occurs on the benchmark suites of
2006 and 2008. Future work includes incorporating goal or-
dering techniques to find more sophisticated orderings for
O as well as determining additional selection strategies for
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preferred operators that might increase the coverage of TFD
even further. While this work is motivated from the large gap
between coverage and quality when searching in the space
of time-stamped states, it can also be applied to classical
planning and doing so is a major part of our future work.
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C1
E1

CREWPLANNING 7.0 0.0 16.0 15.9 20.0 20.0 19.9 19.9
7 0 20 20 20 20 20 20

ELEVATORS 0.0 6.7 8.6 8.9 2.2 12.3 1.0 13.4
0 9 20 20 3 15 1 18

FLOORTILE 12.1 4.8 6.9 8.3 0.0 7.3 4.9 4.8
15 5 13 15 0 12 5 5

MATCHCELLAR 0.0 12.5 0.0 0.0 15.3 0.0 15.6 15.6
0 15 0 0 20 0 20 20

OPENSTACKS 0.0 0.0 12.6 12.1 15.0 19.9 17.7 17.9
0 0 20 19 20 20 20 20

PARCPRINTER 2.0 0.0 3.7 4.7 0.0 2.0 0.0 9.5
5 0 7 8 0 4 0 10

PARKING 0.0 0.0 11.0 12.7 14.7 15.9 12.2 14.6
0 0 20 20 20 20 16 19

PEGSOL 19.0 19.9 17.2 18.0 18.6 20.0 17.9 18.6
19 20 20 20 19 20 18 19

SOKOBAN 0.0 0.0 10.9 11.6 2.5 4.5 2.9 2.9
0 0 12 12 3 6 3 3

STORAGE 0.0 0.0 2.7 7.2 0.0 15.5 0.0 0.0
0 0 5 11 0 19 0 0

TMS 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0
0 0 0 0 5 0 0 0

TURNANDOPEN 0.0 7.0 0.0 0.0 7.8 0.0 13.3 14.0
0 13 0 0 9 0 20 20

Overall 40.1 50.9 89.6 99.3 101.1 117.2 105.3 131.2
46 62 137 145 119 136 123 154

Table 5: Gray rows show IPC scores, white rows coverage
of participants of IPC 2011 that solved at least one instance.
The two rightmost columns show results of TFD using the
original selection strategy for preferred operators and using
our new techniques (PO1C1E1).
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CREWPLANNING 71.00 – 201.29 201.29 200.99 200.99 201.00
ELEVATORS – 90.94 182.08 181.98 31.01 150.93 10.59
FLOORTILE 51.67 20.99 42.38 52.22 – 42.36 50.96
MATCHCELLAR –151.06 – – 201.25 – 201.24
OPENSTACKS – – 201.47 191.46 201.23 200.92 201.04
PARCPRINTER 21.76 – 71.88 71.88 – 41.95 –
PARKING – – 191.50 191.35 191.12 191.11 161.03
PEGSOL 180.99190.98 191.16 191.11 181.00 190.98 181.00
SOKOBAN – – 31.02 31.03 21.17 31.10 31.00
STORAGE – – – – – – –
TMS – – – – – – –
TURN AND OPEN –131.38 – – 90.61 – 201.03
Overall 321.15581.081101.541101.481111.081041.081231.05

Table 6: Pairwise plan quality comparisons to TFD+ fea-
turing our new techniques, namely separate queues O1, C1,
and E1, respectively, and restarting like described in Al-
gorithm 1. Only instances that are solved by both ap-
proaches (the small number states their number) are consid-
ered. Scores greater than 1.0 indicate that TFD+ generates
plans of higher quality.

TFD TFD+ Quality
IPC 2006
OPENSTACKS 17.5 (18) 20.0 (20) 18 1.03
PIPESWORLD 17.7 (18) 15.1 (16) 15 0.96
ROVERS 11.9 (12) 16.8 (17) 12 0.99
STORAGE 16.7 (17) 16.7 (17) 17 1.01
TRUCKS 13.5 (14) 29.4 (30) 14 1.00
IPC 2008
CREWPLANNING-strips 29.9 (30) 29.9 (30) 30 1.00
ELEVATORS-numeric 16.7 (20) 25.2 (30) 20 1.02
ELEVATORS-strips 13.0 (16) 20.8 (30) 16 0.96
MODELTRAIN-numeric 1.0 (1) 5.3 (7) 1 1.00
OPENSTACKS-adl 27.1 (30) 27.6 (30) 30 1.02
OPENSTACKS-strips 27.1 (30) 28.1 (30) 30 1.04
PARCPRINTER-strips 9.0 (13) 22.4 (23) 13 1.77
PEGSOL-strips 28.3 (29) 29.3 (30) 29 1.01
SOKOBAN-strips 11.9 (12) 11.9 (12) 12 1.00
TRANSPORT-numeric 4.9 (6) 11.0 (18) 6 1.05
WOODWORKING-numeric 16.6 (28) 21.6 (30) 28 1.36
Overall 262.9 (294) 331.1 (370) 291 1.08

Table 7: The two columns in the middle show IPC scores
and coverage (in parentheses) of regular TFD and TFD+ on
the benchmarks suites of IPC 2006 and 2008. TFD+ fea-
tures separate queues for C1, O1, and E1, as well as restart-
ing according to Algorithm 1. The last column shows pair-
wise plan quality comparisons between TFD and TFD+ on
all instances that were solved by both approaches (the small
number states their number). Scores greater than 1.0 indi-
cate that TFD+ generates plans of higher quality.
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International Planning Competition, 29–30.
Eyerich, P.; Mattmüller, R.; and Röger, G. 2009. Using the
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López, C. L., eds., Seventh International Planning Compe-
tition, 128–131.
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Abstract

Recent domain-determinization techniques have been
very successful in many probabilistic planning prob-
lems. We claim that traditional heuristic MDP algo-
rithms have been unsuccessful due mostly to the lack
of efficient heuristics in structured domains. Previous
attempts like mGPT used classical planning heuristics to
an all-outcome determinization of MDPs without dis-
count factor ; yet, discounted optimization is required
to solve problems with potential dead-ends. We pro-
pose a general extension of classical planning heuris-
tics to goal-oriented discounted MDPs, in order to over-
come this flaw. We apply our theoretical analysis to
the well-known classical planning heuristics hmax and
hadd, and prove that the extended hmax is admissible.
We plugged our extended heuristics to popular graph-
based (Improved-LAO∗, LRTDP, LDFS) and ADD-
based (sLAO∗, sRTDP) MDP algorithms: experimental
evaluations highlight competitive results compared with
the winners of past competitions (FF-REPLAN, FPG,
RFF), and show that our discounted heuristics solve
more problems than non-discounted ones, with better
criteria values. As for classical planning, the extended
hadd outperforms the extended hmax on most problems.

Introduction
Significant progress in solving large goal-oriented prob-
abilistic planning problems has been achieved recently,
partly due to tough challenges around the probabilistic
part of International Planning Competitions (Younes et al.
2005). Looking back at successful planners, most of them
rely on a deterministic planner to solve the probabilistic
planning problem: FPG-FF (Buffet and Aberdeen 2007),
FF-REPLAN (Yoon, Fern, and Givan 2007), RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010), FF-H (Yoon et al.
2010), GOTH (Kolobov, Mausam, and Weld 2010). These
planners “determinize” the original domain, generally by re-
placing probabilistic effects by the most probable one for
each action (“most probable outcome” determinization), or
by considering as many deterministic actions as probabilis-
tic effects (“all-outcomes” determinization). Other success-
ful but non determinization-based approaches are FPG (Buf-
fet and Aberdeen 2009) and FODD-PLANNER (Joshi, Ker-
sting, and Khardon 2010). It is noteworthy to mention that

FPG was later improved to FPG-FF using a deterministic
planner to guide simulated trajectories to the goal.

Yet, to our knowledge, there does not really exist
any domain-independent, optimal and fully probabilis-
tic algorithm whose performances are competitive with
determinization-based approaches. In particular, traditional
Markov Decision Process (MDP) heuristic algorithms like
(s)LAO∗ (Hansen and Zilberstein 2001; Feng and Hansen
2002), (s,L)RTDP (Bonet and Geffner 2003; Feng,
Hansen, and Zilberstein 2003), or LDFS (Bonet and Geffner
2006), have not enjoyed competitive results on the compe-
tition domains. However, one can wonder whether the effi-
ciency of determinization-based planners is due to solving
many simpler deterministic problems, or rather to very effi-
cient heuristics implemented in the underlying deterministic
planner.

The mGPT planner by (Bonet and Geffner 2005) par-
tially answered this question; by applying state-of-the-art
classical planning heuristics to an all-outcome determiniza-
tion, it achieved good performances on domains modeled
as Stochastic Shortest Path Problems (SSPs). As formalized
later, such problems assume that there exists an optimal pol-
icy that reaches a goal state with probability 1. If not, it
means that any optimal policy may reach some states with
a positive probability, from where no goal states are then
reachable (called dead-ends). In the 2004 probabilistic com-
petition, mGPT could not solve domains with dead-ends like
exploding blocksworld.

In this paper, we propose to handle dead-ends by means
of a discounted criterion, thus solving discounted SSPs. Our
work is different from the inverse transformation done in
(Bertsekas and Tsitsiklis 1996) where it is shown that any γ-
discounted MDP without termination state can be stated as
an equivalent SSP (without discount factor): in their work,
the goal state of the SSP only models the anytime termina-
tion of the process with probability 1 − γ, and is defined as
an absorbing state that is reachable from any state. The main
drawbacks of this approach are: (1) the goal states of the
original problem cannot be related to any state of the equiv-
alent SSP, so that an algorithm for the equivalent SSP cannot
be guided towards the goal states of the problem; (2) dead-
ends of the original problem lead themselves to the goal state
of the equivalent SSP, thus trying to reach the goal state leads
to a policy that is attracted by dead-ends. In order to avoid
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these flaws, in our work, we rather reason about the true goal
states of the original problem, which is seen as a SSP whose
costs are discounted.

Therefore, we propose (1) a generic extension of any clas-
sical planning heuristic to classical SSPs without dead-end
and (2) a further extension to discounted SSPs (able to deal
with dead-ends) that directly target the original problem’s
goal states. We apply these approaches to the well-known
hmax and hadd heuristics by (Bonet and Geffner 2001), but
could have extended other classical planning heuristics like
hFF by (Hoffmann 2001) in a similar way. We use our heuris-
tics in state-of-the-art MDP heuristic search algorithms
(Improved-LAO∗, LRTDP, LDFS, sLAO∗, sRTDP) with
discounted settings, which always converge in presence or
not of reachable dead-ends. We experimentally show that
these algorithms with our discounted heuristics provide bet-
ter goal reaching probability and average length to the goal
than the winners of previous competitions or the same algo-
rithms without discount factor.

Goal-oriented Markov Decision Process
The following definition is slightly adapted from (Wu,
Kalyanam, and Givan 2008).
Definition 1. A goal-oriented MDP is a tuple
〈S, I,G,A, app, T, C〉 with:
• S a set of states;
• I ⊆ S a set of possible initial states;
• G ⊆ S a set of goal states;
• A a set of actions;
• app : S → 2A an applicability function: app(s) is the set

of actions applicable in s;
• T : S × A × S → [0; 1] a transition function such that
T (s, a, s′) = Pr(s′ | a, s) and T (g, a, s′) = 0 for all
g ∈ G and s′ 6∈ G (goal states are absorbing);

• C : S ×A → R+ a cost function such that, for all a ∈ A,
C(s, a) = 0 if s ∈ G, and C(s, a) > 0 if s 6∈ G.
A solution of a goal-oriented MDP is a partial policy

πX : X ⊆ S → A mapping a subset of states X to actions
minimizing some criterion based on the costs.X contains all
initial states, at least one goal state. Moreover, πX is closed:
states reachable by applying πX on any state in X are in X .

STRIPS representation of MDPs
ADL representation of MDPs as formalized in the PPDDL
language by (Younes et al. 2005), has facilitated bench-
mark sharing and planners comparison. Moreover, this rep-
resentation can be transformed into a simpler STRIPS form
(Gazen and Knoblock 1997), that enabled to derive efficient
domain-independent heuristics from the model, which has
been mainly exploited by determinization-based approaches
through the underlying deterministic planner. Yet, as par-
tially highlighted by (Bonet and Geffner 2005), we claim
that efficient domain-independent heuristics can be directly
derived from the original probabilistic domain without de-
terminization, and plugged to MDP heuristic algorithms.

In probabilistic STRIPS, states can be seen as collec-
tions of atoms from the set Ω of all atoms. Actions are

probabilistic operators of the form o = 〈prec, cost, [p1 :
(add1, del1), · · · , pm : (addm, delm)]〉 where

∑m
i=1 pi = 1

(more details in (Younes et al. 2005; Bonet and Geffner
2005)) and:
• prec is a collection of atoms such that the action is appli-

cable in a state s iff prec ⊆ s;
• cost is the cost of the action; for each i ∈ [1;m], pi is the

probability of the ith effect which is represented by the set
addi of atoms becoming true and the set deli of atoms
becoming false; atoms that are neither in addi nor in deli
keep their values.

Note that the remaining of this paper only assumes a prob-
abilistic STRIPS representation of goal-oriented MDPs, so
our contribution is valid for any formalism that boils down
to such representation.

We illustrate this concept with the well-known
blocksworld problem, which consists in building
an ordered stack of n blocks (b1, · · · , bn) by a robot with a
single hand, where each block can initially belong to differ-
ent stacks. There are n(n + 3) + 1 atoms: (emptyhand);
(holding b), (ontable b) and (clear b) for each block b;
(on b1 b2) for any two blocks b1 and b2. As an example of
action, (pickup b1 b2) is defined by:

〈{(emptyhand), (clear b1), (on b1 b2)},
[0.75 : ({(holding b1), (clear b2)},
{(emptyhand), (on b1 b2)})

0.25 : ({(clear b2), (ontable b1)},
{(on b1 b2)})]〉

Dead-end states
The existence of a solution depends on structural proper-
ties of the goal-oriented MDP, precisely on the presence of
reachable dead-ends, as defined below.
Definition 2. A dead-end is a state from which the proba-
bility to reach the goal with any policy is equal to zero.

A non-goal absorbing state is a dead-end state. Now, con-
sider the following criterion, known as the total criterion:

∀s ∈ S, π∗(s) = argminπ∈AS E
[∑+∞

t=0 Ct | s0 = s, π
]

(1)

where Ct is the cost received at time t starting from s and
executing policy π. If π can reach some dead-end state sd
with a positive probability, as no goal state is reachable from
sd by definition, and because costs received in any non-goal
state are strictly positive, the sum of future costs is +∞.
Thus, eq. 1 has a solution iff there exists at least one policy
that, with probability 1, does not reach any dead-end state.

An example of goal-oriented MDP with dead-ends is the
exploding blocksworld domain, which extends the
blocksworld domain to blocks that can detonate and
then destroy other blocks or the table itself. The domain
contains 2n + 1 additional atoms: (nodetonated b) and
(nodestroyed b) for each block b; (nodestroyed − table).
To build a goal stack, two kinds of actions are required:
putting a block on the table, which can detonate the block
and destroy the table with probability 3/5; putting a block
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on another block, which can detonate the handled block and
destroy the target block with probability 1/10. Destroying
the table or a block belonging to a goal stack prevents from
reaching the goal, and thus all states reachable from these
situations are dead-ends. As all policies need to apply such
actions to reach the goal, these dead-ends are reachable with
a positive probability by executing any policy from the ini-
tial state.

Whether the total criterion has a solution or not is unre-
lated to the general problem of finding a policy that reaches a
goal state with a positive probability (possibly not 1), what-
ever the minimization criterion considered. It only means
that a planner based on the total criterion, as mGPT is, will
not find a working solution for any domain with reachable
dead-ends like exploding blocksworld. But other
planners that are not based on this criterion, or that do not
optimize any criterion like FF-REPLAN, will possibly find
a solution for this domain, that reaches a goal state with a
probability lower than 1. And this is the expected result.

Unfortunately, deciding if a given domain contains dead-
ends reachable by the optimal policy boils down to optimiz-
ing the total criterion itself. Thus, most algorithms based on
this criterion, like mGPT, simply cross the fingers: they try
to solve the problem and hope for the best. Yet, the total
criterion is very popular in heuristic MDP planning because
it allows to design efficient domain-independent admissible
heuristics, as explained in the next section.

Solving undiscounted goal-oriented MDPs
This class of MDPs, known as Stochastic Shortest Path
Problems (SSPs) extended to positive costs, has been ex-
tensively studied1. If there exists an optimal policy reach-
ing a goal state with probability 1, the total criterion of eq.
1 is well-defined, and heuristic algorithms optimize only
relevant states when starting from known initial states. A
forward-chaining procedure iteratively expands the searched
state space until the value of explored states has converged.
The convergence condition actually depends on the way
states are explored, i.e. on the heuristic and on the algo-
rithm exploiting it. Yet, all these algorithms update the
value of any explored state s by using the same Bell-
man backup equation (see (Bonet and Geffner 2003; 2006;
Hansen and Zilberstein 2001)):

V (s)← mina∈app(s)
{
C(s, a) +

∑
s′∈S T (s, a, s

′)Ṽ (s′)
}

(2)

where Ṽ (s′) = V (s′) if s′ has already been explored, and
otherwise Ṽ (s′) = H(s′), withH : S → R+.H is a heuris-
tic function that initializes the value of unexplored states. It
is proved (e.g. (Hansen and Zilberstein 2001)), that heuris-
tic algorithms converge to an optimal solution iff H is ad-
missible, i.e.: ∀s ∈ S, H(s) 6 V π

∗
(s). The closer H is to

V π
∗
, the less states are explored, and the faster the algorithm

converges. To be efficient in a domain-independent context,
heuristic functions must be much easier to compute than the

1SSPs are often defined as goal-oriented MDPs with unit costs
when not in a goal state, rather than any positive value like in our
more general definition.

value function itself, and as close as possible to the opti-
mal value function. To achieve these antagonist objectives, a
good compromise consists in computing heuristic values on
a relaxed planning domain.

New STRIPS relaxation heuristics for SSPs
We here propose a generic extension of classical planning
heuristics to SSPs, by reasoning about the “all-outcome de-
terminization” of the MDP, generalizing the work by (Bonet
and Geffner 2005). We show how to design admissible
heuristics for SSPs from the deterministic case, and apply
our theoretical extension to the hmax and hadd heuristics by
(Bonet and Geffner 2001). Note that we could also have ap-
plied our extension to the hFF heuristic (Hoffmann 2001).

As suggested by (Bonet and Geffner 2005), the min-min
admissible heuristic hm-m is recursively defined for every
reachable state s ∈ S \ G by:

hm-m(s)← min
a∈app(s)

{
C(s, a) + min

s′:T (s,a,s′)>0
hm-m(s

′)

}
(3)

with the initial conditions: hm-m(s′) = 0 if s′ ∈ G and
hm-m(s′) = +∞ otherwise. This heuristic counts the min-
imum number of steps required to reach a goal state in a
non-deterministic relaxation of the domain. The min-min
heuristic is well-informed but it naively searches in the orig-
inal state space, so that it might explore as many states as
non-heuristic algorithms. But clever heuristics that return a
value lower or equal than hm-m still are admissible.

Let us give the intuition of the STRIPS relaxation heuris-
tics by considering deterministic effects. As states are col-
lections of atoms, only atoms added by successive actions
need to be tracked down. As in (Bonet and Geffner 2001),
we note gs(ω) the cost of achieving an atom ω from a state
s, i.e. the minimum number of steps required from s to have
ω true. This value is computed by a forward chaining proce-
dure where gs(ω) is initially 0 if ω ∈ s and +∞ otherwise:

gs(ω)← min
a∈A such that:
ω∈add(a)

{gs(ω), cost(a) + gs(prec(a))} (4)

where gs(prec(a)) denotes the cost of achieving the set of
atoms in the preconditions of a. This requires to define the
cost of achieving any set ∆ ⊆ Ω of atoms, what can be
computed by aggregating the cost of each atom:

gs(∆) =
⊕

ω∈∆ gs(ω) (5)

When the fixed-point of eq. 4 is reached, the cost of achiev-
ing the set of goal states can be computed with eq. 5 and a
heuristic value of s is h⊕(s) = gs(G). Two aggregation op-
erators have been investigated by (Bonet and Geffner 2001):
⊕ = max that gives rise to the hmax heuristic, such that
hmax 6 V ∗; ⊕ =

∑
that provides the hadd heuristic, which

is not admissible but often more informative.
Based on this helpful background, we can now extend

hmax and hadd to the total criterion of the probabilistic case.
For proof of admissibility, we are searching for a STRIPS re-
laxation heuristic whose value is lower than the min-min
relaxation heuristic. Looking at eq. 3, this heuristic works

36



on a relaxed non-deterministic version of the original prob-
lem, known as the “all-outcome” determinization. This al-
lows us to translate the search of a heuristic for the proba-
bilistic problem into the search of a heuristic for a determin-
istic problem, as highlighted by the following proposition.

Proposition 1. Let M be a goal-oriented MDP without
reachable dead-ends. Let D be a deterministic planning
problem (the “deterministic relaxation ofM”), obtained by
replacing each probabilistic effect of each action of M by
a deterministic action having the same precondition and the
add and delete effects of the probabilistic effect. Then, an
admissible heuristic for D is an admissible heuristic forM.

Proof. Let appD be the applicability function for the
deterministic problem. Eq. 3 reduces to hm-m(s) ←
mina∈appD(s) {C(s, a) + hm-m(s′)}, which is the update
equation of optimal costs forD. So the optimal cost of plans
for D is equal to the value of the min-min relaxation for
M. Let hX be an admissible heuristic for D. hX is lower
than the optimal cost of plans for D, i.e. than the value of
hm-m forM, so it is admissible forM.

This proposition means that the hmax heuristic computed
in D is admissible for M. It also demonstrates the admis-
sibility of the heuristics used by mGPT (Bonet and Geffner
2005), but the FF-based one that is not admissible in D.

However, such heuristics require to construct the deter-
ministic relaxation of a goal-oriented MDP before solving it.
To avoid this preliminary construction, we make this deter-
ministic relaxation implicit in a new procedure that directly
computes costs of atoms in the probabilistic domain:

gs(ω)← min
a∈A such that:

∃i∈[1;ma],ω∈addi(a)
{gs(ω), cost(a)+gs(prec(a))} (6)

Eq. 5 does not need to be changed for the probabilistic case.
As in the deterministic case, we define the new h+

max for SSPs
that is equal to gs(G) with the max aggregation operator.

Theorem 1. The h+
max heuristic is admissible for goal-

oriented MDPs without reachable dead-ends.

Proof. Let M be a goal-oriented MDP without reachable
dead-ends and D be its deterministic relaxation. Eq. 6 for
M boils down to eq. 4 for D. Thus, h+

max inM has the same
value as hmax inD. Since hmax is admissible forD, and using
proposition 1, hmax and thus h+

max are admissible inM.

We also define the new h+
add for SSPs as gs(G) with the

∑

aggregation operator, but as in the deterministic case, h+
add

is not admissible. It is however more informative than h+
max

and, as will be shown in the experiment section for the gen-
eral discounted case, it is more efficient in practice.

Discounted Stochastic Shortest Path Problem
The previous h+

max and h+
add heuristics, as well as heuristics

by (Bonet and Geffner 2005), unfortunately are useless for
goal-oriented MDPs where a policy execution may reach
some dead-end state with a positive probability. As no goal
state is reachable from a dead-end, h+

max and h+
add may both

return an infinite value for such state. Thus, because of eq. 2,
the value of any preceding state will be infinite as well; after
some iterations, this infinite value will propagate to at least
one initial state. In fact, this fatal issue arises whatever the
heuristic used: eq. 1 shows that, independently from heuris-
tic values, the value of any dead-end state is equal to +∞.

To cope with the divergence issue of the total criterion,
we extend the previous SSP generalization of classical plan-
ning heuristics to discounted SSPs, which, like general MDP
approaches, maximize the following discounted criterion:

∀s ∈ S, π∗(s) = argminπ∈AS E
[∑+∞

t=0 γ
tCt | s0 = s, π

]
(7)

where 0 < γ < 1 is a discount factor that ensures the con-
vergence of the series of discounted costs for all classes of
MDPs. In particular, values of all dead-ends are now finite
and properly propagate to the initial state in the Bellman
equation. For goal-oriented MDPs, this criterion allows us
to define the following class of problems, that includes SSPs
for γ = 1, and that has always a solution.

Definition 3. A Discounted Stochastic Shortest Path Prob-
lem (DSSP) is a goal-oriented MDP whose optimization cri-
terion is given by eq. 7.

As highlighted in the introduction of this paper, note that
DSSPs are different from the transformation of discounted
MDP without termination states to an equivalent SSP done
in (Bertsekas and Tsitsiklis 1996): in our case, we reason
about goal states of the problem, whereas in the aforemen-
tioned book, either the MDP does not have any goal state or
the SSP has at least one proper policy (i.e. does not have any
dead-end). In this section, we present an extension of classi-
cal planning heuristics to goal-oriented MDPs with potential
dead-ends, using the discounted criterion and targeting the
true goal states, contrary to (Bertsekas and Tsitsiklis 1996).
We prove the admissibility of the extended heuristics under
some assumptions for the original heuristic, and apply this
extension to the hmax and hadd heuristics.

When reasoning on individual states, a well-informed
heuristic for DSSPs can be obtained by inserting γ in eq.
3. Unfortunately, contrary to the non-discounted case, this
“discounted” hm-m heuristic does not generalize well to
atom-space reasoning: eq. 6 that gave rise to our h+

max and
h+

add heuristics for SSPs, cannot be modified by simply in-
serting γ in the equation. The reason is that γ discounts fu-
ture values, whereas eq. 6 is a forward procedure that up-
dates past values. Naively inserting γ in this equation would
lead to totally incoherent heuristic values.

For the sake of generality, we keep general positive costs
in the definition of DSSPs, as did (Bonet and Geffner 2005)
for instance in the case of SSPs. However, we caution the
reader against using DSSPs with non-unit costs. Indeed, be-
cause of the discount factor and different transition costs,
near dead-ends could become more interesting than far goal-
states; thus, optimal policies could lead to dead-ends with
a higher probability than to goal states. Yet, traditional ap-
proaches using the total criterion do not provide a better
model, because they cannot solve the problem if there are
reachable dead-ends. A more sophisticated approach, rely-
ing on bi-optimization of goal reachability probability and
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costs of only paths reaching the goal, has been very recently
proposed (Teichteil-Königsbuch 2012). This approach pro-
vides new theoretical foundations as well as some simple
algorithmic means, to solve goal-oriented MDPs with reach-
able dead-ends and general costs (unit or non-unit, positive
or negative). However, it has not been yet applied in a heuris-
tic search context.

The generalization of our h+
max and h+

add heuristics to the
discounted case relies on the computation of a lower bound
on the minimum non-zero transition cost received along all
paths starting from a state s, by means of a procedure in-
spired by eq. 6, that also reasons on individual atoms. This
lower bound is required in our approach to handle general
non-unit costs, but it is simply 1 in the unit-costs case. We
compute an admissible heuristic for DSSPs by discounting
successive steps and lowering all transition costs with this
bound. To this purpose, we state and prove the following
theorem, that is valid for general DSSPs, based on lower
bounds on the minimum cost received along paths and the
minimum number of steps required to reach a goal state.
Theorem 2. Let s be a non-goal state of a DSSP, cs > 0 be
a lower bound on the minimum over all non-zero transition
costs received from s by applying any policy, and ds > 1
a lower bound on the number of steps required to reach a
goal state from s by applying any policy (ds = +∞ if s is
a dead-end). Then, the hγ function defined as follows is an
admissible heuristic:

hγ(s) =

{
cs
∑ds−1
t=0 γt if ds < +∞

cs/(1− γ) otherwise

}
= cs

1− γds
1− γ

Proof. Let Φπ
∗
(s) be the infinite but countable set of execu-

tion paths of π∗ starting in s. Let P (φ) and c(φ) be resp. the
probability and the (accumulated) cost of a path φ ∈ Φπ

∗
(s).

Let d(φ) be the length of a path φ until it reaches a goal state
(d(φ) = +∞ if φ does not reach a goal state). By defini-
tion of goal-oriented MDPs, all costs received after a goal
is reached are equal to zero. By noting Cφt the cost received
at time t along a path φ, we have: c(φ) =

∑+∞
t=0 γ

tCφt =∑d(φ)−1
t=0 γtCφt > cs

∑ds−1
t=0 γt because d(φ) > ds and

Cφt > cs. Thus: V π
∗
(s) =

∑
φ∈Φπ∗ (s) P (φ)c(φ) >

∑
φ∈Φπ∗ (s) P (φ)

(
cs
∑ds−1
t=0 γt

)
= cs

∑ds−1
t=0 γt because∑

φ∈Φπ∗ (s) P (φ) = 1. In the special case ds = +∞ (i.e.

s is a dead-end), V π
∗
(s) > cs

∑+∞
t=0 γ

t = cs/(1− γ).

The previous theorem provides a new admissible heuristic
for all discounted goal-oriented MDPs. In the next section,
we will propose atom-space procedures to efficiently com-
pute the lower bounds cs and ds.

New STRIPS relaxation heuristics for DSSPs
Atom-space computation of cs. We can reuse the idea of
the hmax and hadd heuristics, consisting in forgetting delete
effects of the STRIPS domain. We collect all non-zero costs
received by successively applying all applicable actions in
the relaxed domain and keep the minimum one. Let s ∈ S

be a state, ω ∈ Ω be an atom and cs(ω) be the minimum non-
zero transition cost received until ω is added, starting from
s. This value is computed by a forward chaining procedure
where cs(ω) is initially 0 if ω ∈ s and +∞ otherwise:

cs(ω)← min
a∈A such that:

∃i∈[1;ma],ω∈addi(a)
cost(a)>0,cs(prec(a))<+∞

{
cs(ω), cost(a), cs(prec(a))

}

(8)
where, for all set of atoms ∆ ⊆ Ω, cs(∆) is the minimum
cost received to add all atoms in ∆:

cs(∆) = minω∈∆ cs(ω) (9)

When the fixed point of update equation 8 is reached, a lower
bound on the minimum non-zero transition cost received
along all paths starting from a state s is: cm(s) = cs(Ω).
For initialization purposes, we define a filter cs(prec(a)) as
cost(a) if prec(a) ⊆ s and as cs(prec(a)) otherwise.

Atom-space computation of ds. ds can be obtained by
computing the h+

max heuristic on a slight variation of the in-
put domain, where all non-zero costs are set to 1. Indeed, in
such a case, gs(ω) represents the minimum number of steps
required to add the atom ω. Thus, h+

max(s) = maxω∈G gs(ω)
is lower than the minimum number of steps required so that
all atoms in G have been added, what is the intended lower
bound. This simple observation combined with Theorem 2
allows us to derive the admissible heuristic hγmax for DSSPs
from h+

max, the latter being computed by assuming that all
non-zero action costs are equal to 1. We also derive a non-
admissible but well-informed heuristic hγadd from h+

add. We
note h1,+

max and h1,+
add the resp. h+

max and h+
add heuristics obtained

when all non-zero action costs in eq. 6 are replaced by 1.

Definition 4. Let cm(s) be a lower bound on the cost re-
ceived from a state s by applying any policy as defined
above, and h1,+

X a heuristic with values in N+ such that
h1,+

X (s) = 0 if s is a goal and h1,+
X (s) = +∞ if s is a

dead-end. The hγX heuristic is defined as:

hγX(s) = cm(s)
1− γh1,+X (s)

1− γ

The h1,+
max and h1,+

add both satisfy above conditions, so that
we can define hγmax and hγadd. Note that the heuristics of
(Bonet and Geffner 2005), that work only for goal-oriented
MDPs without reachable dead-ends, can be generalized to
the discounted case in the same way, so become helpful in
presence of dead-ends. Moreover, with unit costs (cm(s) = 1
if s is not a goal state) and no dead-ends (we can safely set
γ to 1), hγX reduces to h+

X .
Finally, we prove that the hγmax heuristic is admissible for

all goal-oriented MDPs, with or without reachable dead-
ends.

Theorem 3. The hγmax heuristic is admissible for all goal-
oriented MDPs (with or without dead-ends).

Proof. Directly follows from Theorems 1 and 2.
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Another nice result is that h1
max = h+

max and h1
add = h+

add: it
means that hγmax and hγadd generalize h+

max and h+
add for DSSPs

and for SSPs as well, rather than simply deriving them to a
different use case.

To our knowledge, the new hγmax heuristic, generalized
from classical planning heuristics, is an original atom-space
admissible heuristic for all goal-oriented MDPs with or
without dead-ends. Its complexity, like the original hmax, is
polynomial in the number of atoms.

Experimental evaluations
Testbed description
We tested our approach on 150 problems from the fully ob-
servable probabilistic track of the 2008 International Plan-
ning Competition (IPC). Each problem was solved by 5
MDP heuristic algorithms (detailed below) with our hγmax
and hγadd heuristics for each of them, and by previous win-
ners of the past IPCs using their last available versions
from their websites and optimized settings (such as ‘all-
outcome’ effects for determinization-based planners and
the ATLAS library): FF-REPLAN (Yoon, Fern, and Givan
2007), FPG (Buffet and Aberdeen 2009) and RFF (Teichteil-
Königsbuch, Kuter, and Infantes 2010). Each problem was
solved by 6 × 2 + 3 = 15 planners; in order to evaluate all
planners on all problems in a reasonable time, each planner
was given at most 10 minutes and 1.8 GB of RAM per prob-
lem. The machine used was an Intel Xeon running at 2.93
GHz in 64 bits mode on Ubuntu Linux.

We used the mdpsim simulator from IPCs to evaluate dif-
ferent criteria. As soon as a planner converges or exceeds its
time or memory limits, the simulator executes the planner’s
policy 100 times starting from the problem’s initial state. At
each step of an execution, the simulator samples an outcome
among the effects of the action specified by the planner’s
policy in the current state. Each run stops when a goal state
is reached or after 1000 steps. Each IPC problem was solved
as SSP with unit costs, and three relevant criteria were eval-
uated: % Goal: percentage of runs where the policy reaches
a goal state; Length (avg): average length of execution runs
that reach a goal state; Time: total time (in seconds) to opti-
mize the policy and execute the runs that reach a goal state.
A problem is considered solved by a planner if its policy
reaches a goal state with a non zero probability.

Candidate MDP heuristic algorithms.
We plugged hγmax and hγadd in several heuristic algorithms:
Improved-LAO∗ (Hansen and Zilberstein 2001), LRTDP
(Bonet and Geffner 2003), LDFS (Bonet and Geffner
2006), sLAO∗ (Feng and Hansen 2002), and sRTDP (Feng,
Hansen, and Zilberstein 2003). For all planners and prob-
lems, the discount factor was γ = 0.9 and the precision
ε = 0.001. Of course, some problems without reachable
dead-ends could have been solved with γ = 1 and achieve
better ‘% goal’ end ‘length’ criteria; but as we want to be
domain-independent and solve all problems without ana-
lyzing them beforehand to detect possible reachable dead-
ends (as in exploding blocksworld), we set the same
γ = 0.9 < 1 for all problems.

Experimental results
We aggregated the results into three distinct categories for
better readability: IPC winners, hγmax and hγadd. For each prob-
lem, the value of a given criterion for a given category is the
best value of the criterion over all algorithms of the category.
We first compare the overall performance of categories on a
domain-by-domain basis, then we analyze performances of
individual algorithms inside each category.

We first present “point clouds” plots that compare, for
each criterion, all algorithms in a given category (e.g. IPC
winners) against all algorithms of another category. Such
plots exhibit a global view of categories performances with-
out any aggregation (such as averages). Each point corre-
sponds to one problem and two algorithms: it gives the cri-
terion value of one algorithm in the x-axis category against
one algorithm in the y-axis category for the same problem.
(each problem appears as many times as the number of com-
binations of algorithms from both categories).

Comparison with winners of the past IPCs. The first
row of Figure 1 compares all algorithms in the hγmax and
hγadd categories, against all algorithms in the ‘IPC winners’
category. The ‘% goal’ criterion shows that MDP heuristic
algorithms with hγmax or hγadd globally reach the goal with a
higher frequency than overall IPC winners for the problems
which they could solve. Another interesting result is that
exploding blocksworld problems do contain reach-
able dead-ends, and they are now solved by goal-oriented
MDP heuristic approaches — what was not the case of
mGPT (Bonet and Geffner 2005) nor sLAO∗ in the 2004
competition (Younes et al. 2005) — and better than IPC
winners. The same holds for the triangle-tireworld
problems. Moreover, for the problems that could be solved,
the average lengths of hγmax and hγadd algorithms are of-
ten comparable to those of IPC winners, except for some
domains where visible differences appear: for instance in
rectangle-tireworld, our heuristics outperform IPC
winners; this is not the case in zenotravel. Finally, as
we expected, IPC winners slightly outperform hγmax or hγadd
algorithms in terms of total time.

hγmax vs. hγadd comparisons. The second row of Fig-
ure 1 compares all MDP heuristic algorithms using the
hγmax heuristic, against the same algorithms using the
hγadd heuristic. Remind that hγmax is admissible but not
hγadd: yet, strangely enough, the ‘% goal’ criterion plot
shows that hγadd achieves slightly better performances for
this criterion for the exploding blocksworld and
triangle-tireworld domains. The reason is that hγmax
is less informative than hγadd: heuristic algorithms using hγmax
could not converge within the 10 minutes limit for this do-
main (contrary to the same algorithms using hγadd), so that
they produced worse suboptimal policies. The ‘time’ crite-
rion plot also confirms that hγmax often consumes more time
resources (including optimization time) to reach the goal
than hγadd. Finally, the ‘length’ plot shows that hγadd often
achieves better performance than hγmax for this criterion.
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Figure 1: Face-to-face comparisons on problems of IPC 2008. 1st row: all hγ=0.9
max and hγ=0.9

add algorithms vs. all IPC winners. 2nd

row: all hγ=0.9
max algorithms vs. all hγ=0.9

add algorithms. 3rd row: all hγ=0.9
max and hγ=0.9

add algorithms vs. all hγ=1
max and hγ=1

add algorithms.

h0.9
max/h0.9

add vs. h1
max/h1

add comparisons. The third row of
Figure 1 compares all MDP heuristic algorithms using the
hγmax and hγadd heuristics with γ = 0.9, against them-
selves with γ = 1 (h+

max and h+
add). The ‘% Goal’ crite-

rion shows that discounted heuristics reach the goal more
frequently than undiscounted ones in most domains except
search-and-rescue, where the 0.9 discount factor is
too small and prevents the planner from seeing the goal, and
triangle-tireworld, where the best among γ = 0.9
and γ = 1 depends on the heuristic used. In all other do-
mains, undiscounted heuristics return an infinite value so
that the final policy is almost random and reaches the goal
with a low probability (a proper policy with γ = 1 outper-
forms discounted policies). The ‘length’ criterion shows that
discounted heuristics reach the goal with significantly less
steps than undiscounted ones, suggesting that the latter give
rise to almost random policies for most domains. Finally, the
‘time’ criterion clearly points out that discounted heuristics
solve far more problems than undiscounted ones, what high-
lights the relevance of solving DSSPs as we propose, instead
of SSPs as usual in the literature. Again, the SSP transfor-
mation by (Bertsekas and Tsitsiklis 1996) does not apply,
because the goal of the transformed problem does not corre-
spond to actual goals of the original problem.

Detailed comparisons. Table 1 presents more detailed al-
gorithm performances in each category: IPC winners, hγmax
and hγadd. The second column represents the number of prob-
lems solved by a given algorithm (i.e. it returns a policy
reaching the goal with a positive probability). Other columns
give for each criterion the number of problems where a given
algorithm is the best among all algorithms that solved the
same problems, over all categories or over its category (in
addition to the average of the criterion over all problems
for this algorithm): the highest the better. This table shows
four main results: (1) all MDP heuristic algorithms achieve
comparable performances on all criteria, meaning that hγmax
and hγadd are not really impacted by the encoding of the pol-
icy graph nor by the search ordering of the algorithm; (2)
hγadd performs slightly better than hγmax on all problems (it
is not admissible but well-informed); (3) heuristic MDP al-
gorithms using hγmax or hγadd globally achieve better perfor-
mances than all IPC winners for the ‘% goal’ and ‘length’
criteria; (4) heuristic MDP algorithms using hγmax or hγadd
globally solve as many problems as FF-REPLAN and FPG,
and outperform them on all other criteria.

Conclusion
We provide new atom-space heuristics for probabilistic plan-
ning with dead-ends generalized from efficient classical
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Table 1: Comparisons over all problems of IPC 2008 between algorithms in the three categories: IPC winners, hγmax, and hγadd
(γ = 0.9); subcategories are: IPC winners without RFF, and best of hγmax/hγadd. For each criterion: a bold number indicates the
best element in overall or in its category, a framed number indicates that the overall category is the best for this criterion, and a
? symbol indicates the best overall category between hγmax/hγadd and FPG/FF-REPLAN. For columns 3 to 5: the format of cells is
‘a (b) [c]’, where ‘a’ (resp. ‘b’) is the number of problems where the corresponding algorithm is the best among the algorithms
that solved this problem in all categories (resp. its category), and ‘c’ is the average of the criterion among all problems solved.
(Sub)categories are compared among problems that were solved by at least one algorithm in each category.

Algorithm # Problems solved % Goal Length (avg) Time
RFF 89 7 (16) [83.22] 4 (13) [76.82] 4 (9) [13.20]
FPG 44 6 (11) [83.56] 1 (4) [86.41] 0 (0) [44.10]

FF-REPLAN 48 4 (4) [51.60] 4 (12) [42.50] 0 (10) [20.34]
FPG/FF-REPLAN 73 ? 26 15 10

IPC winners 100 43 26 30
hγmax hγadd hγmax hγadd hγmax hγadd hγmax hγadd

Improved-LAO∗ 55 68 7 (24) [91.74] 7 (26) [94.66] 1 (12) [29.11] 2 (14) [26.21] 0 (15) [20.04] 2 (9) [36.50]
LRTDP 41 50 7 (25) [95.14] 7 (26) [94.69] 1 (10) [13.49] 1 (13) [16.95] 0 (1) [24.58] 0 (4) [29.69]
LDFS 38 52 7 (24) [92.60] 7 (27) [94.78] 1 (11) [20.97] 1 (11) [19.18] 1 (4) [26.83] 1 (7) [14.45]
sLAO∗ 32 33 7 (24) [93.62] 7 (26) [94.45] 2 (10) [15.28] 1 (13) [14.48] 0 (1) [72.46] 0 (0) [40.28]
sRTDP 33 36 6 (23) [81.18] 7 (27) [78.19] 1 (3) [13.41] 2 (7) [14.70] 0 (1) [102.59] 0 (0) [88.71]

Sub. hγmax/hγadd 55 70 42 ? 45 ? 23 ? 24 ? 9 11 ?
hγmax/hγadd 72 46 ? 35 ? 19 ?

planning heuristics: hγmax, for which we prove its admissibil-
ity, and hγadd, which is not admissible but often more informa-
tive than the former. These heuristics allow MDP heuristic
algorithms to work in presence (or not) of dead-ends, i.e.
when all possible policies reach with a positive probabil-
ity a state from where no goal state can be achieved. Ex-
perimental results show that implementing efficient atom-
space heuristics at the core of MDP heuristic algorithms
rather than in an underlying deterministic planner, achieves
nearly competitive performances with winners of past inter-
national planning competitions in terms of number of prob-
lems solved and computation time, while providing better
goal reaching probability and average length to the goal.

One could argue that our heuristics do not take probabil-
ities into account. Yet, many state-space heuristics for goal-
oriented MDPs like the min-min relaxation also forget
probabilities in their computation: the reason is that proba-
bilities of paths in the relaxed problem are often very differ-
ent from the ones in the original probabilistic problem, lead-
ing to non-admissible or poorly-informed heuristics. How-
ever, In the future, we intend to design well-informed atom-
space heuristics that incorporate probabilities in their com-
putations. Other interesting future research involves the di-
rect insertion of γ inside the update equations of h+

max or
h+

add, as well as the extension of our heuristics to hybrid goal-
oriented MDPs with discrete and continuous state variables.
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Abstract

Search is among the most fundamental techniques for prob-
lem solving, and A* is probably the best known heuristic
search algorithm. In this paper we adapt A* to the multi-
agent setting, focusing on multi-agent planning problems. We
provide a simple formulation of multi-agent A*, with a par-
allel and distributed variant. Our algorithms exploit the struc-
ture of multi-agent problems to not only distribute the work
efficiently among different agents, but also to remove sym-
metries and reduce the overall workload. Given a multi-agent
planning problem in which agents are not tightly coupled, our
parallel version of A* leads to super-linear speedup, solving
benchmark problems that have not been solved before. In its
distributed version, the algorithm ensures that private infor-
mation is not shared among agents, yet computation is still
efficient – sometimes even more than centralized search – de-
spite the fact that each agent has access to partial information
only.

Introduction
As interest in multi-agent (MA) systems grows, so does
the need to provide tools for multi-agent problem solving.
Search, in particular, is among the most fundamental tech-
niques for problem solving, hence the importance of adapt-
ing search algorithms to the MA setting.

A* is probably the most celebrated heuristic search algo-
rithm. Its good theoretical properties make it the favorite al-
gorithm when searching for a provably optimal solution. The
main contribution of this paper is MA-A*, a multi-agent
formulation of A*. MA-A* attempts to make the most of
the parallel nature of the system, i.e., the existence of mul-
tiple computing agents, while respecting its distributed na-
ture, when relevant, i.e., the fact that some information is
local to an agent, and cannot be shared. It is not a shal-
low parallelization or distribution of A*, as some success-
ful parallel implementations of A* (Kishimoto, Fukunaga,
and Botea 2009). Rather, it is structure-aware, using the
distinction between local and globally relevant actions and
propositions to focus the work of each agent, dividing both
states and operators among the agents, and exploiting sym-
metries that arise from the multi-agent structure. Moreover,
MA-A* reduces exactly to A* when there is a single agent,
unlike existing multi-core search methods (Tu et al. 2009;
Burns et al. 2009). MA-A* comes in two flavors, a parallel

one and a distributed one, that differ only in the nature of the
heuristic functions used.

To evaluate MA-A* we apply it to a number of multi-
agent planning problems, comparing its performance to the
best current optimal centralized planner and to the best (non-
optimal) distributed planner. In the parallel case, we show
super-linear speed-up, on problems in which agents are not
tightly coupled. This stems from the fact that our algorithm
is able to exploit the internal structure of the problem, and
not only the added computational power. Using this variant,
we were able to solve a number of planning problems that
were so far beyond the reach of the best centralized optimal
planners. In the distributed case, the agents are constrained
to use only information that is directly accessible to them,
i.e., information about their own operators and non-private
aspects of the operators of other agents. Thus, this variant
is truly distributed, and private information is not shared. In
that setting, one would hope that the distributed algorithm
would do not much worse than the centralized one (which
has access to all information, but less computing power).
Here, we see that the lack of global information is costly.
Yet, even now, as long as the system is somewhat decoupled,
the distributed algorithm can outperform the centralized one.

In developing and describing MA-A*, we focus on multi-
agent planning, using planning terminology and evaluating
the algorithm on multi-agent planning problems. We do this
for two reasons. First, it is the domain of primary interest to
us, and to a large community of researchers on planning and
multi-agent planning. Second, there exists a very simple and
elegant formulation of multi-agent planning by Brafman and
Domshlak (Brafman and Domshlak 2008), which makes ex-
plicit important notions, and in particular that of private and
public variables and actions. However, search spaces with
their operators, and planning spaces with their actions are
almost synonymous, and so this development could be eas-
ily cast in search terminology.

Background
As noted earlier, we focus on multi-agent search in the con-
text of multi-agent planning. MA planning is a wide and well
studied field of research (Durfee 2001; Jonsson and Rovat-
sos 2011; ter Mors et al. 2010), but the most appropriate
framework for our work is the MA-STRIPS model (Brafman
and Domshlak 2008), presented by Brafman and Domsh-
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lak (BD, for short). This framework minimally extends the
classical STRIPS problem to MA planning for cooperative
agents. The benefit of using this minimalistic model is that
it is easy to see how the well known relationship between
(single-agent) planning and general search is maintained
in the multi-agent case, and that insights obtained using it
could apply to more complex models of multi-agent plan-
ning.

A MA-STRIPS problem for a set of agents Φ = {ϕi}ki=1

is given by a 4-tuple Π = 〈P, {Ai}ki=1, I, G〉, where P is
a finite set of propositions, I ⊆ P and G ⊆ P encode the
initial state and goal, respectively, and for 1 ≤ i ≤ k, Ai

is the set of actions agent ϕi is capable of performing. Each
action a = 〈pre(a), eff(a)〉 is given by its preconditions
and effects.

The MA-STRIPS model distinguishes between private and
public variables and operators. A private variable of agent ϕ
is required and affected only by the actions of ϕ. An action
is private if all variables it affects and requires are private.
All other actions are classified as public. That is, ϕ’s private
actions affect and are affected only by ϕ, while its public
actions may require or affect the actions of other agents. For
ease of the presentation of MA-A* and for the brevity of
its proof, we assume that all actions that achieve a goal con-
dition are considered public. This assumption must hold in
order to maintain completeness of MA-A* as presented, but
the algorithm is easily modified to remove it.

Given a model of a distributed system such as MA-
STRIPS, it is natural to ask how to search for a solution.
The best known example of distributed search is that of dis-
tributed CSPs (Yokoo et al. 1998), and various search tech-
niques and heuristics have been developed for it (Meisels
2007). Planning problems can be cast as CSP problems
(given some bound on the number of actions), and the first
attempt to solve MA-STRIPS problems was based on a reduc-
tion to distributed CSPs. More specifically, BD introduced
the Planning as CSP+Planning methodology for planning
by a system of cooperative agents with private information.
This approach separates the public aspect of the problem,
which involves finding public action sequences that satisfy
a certain distributed CSP, from the private aspect, which en-
sures that each agent can actually execute these public ac-
tions in a sequence. Solutions found are locally optimal, in
the sense that they minimize δ, the maximal number of pub-
lic actions performed by an agent. This methodology was
later extended to the first fully distributed MA algorithm for
MA-STRIPS planning, Planning-First (Nissim, Brafman, and
Domshlak 2010). Planning First was shown to be very effi-
cient in solving problems where the agents are very loosely
coupled, and where δ is very low. However, it does not scale
up as δ rises, mostly due to the large search space of the Dis-
tributed CSP. As we will see later, the forward search algo-
rithm we present scales much better and leads to a globally
optimal solution.

We note that much work has been done attempting to
solve MA planning in a partially observable and stochastic
setting (using the DEC-POMDP model) (Szer, Charpillet,
and Zilberstein 2005). This work, which uses different, more
specialized methods and heuristics, falls out of the scope of

this paper, which presents a general algorithm for solving
the classical MA planning problem, using the MA-STRIPS
formalism.

There is a growing interest in the use of parallelization
techniques for scaling up planning algorithms. Recent re-
sults (Helmert and Röger 2008) show that in some cases,
even almost perfect heuristics will not prevent exploring an
exponential number of search nodes. Parallelization, as an
orthogonal method of speeding up search, can continue the
improvement of future planners. Kishimoto et al. (Kishi-
moto, Fukunaga, and Botea 2009) presented HDA*, a sim-
ple and effective parallelization of A*. HDA* distributes
work between processors using a hash function, which as-
signs each state to a unique process. Communications are
asynchronous and non-blocking, and duplicate detection is
performed locally by each processor. HDA* was shown to
achieve significant speedup using 4 processors, and to scale
well up to 128 processors. Its efficiency (speedup divided
by number of processors) ranges from 0.9 on 4-core ma-
chines, to 0.25 using 128 processors, constituting in sublin-
ear speedup.

Multi-Agent A*
Overview
MA-A* is a distributed variation of A*, which maintains a
separate search space for each agent. Each agent maintains
an open list of states that are candidates for expansion and
a closed list of already expanded states. It expands the state
with the minimal f = g + h value in its open list. When
an agent expands state s, it uses its own operators only. This
means that two agents expanding the same state will gener-
ate different successor states.

Since no agent has complete knowledge of the entire
search space, messages must be sent, informing agents of
open search nodes relevant to them. Agent ϕi characterizes
state s as relevant to agent ϕj if ϕj has a public operator
whose public preconditions (the preconditions ϕi is aware
of) hold in s. In principle, a relevant state must be sent to
ϕj (and this is what A* would effectively do). However, in
some cases, this can be avoided, and there is also some flex-
ibility as to when precisely the message will be sent. We dis-
cuss these finer details later, and for now, assume a relevant
state is sent once it is generated.

The messages sent between agents contain the full state
s, i.e. including both public and private variable values, as
well as the cost of the best plan from the initial state to s
found so far, and the sending agent’s heuristic estimate of
s1. When agent ϕ receives a state via a message, it checks
whether this state exists in its open or closed lists. If it does
not appear in these lists, it is inserted into the open list. If
a copy of this state with higher g value exists in the open

1It may appear that agents are revealing their private data be-
cause they transmit their private state in their messages. However,
as will be apparent in the algorithm, other agents do not use this
information in any way, nor alter it. They simply copy it to future
states. Only the agent itself can change the value of its private state.
Consequently, this data can be encrypted arbitrarily – it is merely
used as an ID by other agents.
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list, its g value is updated, and if it is in the closed list, it
is reopened. Otherwise, it is discarded. Whenever a received
state is (re)inserted into the open list, the agent computes its
local hϕ value for this state, and assigns the maximum of its
hϕ value and the h value in the received message.

Once an agent expands a solution state s, it sends s to all
agents and initiates the process of verifying its optimality.
When the solution is verified as optimal, the agent initiates
the trace-back of the solution plan. This is also a distributed
process, which involves all agents that perform some action
in the optimal plan. When the trace-back phase is done, a
terminating message is broad-casted.

The MA-A* Algorithm
Algorithms 1-3 depict the MA-A* algorithm for agent ϕi.

Algorithm 1 MA-A* for Agent ϕi

1: while did not receive true from a solution verification
procedure do

2: for all messages m in message queue do
3: process-message(m)
4: s← extract−min(openlist)
5: expand(s)

Algorithm 2 process-message(m = 〈s, gϕj
(s), hϕj

(s)〉)
1: if s is not in open or closed list or gϕi

(s) > gϕj
(s)

then
2: add s to open list and calculate hϕi(s)
3: gϕi(s)← gϕj (s)
4: hϕi(s)← max(hϕi(s), hϕj (s))

Algorithm 3 expand(s)
1: move s to closed list
2: if s is a goal state then
3: broadcast s to all agents
4: initiate verification of stable property flower−bound ≥

gϕi
(s)

5: return
6: for all agents ϕj ∈ Φ do
7: if the last action leading to s was public and ϕj has a

public action for which all public preconditions hold
in s then

8: send s to ϕj

9: apply ϕi’s successor operator to s
10: for all successors s′ do
11: update gϕi

(s′) and calculate hϕi
(s′)

12: if s′ is not in closed list or fϕi
(s′) is now smaller than

it was when s′ was moved to closed list then
13: move s′ to open list

The pseudo-code is mostly self-explanatory, but some of
its finer issues require further discussion.

Termination Detection Unlike in A*, expansion of a goal
state in MA-A* does not necessarily mean an optimal solu-
tion has been found. In our case, a solution is known to be
optimal only if all agents prove it so. Intuitively, a solution
state s having solution cost f∗ is known to be optimal if
there exists no state s′ in the open list or the input channel
of some agent, such that f(s′) < f∗. In other words, solu-
tion state s is known to be optimal if f(s) ≤ flower−bound,
where flower−bound is a lower bound on the f -value of the
entire system (which includes all states in all open lists, as
well as states in messages that have not been processed, yet).

To detect this situation, we use Chandy and Lamport’s
snapshot algorithm (Chandy and Lamport 1985), which en-
ables a process to create an approximation of the global
state of the system, without “freezing” the distributed com-
putation. Although there is no guarantee that the computed
global state actually occurred, the approximation is good
enough to determine whether a stable property currently
holds in the system. A property of the system is stable if it is
a global predicate which remains true once it becomes true.
Specifically, properties of the form flower−bound ≥ c for
some fixed value c, are stable when h is a globally consistent
heuristic function. That is, when f values cannot decrease
along a path. In our case, this path may involve a number
of agents, each with its h values. If each of the local func-
tions hϕ are consistent, and agents apply the max operator
when receiving a message, as explained above, this property
holds.

We note that for simplicity of the pseudo-code we omitted
the detection of a situation where a goal state does not exist.
This can be done by determining whether the stable property
“there are no open states in the system” holds, using the
same snapshot algorithm.

Parallel vs. Distributed Search via Heuristic Choice
The quality of the heuristic function plays an important role
in the success or failure of a forward search algorithm. In
MA-A*, the nature of the heuristic is also the distinguish-
ing factor between parallel and distributed search.

In centralized search, the global heuristic function is com-
puted having complete knowledge of the problem. Specif-
ically, it is aware of all operators in the system. Parallel
search attempts to speed-up centralized search using multi-
ple processors that have access to the complete problem de-
scription. We achieve this by allowing each agent complete
knowledge of both private and public operators of all agents.
Thus, all agents compute (and can share) the global heuris-
tic function, meaning that hϕi(s) = hϕj (s) for all agents
ϕi, ϕj ∈ Φ and for all states s. We refer to this version of
MA-A* as MAP-A*.

Existing techniques for parallel search distribute either
the workload (e.g. HDA* (Kishimoto, Fukunaga, and Botea
2009)) or the operators (e.g. ODMP (Vrakas, Refanidis,
and Vlahavas 2001)) between processors. These distribution
methods are mostly independent of the problem structure
(hash function for workload distribution, for example). In
contrast, MAP-A* distributes the workload and search op-
erators between agents according to the MA structure of
the problem.
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In the distributed setting, we assume that agents have ac-
cess to public information and their own private information
only. Because each agent has different information, it must
compute its own local heuristic function. More specifically,
each agent knows the complete description of its private and
public operators. In addition, it is aware of the public aspects
of all agents’ public operators. Recall that any public action
a of agent ϕi can have both public and private preconditions
and effects. Agents other than ϕi have access to a projected
version of a, containing only public preconditions and ef-
fects. Thus, each agent can compute its heuristic estimate
using a domain description that contains its own actions,
as well as all public actions projected to public variables.
The algorithm is completely agnostic as to how the agent
uses this description to compute its private heuristic func-
tion. This allows us great flexibility, since different agents
may use different heuristics. In fact, this is the essence of
distributed search – each agent is a separate entity, capable
of making choices regarding how it performs search. We re-
fer to this distributed version of MA-A* as MAD-A*.

Relevancy and Timing of the Messages State s is consid-
ered relevant to agent ϕj if it has a public action for which
all public preconditions hold in s and the last action leading
to s was public (line 7 of Alg. 3). This means that all states
that are products of private actions are considered irrelevant
to other agents. As it turns out, since private actions do not
affect other agents’ capability to perform actions, an agent
must send only states in which the last action performed was
public, in order to maintain completeness (and optimality, as
proved in the next section). Regarding states that are prod-
ucts of private actions as irrelevant, decreases communica-
tion, while effectively pruning large, symmetrical parts of
the search space. The exploitation of symmetry is discussed
in further detail later on.

As was hinted earlier, there exists some flexibility regard-
ing when these relevant states are sent. A* can be viewed as
essentially “sending” every state (i.e., inserting it to its open
list) once it is generated. In MA-A*, relevant states can be
sent when they are expanded (as in the pseudo-code) or once
they are generated (changing Alg. 3 by moving the for-loop
on line 6 inside the for-loop on line 10). The timing of the
messages is especially important in the distributed setting,
where agents may have different heuristic estimations. Send-
ing the messages once they are generated increases commu-
nication, but allows for states that are not considered promis-
ing by some agent to be expanded by another agent in an ear-
lier stage. Sending relevant states when they are expanded,
on the other hand, decreases communication, but delays the
sending of states not viewed as promising. Experimenting
with the two options, we found that the lazy approach, of
sending the messages only when they are expanded, domi-
nates the other, most likely because communication is costly.

Proof of Optimality
First, we prove the following lemmas regarding the solution
structure of a MA planning problem. We must note that as
it is presented, MA-A* maintains completeness only if all
actions which achieve some goal condition are considered

public. This property is assumed throughout this section, but
the algorithm is easily modified to remove it.
Lemma 1. Let P = (a1, a2 . . . , ak) be a legal plan for a
MA planning problem Π. Let ai, ai+1 be two consecutive
actions taken in P by different agents, of which at least one
is private. Then P ′ = (a1, . . . , ai+1, ai, . . . , ak) is a legal
plan for Π and P (I) = P ′(I).

Proof. By definition of private and public actions, and be-
cause ai, ai+1 are actions belonging to different agents,
varset(ai) ∩ varset(ai+1) = ∅, where varset(a) is the set
of variables which affect and are affected by a. Therefore, ai
does not achieve any of ai+1’s preconditions, and ai+1 does
not destroy any of ai’s preconditions. Therefore, if s is the
state in which ai is executed in P , ai+1 is executable in s,
ai is executable in ai+1(s), and ai(ai+1(s)) = ai+1(ai(s)).
Therefore, P ′ = (a1, . . . , ai+1, ai, . . . , ak) is a legal plan
for Π. Since the suffix (ai+2, ai+3, . . . , ak) remains un-
changed in P ′, P (I) = P ′(I), completing the proof.

Corollary 1. For a MA planning problem Π for which an
optimal plan P = (a1, a2, . . . , ak) exists, there exists an
optimal plan P ′ = (a′1, a

′
2, . . . , a

′
k) for which the following

restrictions apply:
1. If ai is the first public action in P ′, then a1, . . . , ai belong

to the same agent.
2. For each pair of consecutive public actions ai, aj in P ′,

all actions al, i < l ≤ j belong to the same agent.

Proof. Using repeated application of Lemma 1, we can
move any ordered sequence of private actions performed by
agent ϕ, so that it would be immediately before ϕ’s subse-
quent public action and maintain legality of the plan. Since
application of Lemma 1 does not change the cost of plan, the
resulting plan is cost-optimal as well.

Before proving the optimality of our algorithm, we prove
the following lemma, which is a MA extension to a well
known result for A*. In what follows, we have tacitly as-
sumed a liveness property with the conditions that every
sent message eventually arrives at its destination and that all
agent operations take a finite amount of time. Also, for the
clarity of the proof, we assume the atomicity of the expand
and process-message procedures.
Lemma 2. For any non-closed node s and for any optimal
path P from I to s which follows the restrictions of Lemma
1, there exists an agent ϕ which either has an open node s′
or has an incoming message containing s′, such that s′ is on
P and gϕ(s′) = g∗(s′) .

Proof. : Let P = (I = n0, n1, . . . , nk = s). If I is in the
open list of some agent ϕ (ϕ did not finish the algorithm’s
first iteration), let s′ = I and the lemma is trivially true since
gϕ(I) = g∗(I) = 0. Suppose I is closed for all agents. Let
∆ be the set of all nodes ni in P that are closed by some
agent ϕ, such that gϕ(ni) = g∗(ni). ∆ is not empty, since
by assumption, I ∈ ∆. Let nj be the element of ∆ with
the highest index, closed by agent ϕ. Clearly, nj 6= s since
s is non-closed. Let a be the action causing the transition
nj → nj+1 in P . Therefore, g∗(nj+1) = gϕ(nj) + cost(a).
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If ϕ is the agent performing a, then nj+1 is generated
and moved to ϕ’s open list in lines 9-13 of Algorithm 3,
where gϕ(nj+1) is assigned the value gϕ(nj) + cost(a) =
g∗(nj+1) and the claim holds.

Otherwise, a is performed by agent ϕ′ 6= ϕ. If a is a pub-
lic action, then all its preconditions hold in nj , and there-
fore nj is sent to ϕ′ by ϕ in line 8 in Algorithm 3. If a is
a private action, by the definition of P , the next public ac-
tion a′ in P is performed by ϕ′. Since private actions do
not change the values of public variables, the public pre-
conditions of a′ must hold in nj , and therefore nj is sent
to ϕ′ by ϕ in line 8 in Algorithm 3. Now, if the message
containing nj has been processed by ϕ′, nj has been added
to the open list of ϕ′ in Algorithm 2 and the claim holds
since gϕ′(nj) = gϕ(nj) = g∗(nj). Otherwise, ϕ′ has an in-
coming (unprocessed) message containing nj and the claim
holds since gϕ(nj) = g∗(nj).

Corollary 2. Suppose hϕ is admissible for every ϕ ∈ Φ,
and suppose the algorithm has not terminated. Then, for
any optimal solution path P which follows the restrictions
of Lemma 1 from I to any goal node s?, there exists an agent
ϕi which either has an open node s or has an incoming mes-
sage containing s, such that s is on P and fϕi(s) ≤ h∗(I).

Proof. : By Lemma 2, for every restricted optimal path P ,
there exists an agent ϕi which either has an open node s or
has an incoming message containing s, such that s is on P
and gϕi

(s) = g∗(s) . By the definition of f , and since hϕi
is

admissible, we have in both cases:

fϕi
(s) = gϕi

(s) + hϕi
(s) = g∗(s) + hϕi

(s)

≤ g∗(s) + h∗(s) = f∗(s)

But since P is an optimal path, f∗(n) = h∗(I), for all n ∈
P , which completes the proof.

Another lemma must be proved regarding the solution
verification process. We assume global consistency of all
heuristic functions, since all admissible heuristics can be
made consistent by locally using the pathmax equation
(Méro 1984), and by using the max operator as in line 4
of Alg. 2 on heuristic values of different agents. This is re-
quired since we need flower−bound to be monotonic non-
decreasing.

Lemma 3. Let ϕ be an agent which either has an open node
s or has an incoming message containing s. Then, the solu-
tion verification procedure for state s∗ with f(s∗) > fϕ(s)
will return false.

Proof. Let ϕ be an agent which either has an open node
s or has an incoming message containing s, such that
fϕ(s) < f(s∗) for some solution node s∗. The solution ver-
ification procedure for state s∗ verifies the stable property
p = “f(s∗) ≤ flower−bound”. Since flower−bound repre-
sents the lowest f -value of any open or unprocessed state in
the system, we have flower−bound ≤ fϕ(s) < f(s∗), con-
tradicting p. Relying on the correctness of the snapshot al-
gorithm, this means that the solution verification procedure
will return false, proving the claim.

We can now prove the optimality of our algorithm.

Theorem 1. Algorithm 1 terminates by finding a cost-
optimal path to a goal node, if one exists.

Proof. : We prove this theorem by assuming the contrary -
the algorithm does not terminate by finding a cost-optimal
path to a goal node. 3 cases are to be considered:

1. The algorithm terminates at a non-goal node. This con-
tradicts the termination condition, since the solution ver-
ification procedure is initiated only when a goal state is
expanded.

2. The algorithm does not terminate. Since we are dealing
with a finite search space, let χ(Π) denote the number of
possible non-goal states. Since there are only a finite num-
ber of paths from I to any node s in the search space, s
can be reopened a finite number of times. Let ρ(Π) be the
maximum number of times any non-goal node s can be re-
opened by any agent. Let t be the time point when all non-
goal nodes s with fϕ(s) < h∗(I) have been closed for-
ever by all agents ϕ. This t exists since a) we assume live-
ness of message passing and agent computations; b) after
at most χ(Π) × ρ(Π) expansions of non-goal nodes by
ϕ, all non-goal nodes of the search space must be closed
forever by ϕ; and c) no goal node s∗ with f(s∗) < h∗(I)
exists2.
By Corollary 2 and since an optimal path from I to some
goal state s∗ exists, some agent ϕ expanded state s∗ at
time t′, such that fϕ(s∗) ≤ h∗(I). Since s∗ is an opti-
mal solution, if t′ ≥ t, flower−bound ≥ fϕ(s∗) at time
t′. Therefore, ϕ’s verification procedure of s∗ will return
true, and the algorithm terminates.
Otherwise, t′ < t. Let ϕ′ be the last agent to close a non-
goal state s with fϕ′(s) < fϕ(s∗). ϕ′ has s∗ in its open
list or as an incoming message. This is true because s∗ has
been broad-casted to all agents by ϕ, and because every
time s∗ is closed by some agent (when it expands it), it is
immediately broad-casted again, ending up in the agent’s
open list or in its message queue. Now, ϕ′ has no more
open nodes with f -value lower than s∗, so it will eventu-
ally expand s∗, initiating the solution verification proce-
dure which will return true, since flower−bound ≥ fϕ(s∗).
This contradicts the assumption of non-termination.

3. The algorithm terminates at a goal node without achiev-
ing optimal cost. Suppose the algorithm terminates at
some goal node s with f(s) > h∗(I). By Corollary 2,
there existed just before termination an agent ϕ having an
open node s′, or having an incoming message containing
s′, such that s′ is on an optimal path and fϕ(s′) ≤ h∗(I).
Therefore, by Lemma 3, the solution verification proce-
dure for state swill return false, contradicting the assump-
tion that the algorithm terminated.

This concludes the proof.

2This is needed since the number of goal node expansions is
not bounded.
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MA Planning Framework
One of the main goals of this work is to provide a general
framework for solving the MA planning problem. We be-
lieve that such a framework will provide researchers with
fertile ground for developing new search techniques and
heuristics for MA planning.

We chose Fast Downward (Helmert 2006) (FD) as the
basis for our MA framework – MA-FD. FD is currently
the leading framework for planning, both in the number of
algorithms and heuristics that it provides, and in terms of
performance – winners of the past three international plan-
ning competitions were implemented on top of it. FD is also
well documented and supported, so implementing and test-
ing new ideas is relatively easy.

MA-FD uses FD’s translator and preprocessor, with minor
changes to support the distribution of operators to agents. In
addition to the PDDL files describing the domain and the
problem instance, MA-FD receives a file detailing the num-
ber of agents, their names, and their IP addresses. The agents
do not have shared memory, and all information is relayed
between agents using messages. Inter-agent communication
is performed using the TCP/IP protocol, which enables run-
ning multiple MA-FD agents as processes on multi-core sys-
tems, networked computers/robots, or even the cloud. MA-
FD is therefore fit to run as is on any number of (networked)
processors, in both its parallel and distributed setting.

Both MAP-A* and MAD-A* are currently imple-
mented, and since both settings have full flexibility regard-
ing the heuristics used by agents, all admissible heuristics
available on FD are also available on MA-FD. New heuris-
tics are easily implementable, as in FD, and creating new
search algorithms can also be done with minimal effort,
since MA-FD provides the ground-work (parsing, commu-
nication, etc.).

Empirical results
In order to evaluate MA-A*, in both its parallel and dis-
tributed setting, we performed experiments on IPC (ICAPS )
benchmarks, in domains where tasks can be naturally casted
as MA problems. The Satellites and Rovers domains where
motivated by real MA applications used by NASA. Satellites
requires planning and scheduling observation tasks between
multiple satellites, each equipped with different imaging
tools. Rovers involves multiple rovers navigating a planetary
surface, finding samples and communicating them back to a
Lander. Logistics and Zenotravel are two transportation do-
mains, where multiple vehicles transport packages or people
to their destination.

For each planning problem, we ran two configurations
of centralized A*, one using the LM-cut heuristic (Helmert
and Domshlak 2009) and the other using the Merge&Shrink
heuristic3 (Helmert, Haslum, and Hoffmann 2007), as well
as 4 configurations of MA-A*: MAP-A* and MAD-A*
using LM-cut4 and Merge&Shrink, running on multiple pro-

3We used the LFPA configuration of Merge&Shrink with ab-
straction size limit = 50K.

4LM-cut is not consistent, so in order to maintain completeness,
we enforced local consistency using the pathmax equation.

cessors5. All experiments were run on a AMD Phenom
9550 2.2GHZ quad-core processor. Time limit was set at 1.5
hours, and memory usage was limited to 4GB, regardless of
the number of cores used.

We begin by discussing performance of MA-A* in its
parallel setting. Table 1 depicts the runtimes, number of ex-
panded nodes and efficiency values (speedup divided by the
number of processors). In Rovers and Satellites, domains
in which the agents are loosely-coupled, MAP-A* over-
whelmingly dominates centralized A*. MAP-A* outper-
formed A* in all but one very small instance of Rovers,
solving 6 problems unsolved by A*. Running on multiple
processors, MAP-A* exhibited super-linear speedup, show-
ing efficiency ranging between 1 to 19.5 in problems solved
by both planners. This result is unique because existing par-
allel planners exhibit sublinear speedup, bounding their effi-
ciency to be ≤ 1. In fact, super-linear speedup suggests that
MA-A* exploits the structure of the problem and not only
the additional computational power. This is discussed in fur-
ther detail in the next section. In Logistics and Zenotravel,
where the agents are tightly-coupled, MAP-A*’s efficiency
decreases. Using LM-cut, efficiency values range from 0.46
to 2, but even though efficiency decreased in these tightly-
coupled systems, MAP-A* running on multiple processors
still always outperforms its centralized counterpart. MAP-
A* using Merge&Shrink does not perform well in these
tightly-coupled domains. In Zenotravel10, for example, ef-
ficiency drops as low as 0.15, causing a ×2.2 speed-down.
In tightly coupled systems, many states are sent as messages,
because many of the actions are public. Communication is
more time consuming than local computations, causing a
drop in efficiency. The situation becomes more acute when
using Merge&Shrink, which in general is less accurate (but
faster to compute) than LM-cut, because as more states are
expanded, more are sent between agents.

Table 2 shows the running time and the average of the
agents’ initial state h-values of centralized A* and MAD-
A* running on multiple processors, as well as running time
and δ-values of Planning First, running on a single proces-
sor. MAD-A* performed very well in comparison to (non-
optimal) Planning First, outperforming it in all but one task,
and solving 6 more problems, while achieving optimality6.
When comparing MAD-A* to centralized A*, our intu-
ition is that efficiency will decrease, due to the inaccuracy
of the heuristic estimates. In fact, the local heuristics of
the agents are much less accurate than the global heuris-
tics, as is apparent from the lower average h values of the
initial state, and by the higher number of states expanded
by MAD-A*. In the tightly-coupled domains, we do notice
very low (sublinear) efficiency values. However, in Satellites
and Rovers, MAD-A* using Merge&Shrink exhibits nearly
linear and super-linear speedup, respectively, solving 2 prob-
lems not solved by centralized A*. Our intuition is that the

5In problems having up to 4 agents, each agent was allocated a
processor. For problems with 5 agents, one processor was shared
by two agents.

6Efficiency of MAD-A* w.r.t Planning First is not shown, but
is super-linear except in Rovers5 using LM-cut.
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Table 1: Comparison of centralized A* and MAP-A* running on multiple processors. Running time (in sec.), number of
expanded nodes and efficiency values are shown.

LM-cut heuristic Merge&Shrink heuristic
Problem # A* MAP-A* A* MAP-A*
(# of processors) agents time expands time expands eff. time expands time expands eff.
logistics7-1(4) 4 55.3 155289 27 504102 0.51 0 1624 0.8 36847 0
logistics8-1(4) 4 24.1 43665 13 168545 0.46 0.1 45 0.8 3552 0.03
logistics10-0(4) 5 203 193846 66.6 627314 0.76 81.7 3219478 75.9 3056185 0.27
Rovers3(2) 2 0 50 0 90 1.00 0 12 0 98 1.00
Rovers4(2) 2 0 9 0.04 68 0 0 9 0.08 123 0
Rovers5(2) 2 8.8 37397 1.8 18975 2.44 11.7 419110 5.8 266433 1.01
Rovers6(2) 2 – – 236 2255393 ∞ – – 238 17402585 ∞
Rovers7(3) 3 6.7 18315 1 12929 2.23 55.9 2890357 9.1 762620 2.05
Rovers8(4) 4 – – 154 1271971 ∞ – – – – N/A
Rovers12(4) 4 12.1 15222 0.9 10704 3.36 119 3577293 6.6 456744 4.51
Rovers14(4) 4 – – 598 5311741 ∞ – – – – N/A
satellites5(3) 3 1.3 1174 0.1 793 4.33 7 117756 2.2 82579 1.06
satellites6(3) 3 3.5 2976 0.2 1650 5.83 23.5 495348 0.4 19062 19.58
satellites7(4) 4 94.5 36652 12.4 53465 1.91 – – 347 17042327 ∞
satellites8(4) 4 – – 94.8 345667 ∞ – – – – N/A
satellites9(4) 5 – – 105 2132756 ∞ – – – – N/A
satellites10(4) 5 – – 61.8 95192 ∞ – – – – N/A
zenotravel9(3) 3 72.1 15408 20 29321 1.20 56.7 1590010 81.7 1526996 0.23
zenotravel10(3) 3 16.1 1587 4.3 3453 1.25 26.7 388274 60.5 770787 0.15
zenotravel12(3) 3 458 41311 57 41819 2.68 – – – – N/A
zenotravel13(3) 3 – – 382 185827 ∞ – – – – N/A

same properties that helped MAP-A* achieve super-linear
speedup, kept MAD-A*, with its less accurate heuristics, on
par with centralized search in loosely-coupled domains.

Discussion
MA-A* raises a number of research challenges and oppor-
tunities, which we now discuss. Naturally, the first question
is why it works well in weakly coupled environments. It is
known that when using a consistent heuristic, A* is optimal
in the number of nodes it expands to recognize an optimal
solution. In principle, it appears that MA-A* expands the
same search tree, so it is not clear, a-priori, why we reach
super-linear speedup. We believe there are two reasons for
this: one is delayed expansion of some nodes, and the other
is symmetry exploitation.

Delayed expansion refers to the fact that in MA-A*,
when an agent expands a node, it does not apply all ac-
tions to it, but only its actions. This means that nodes are
expanded in parts. This is somewhat analogous to pruning
methods used in planning, known as helpful actions (Hoff-
mann and Nebel 2001). The idea behind helpful actions is
to recognize which actions are more likely to be useful at
the current state and delay (or completely ignore) the ap-
plication of other actions. MA-A* is complete, and does
not ignore actions. However, different agents will expand
the same node at different stages, and when a solution is
reached, some expansions that would have taken place in
A* may not be applied in MA-A*. As expanding a state en-
tails evaluating its successors, the positive effect of delayed
expansions is especially felt when using heuristics such as
LM-cut, which are accurate but expensive to compute.

Symmetry exploitation utilizes the notion of public and

private actions. As we noted in Corollary 1, the existence
of private actions implies the existence of multiple effect-
equivalent permutations of certain action sequences. A*
does not recognize or exploit this fact, and MA-A* does.
Specifically, imagine that agent ϕi just generated state s us-
ing one of its public actions, and s satisfies the preconditions
of some action a of agent ϕj . Agent ϕi will eventually send
s to agent ϕj , and the latter will eventually apply a to it.
Now, imagine that agent ϕi has a private action a′ applica-
ble at state s, resulting in the state s′ = a′(s). Because a′
is private to ϕi, from the fact that a is applicable at s we
deduce that a is applicable at s′ as well. Hence, A* would
apply a at s′. However, in MA-A*, agent ϕj would not ap-
ply a at s′ because it will not receive s′ from agent ϕi. Thus,
MA-A* does not explore all possible action sequences. If a′
(which generates s′) is needed in the solution plan, MA-A*
will insert it, but not before a (which is a public action of
ϕj). Rather, it will insert it before the next public action of
agent ϕi. We note that this type of symmetry does not per-
tain only to MA systems, but to any factored system having
internal operators. Therefore, our intuition is that it could
be exploited, even in single-agent problems, by re-factoring
them into MA ones. How to do this remains an open ques-
tion.

Perhaps the greatest practical challenge suggested by the
distributed version of MA-A* is that of computing a global
heuristic by a distributed system. In some domains, the ex-
istence of private information that is not shared leads to se-
rious deterioration in the quality of the heuristic function,
greatly increasing the number of nodes expanded. We be-
lieve that there are techniques that can be used to alleviate
this problem. As a simple example, consider a public action
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Table 2: Comparison of centralized A* and MAD-A* running on multiple processors. Running time (in sec.), average initial
state h-values and efficiency values are shown.

LM-cut heuristic Merge&Shrink heuristic Planning
Problem # A* MAD-A* A* MAD-A* First
(# of processors) agents time init-h time init-h eff. time init-h time init-h eff. time δ
logistics7-1(4) 4 55.3 39 178 35 0.08 0 44 57 36 0 – N/A
logistics8-1(4) 4 24.1 41 172 37 0.04 0.1 44 49.5 37 0 – N/A
logistics10-0(4) 5 203 41 – 35 0 81.7 43 – 36 0 – N/A
Rovers3(2) 2 0 11 0 6 1.00 0 9 0 6.5 1.00 0.3 2
Rovers4(2) 2 0 8 0 6 1.00 0 8 0 6 1.00 0.2 1
Rovers5(2) 2 8.8 16 10.4 10.5 0.42 11.7 20 4 10.5 1.46 9.3 3
Rovers6(2) 2 – 23 716 16.5 ∞ – 27 325 17.5 ∞ – N/A
Rovers7(3) 3 6.7 15 6.2 11 0.36 55.9 14 7.2 9 2.59 38.5 3
Rovers8(4) 4 – 21 – 13 N/A – 15 – 10 N/A – N/A
Rovers12(4) 4 12.1 16 36.7 9 0.08 119 16 22.2 8.25 1.34 – N/A
Rovers14(4) 4 – 18 – 10 N/A – 17 – 11 N/A – N/A
satellites5(3) 3 1.3 14 7 8.3 0.06 7 13 3.8 8 0.61 52.3 2
satellites6(3) 3 3.5 17 2.5 8.3 0.47 23.5 18 9.2 9.3 0.85 457 3
satellites7(4) 4 94.5 19 – 9 0 – 14 343 9.5 ∞ – N/A
satellites8(4) 4 – 21 – 10 N/A – 15 – 10 N/A – N/A
satellites9(4) 5 – 22 – 13.8 N/A – 18 – 11 N/A – N/A
satellites10(4) 5 – 26 – 12 N/A – 17 – 10 N/A – N/A
zenotravel9(3) 3 72.1 18 1108 14 0.02 56.7 19 370 14 0.05 – N/A
zenotravel10(3) 3 16.1 20 – 17 0 26.7 22 – 17 0 – N/A
zenotravel12(3) 3 458 18 – 14 0 – – – – N/A – N/A
zenotravel13(3) 3 – 22 – 18 N/A – – – – N/A – N/A

apub that can be applied only after a private action apriv. For
example, in the rover domain, a send message can only be
applied after various private actions required to collect data
are executed. If the cost of apub known to other agents would
reflect the cost of apriv as well, the heuristic estimates would
be more accurate. Another possibility for improving heuris-
tic estimates is using an additive heuristic. In that case, rather
than taking the maximum of the agent’s own heuristic esti-
mate and the estimate of the sending agent, the two could be
added. To maintain admissibility, this would require using
something like cost partitioning (Katz and Domshlak 2008).
One obvious way of doing this would be to give each agent
the full cost of its actions and zero cost for other actions.
The problem with this approach is that initially, when the
state is generated and the only estimate available is that of
the generating agent, this estimate is very inaccurate, since
it assigns 0 to all other actions. In fact, the agent will be in-
clined to prefer actions performed by other agents, as they
appear very cheap, and we see especially poor results in do-
mains where different agents can achieve the same goal, as
in the Rovers domain, resulting in estimates of 0 for many
non-goal states.

Finally, the efficiency of existing parallel search meth-
ods decreases as the number of processors increases (Kishi-
moto, Fukunaga, and Botea 2009; Vrakas, Refanidis, and
Vlahavas 2001). We have shown that the efficiency of MA-
A*, on the other hand, depends more on the structure of the
problem than the number of processors. This could mean
that in loosely-coupled systems, even extremely large prob-
lems could become solvable by adding some computational
power, which would not make much difference in the cen-
tralized case. For this intuition to be verified, however, a fur-

ther study regarding MA-A*’s scaling behavior (with re-
spect to the number of processors) must be conducted.

Conclusion
We presented MA-A*, a simple formulation of A* for MA
systems. Its parallel and distributed variants are separated
only by the way heuristic estimates are computed. The paral-
lel variant, in which agents have complete knowledge of the
system, exhibits super-linear speedup on problems where the
agents are loosely coupled. In its distributed setting, MA-
A* dominated the best (non-optimal) distributed planner,
while achieving optimality. In some cases, MAD-A* out-
performed its centralized counterpart, despite having less
accurate heuristic estimates. We also presented the MA-FD
framework for MA planning. MA-FD is based on the suc-
cessful FD framework, and provides the necessary build-
ing blocks for implementing MA planning algorithms and
heuristics. Our hope is that having a simple and effective MA
planning framework will increase interest in MA planning
research, as FD has done for centralized planning.
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Abstract

In previous work we have shown that grounding, while used
by most (if not all) modern state-of-the-art planners, is not
necessary and sometimes even undersirable. In this paper we
extend this work by demonstrating how to extract heuristic
estimates which does not require us the ground the entire do-
main. We do this by constructing a Lifted Relaxed Planning
Graph and extracting a relaxed plan, much in the same way
FF does. We show that, although we do not have to ground
the domain, we compare favourably to FF in terms of states
visited and plan quality. This, we believe, offers scope for
creating new least-commitment planners which do not require
domains to be fully grounded.

INTRODUCTION
Modern planners rely on grounding, enumerating all pos-
sible actions, before search can begin. A key reason for
this need to ground is computation of heuristics, for exam-
ple, the Relaxed Planning Graph is used by a lot of plan-
ners (Helmert 2006; Richter and Westphal 2009; Hoffmann
2001). This grounding phase, however, severely restricts
the scalability of planners when considering larger prob-
lems: the planning process can often fail and run out of
memory before search or heuristic computation even begin.
For example, recent work (Flórez et al. 2011) showed that
real world logistic problems cannot be handled by domain-
independent planners as they run out of memory during
grounding.

Attempts have been made in the past to either reduce
or forego grounding altogether, especially in Partial-Order
planners like NONLIN (Tate 1977), UCPOP (Penberthy and
Weld 1992) and VHPOP (Younes and Simmons 2003). The
scalability of the current best approaches benefit from highly
effective heuristics but are limited by the size of problems
they can ground. Although not as competitive the lifted ap-
proaches are not limited by this, so there is great untapped
potential there if only we could get good heuristics.

The goal of this paper is to introduce an efficient lifted
heuristic which does not require the entire domain to be
grounded. We do this by constructing a Lifted Relaxed Plan-
ning Graph. In order to forgo grounding the entire do-
main we introduce equivalence relationships between ob-
jects. This is a key step towards improving non-grounded
planners to be competitive with more recent approaches.

We will explore this claim by comparing our lifted heuristic
against FF(Hoffmann 2001).

The paper is structured as follows: Section 2 introduces
the key concepts of the analysis performed by TIM (Fox and
Long 1998). This will help us to identify objects with sim-
ilar properties, e.g. trucks that can traverse the same map
and consider these as single entities. We extend this anal-
ysis and construct the lifted structures used to construct the
Lifted Relaxed Planning Graph introduced in Section 3. In
Section 4 we present our lifted heuristic and compare how it
performs compared to the FF heuristic. Finally we conclude
with remarks and future work.

Constructing The Lifted Transition Graph
Our aim is to limit grounding as much as possible and iden-
tify objects which can be proven to be equivalent. Intuitively
objects which are only part of a predicate which can only
be made true or false are not very interesting, nor are ob-
jects which are only part of predicates which are not af-
fected by any operators in the domain. Objects of inter-
est to us are part of state invariants, these objects are part
of a set of predicates of which only one can be true at any
given time (e.g. a truck can only be at a single location at
any given time). Different methods have been developed
to find these (Bernardini and Smith 2011; Helmert 2009;
Edelkamp and Helmert 1999), in this paper we use TIM (Fox
and Long 1998) to infer the state invariants. In this section
we will introduce the key concepts of TIM and describe how
the lifted data structures are generated which will be used by
the lifted reachability analysis in the next section. We use
the Depots domain from the IPC-3 (Long and Fox 2003) as
a rolling example throughout this section and we assume the
reader is familiar with this domain. In this domain crates are
being transported between different places by trucks, at each
location hoists can stack / unstack crates on top of pallets or
other crates and load / unload crates from trucks.

TIM Analysis
For reference we briefly introduce the key concepts of TIM
we will use throughout this paper, this is not meant to be a
complete summary which we cannot give due to space con-
straints. For a full explanation of the concepts and defini-
tions we refer to the TIM JAIR article (Fox and Long 1998).
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Definition 1 — Typed Planning Task
A typed planning task is a tuple Π = ⟨T,O, P,A, s0, sg⟩

where:
• T is a set of types. Every type t ∈ T has a set of super-

types,written SuperType(t).
• O is a set of objects, each object o ∈ O is associated with

a type t ∈ T , written Type(o).
• P is a set of predicates, where a predicate p ∈ P is a

tuple ⟨name, types⟩. A variable v is a pair ⟨t,Dv⟩, where
t ∈ T and Dv is the domain which is a set of objects. The
set is initialized by: o ⊆ O | Type(o) ∈ SuperTypes(t)∪
{t}. An atom is a tuple ⟨p,V ⟩, where p ∈ P and V is a set
of variables. We refer to the ith variable with the notation
Vi.
• A is a set of operators, where an operator a ∈ A is a tuple
⟨name, parameters, precs, effects⟩. parameters is a set
of variables. precs and effects are atoms, which are pairs
⟨p, v⟩, where p ∈ P and v ⊂ variables .
• s0 is set of grounded atoms called the initial state.
• sg is set of grounded atoms called the goal.

Definition 2 — Solution to a Typed Planning Task
A solution to a planning problem Π = ⟨T,O, P,A, s0, sg⟩

is a sequence of grounded operators {o0, . . . , on}, where
oiprecs ⊆ si | i ∈ 0, . . . , n and si+1 is the result of apply-
ing the effects of each grounded operator {o0, . . . , oi} to s0

in sequence and sg ⊆ sn+1.
TIM takes a typed problem domain and infers state invari-

ants by constructing a transition rule for each parameter of
each operator.

Definition 3 — Property
A property is a predicate subscripted by a number between

1 and the arity of that predicate. Every predicate of arity n
defines n properties.

For example, given the predicate (at truck place), the
property at0 refers to the first term truck .

Definition 4 — Transition Rule
A transition rule for operator o ∈ A and variable v ∈

oparameters is an expression of the form: property ⇒
property → property in which the three components are
bags of zero or more properties called enablers, start and
finish, respectively. The start bag will contain properties of
the preconditions which are deleted with respect to v while
the finish bag will contain properties of the effects which are
added with respect to v.

We are only interested in the start and finish bags and drop
the enablers bag in all examples. Transition rules with an
empty start or finish bag are called attribute transition rules,
others are said to exchange properties. Due to the way TIM
constructs these transition rules, only a single property is
exchanged per transition rule.

Example 0..1 A transition rule for the operator Drop and
variable crate is {lifting1} → {at0, on0, clear0}. Mean-
ing that a crate that is lifted can exchange this property by

being dropped for being i) At a place; ii) On a surface; and
iii) Clear.

TIM combines these transition rules into Property Spaces
and Attribute Spaces, transition rules are combined if their
start or finish bags overlap. Spaces which contain an at-
tribute transition rule are Attribute Spaces, while those
which do not are called Property Spaces. Property spaces
define mutex relationships on the properties which can be
true for a given object at any time, e.g. the Property Space
which includes the transition rule in Example 0..1 defines that
a crate object can either be: i) At a place, on a surface and
Clear; ii) Being lifted by a hoist; iii) In a truck; or iv) At a
place and have a crate on top.

For the remainder of the paper we refer to properties
which are part of a Property Spaces as balanced and those
which are not as unbalanced.

Lifted Transition Graph
Given the property spaces and attribute spaces and their as-
sociated transition rules found by TIM, we will transform
them into Lifted Transitions.

Definition 5 — Lifted Transition
Given a transition rule a Lifted Transition

⟨op, from, to, free⟩ is constructed where:

• op ∈ A is the operator of the transition rule.
• from ⊆ opprecs is a node which contains a subset of the

preconditions of op.
• to ⊆ opprecs

∪
opeffects is a node which contains a sub-

set of the persistent preconditions and the effects which
correspond to the finish bag of the transition rule.
• free : p ∈ opprecs | p ̸∈ from is a set which contains all

preconditions which are not part of from (A precondition
can only be a member of one of these sets).

Lifted transitions are very similar to operators in Domain
Transition Graphs (DTGs)(Helmert 2006), each lifted tran-
sition records how an operator changes the value of a given
variable.

Initially the preconditions which are part of from are
those which correspond to the properties in the start bag of
the transition rule. All other preconditions are initially put
into the free set.

Example 0..2 Given the transition rule: {lifting1} →
{at0, on0, clear0} the following Lifted Transition is initially
constructed:

• op = Drop.
• from = {(lifting hoist crate)}.
• to = {(at crate place), (on crate surf ), (clear crate)}.
• free = {(at hoist place), (at surf place), (clear surf )}.

Lifted transition differ from transitions in DTGs in that,
for each fact ⟨t, Dv⟩ ∈ opparameters , the number of val-
ues of each variable Dv is not limited to one (i.e. it is not
grounded). To check if the operator op is applicable given
a set of facts, we need to: 1) Map every fact to all the pre-
conditions in from and free; 2) Find any pair of sets of facts
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which satisfy all the preconditions in from and free respec-
tively; and finally 3) Check if the sum of the pair of sets
satisfies all preconditions of op.

If all facts are grounded case 2 and 3 do not need to be
considered, but in our case these operations are quite expen-
sive because we need to compute the Cartesian product of
the from and free sets and check which pairs of products
satisfy all the preconditions of op. To reduce this overhead
we split the preconditions into two sets such that the unifica-
tion of any set of facts that satisfy the preconditions in from
with any set of facts that satisfy the preconditions in to sat-
isfies all the preconditions of op. Any set of facts which
satisfy a set of preconditions is called consistent. We will
now describe how from and free are constructed such that
the union of any pair of consistent sets is consistent with the
preconditions of the operator op.

Lifted Transitions for Property Spaces Given a lifted
transition ⟨op, from, to, free⟩, there are two naive ways
to guarantee that the union of any pair of consistent sets
⟨Cfrom , Cfree⟩ for from and free, respectively, is consistent
with opprecs are by grounding all variables or by adding all
preconditions to from . In the former case we reduce the
number of values every variable can take to one so no in-
consistency can arrise. In the latter the union of a consistent
set with an empty set is still consistent. However, we can do
much better.

The following rules are enforced:
• For every precondition ⟨p, V ⟩ ∈ free for which the prop-

erty pi | i ∈ {0, . . . , | V |} is balanced and there exists
a precondition ⟨p′, V ′⟩ ∈ from for which the property
p′

j | j ∈ {0, . . . , | V ′ |} is balanced and V ′
j = Vi, then we

we move ⟨p, V ⟩ to the set from .
• If the above holds, except that pi and p′

j are not balanced
we ground that variable.
• Every precondition ⟨p, V ⟩ ∈ opprecs that is not deleted by

an effect we check if there exists a fact ⟨e, V ′⟩ ∈ to such
that pi | i ∈ {0, . . . , | V |} and ej | j ∈ {0, . . . , | V ′ |}
are both balanced and Vi = V ′

j . If this is the case ⟨p, V ⟩
is persistent and is added to the set to.
The first rule ensures that preconditions that contain a

state invariant that is shared with any other precondition in
the set from are added to the same set. The second rule
grounds any variable which is shared between any two facts
in from and free but is not a state invariant. The last rule
adds all the preconditions which are not removed and share
a state invariant with a fact to the set to.

By constructing the lifted transitions this way consistency
is guaranteed. This is because facts which share a state in-
variant are in the same set and secondly all the variables
which occur in both sets are grounded.

When we apply these rules to Example 0..2, we move
(at hoist place) to the from set because the property at0

is balanced and the variable hoist is shared. This does
not apply to (at surface place) because at1 is unbalanced,
thus we ground the variable place. The last precondition
(clear surface) shares no variables with any of the elements
in from . Finally, the precondition (at surface place) is

added to to, because the variable surface is shared and at0

is balanced.

Lifted Transitions for Attribute Spaces At this point we
have only defined Lifted Transitions for property spaces. We
create the same structures for attribute spaces but the way in
which they are constructed is different. We are only inter-
ested in attribute spaces which add a fact, this is because we
perform relaxed reachability analysis which means no fact is
ever deleted, so those attribute spaces which remove atoms
are not of interest to us.

Unlike property spaces, no property is exchanged for an-
other so it is unclear how to split the set of preconditions and
which variables should be grounded. For every transition
rule from an attribute space which has not been processed
yet for a property space — it is possible that an operator is
part of multiple transitions rules — we create a Lifted Tran-
sition ⟨op, from, to, free⟩ where:

• op is the operator of the transition rule.

• from contains all the preconditions.

• to contains the effect achieved by the transition rule.

• free is empty.

None of the variables are grounded. Since all the precon-
ditions are part of the same set consistency is guaranteed.

Merging After creating all the lifted transitions we try to
limit the number of from and to sets by merging sets which
are equivalent. This way we create a graph where the from
and to sets become the nodes and the lifted transitions which
become the edges. The created graphs are reminiscent of the
DTGs created by Fast-Downward. An important difference
is that a DTG is limited to the exchanged properties of a
single object, while we create graphs based on types and
allow graphs of different types to be connected.

Definition 6 — Node equivalence
Two nodes are equivalent if there exists a bijection of both

sets of atoms where the predicate and variable domains of
each mapped pair are the same. In addition, two variables
of any pair of atoms are equal in one node if and only if the
variables corresponding to the mapped atoms are also equal.

The latter requirement of Defition 6 is necessary for some
domains where — based on the predicate and variable do-
mains alone — multiple bijections are possible. One such
example is the Blocksworld domain: some nodes contain
the pair (on block block)∧ (on block block) so the relation-
ships between the variables become important to create the
correct bijection. For any set of nodes which are equivalent,
we select one node from this set n and map all the lifted
transitions from the other nodes in the set to n.

In addition we also look for nodes which are equivalent
except one node contains facts which are lifted while the
mapped fact is grounded. In these cases we ground the lifted
variables which are mapped to grounded variables so that
these nodes can be merged as well.

Finally we look for nodes which are equivalent except that
one contains facts whose predicates contains supertypes of
the mapped fact’s predicates. If the sets of operators of both
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Figure 1: Depots LTG - dotted nodes and edges are removed

nodes are equivalent we merge the node containing the sub-
types with the nodes containing the predicates with super-
types. This further reduces the number of lifted transitions
and nodes in the graph. For example, the Depots domain
contains the types crate and surface, crate being a sub-
type of surface. The operator drop can be applied to both
types and the lifted transitions for both types are identical.
As such we remove the lifted transition with the operator
drop, which applies only to the type crate, in favour of the
more general lifted transition which is applicable to the type
surface.

Figure 1 shows an example for the Depots domain. The
terms which are fully capitalised have been grounded.

Remove equivalent transitions The last step in construct-
ing the Lifted Transition Graph is removing all lifted transi-
tions which are equivalent. For any pair of lifted transitions
with the same operator op whose union of from and free
are identical, one can be removed. Given the set of identical
Lifted Transitions we try to remove the transitions in such a
way that we maximise the number of nodes which are not
part of any transition. These nodes can be removed.

For example, for the Depots domain we construct the fol-
lowing lifted transition where fully capitalised terms have
been grounded:

• op = Unload .

• from = {(in crate truck), (at truck PLACE )}.
• to = {(lifting hoist crate), (at hoist PLACE )}.
• free = {(available hoist), (at hoist PLACE )}.

However, in Figure 1 we can see that a lifted transition
with unload as an operator already exists with from =
{(in crate truck), (at hoist PLACE )}. In fact, that lifted
transition is identical to the one above when we swap the
from and free sets thus the above lifted transition is removed
as depicted in Figure 1.

Comparing the number of lifted transitions to all the
grounded transitions we notice that in the worst case we de-
fine exactly as many transitions, but in most cases the num-
ber of lifted transitions is a multitude of magnitudes smaller,
as can be seen in Table 1.

Zeno Satellite Storage Blocksworld
Lifted Case 61 5 348 6
Grounded Case 959530 43290 348660 612

Driverlog Gripper Depots Rovers
Lifted Case 529 7 57 940
Grounded Case 218300 6204 55936 423064

Table 1: Comparison of the total number of transitions

Lifted Relaxed Planning Graph
We now introduce the Lifted Relaxed Planning
Graph (LRPG) and discuss how we construct it. This
graph is used to extract the heuristic estimates as described
in the next section. The LRPG is very similar to the
(grounded) Relaxed Planning Graph (RPG) in fact, when
performing reachability analysis on both graphs by con-
structing them to the level-off point and treating all the facts
in the last fact layer as reachable, both graphs will produce
the same output (Ridder and Fox 2012).

First we introduce equivalence relations between objects
and how these are established, this enables us to reason
about lifted facts. Next we discuss how the LRPG is con-
structed.

Equivalent Objects
In order to perform lifting, we are looking for equivalent ob-
jects. Such a relationship exists between objects when they
can be used interchangeably without breaking the soundness
and completeness of the reachability algorithm. Given two
equivalent objects, o1 ∈ O and o2 ∈ O, and an atom, ⟨p, V ⟩
then the atom ⟨p, V ′⟩ is also reachable, where

V ′
j =

{{o1, o2}, if o1 ∈ Vj ∨ o2 ∈ Vj

Vj , otherwise
(1)

To demonstrate how these relationships are established
we introduce an Annotated Object structure for every object
and combine those which are equivalent in an Equivalent
Object Set.

Definition 7 — Annotated Object
An Annotated Object is a tuple ⟨I, o, G⟩, where:

• I contains each initial fact ⟨p, V ⟩ ∈ s0, for which
∃v∈V o ∈ v.

• o ∈ O is the object this Annotated Object is created for.

• G is the Equivalent Object Set this Annotated Object is
part of and contains all the Annotated Objects it is equiv-
alent with.

Definition 8 — Equivalent Object Set
An Equivalent Object Set is a tuple ⟨E, R, f⟩, where:

• E is a set of Annotated Objects that are equivalent.

• R is the set of lifted facts that are reachable and contain
this Equivalent Object Set.

• f is a signature. Given the type of the object of the An-
notated Object this Equivalent Object Set was created for,
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a signature is created, unique to the set of variables of all
operators whose type is equal to, or a supertype of, the
type of the object. Equivalent Object Sets can be made
equivalent iff their signatures match.

Definition 9 — Lifted Fact
A lifted fact is a tuple ⟨p,E⟩, where:
• p ∈ P is a predicate.
• E is a set of Equivalent Object Sets where the size of the

set is equal to the arity of the predicate p.
We can conclude that two Equivalent Object Sets eos1

and eos2 are equivalent if there exist two Annotated Ob-
jects ao1 ∈ eos1 and ao2 ∈ eos2 such that eos1R is a
superset of ao2 I and eos2R is a superset of ao1 I . In other
words, if each can reach the initial state of the other we con-
clude that the Equivalent Object Sets they are part of must
be equivalent. Thus by proving that two members of both
sets are equivalent we have proven that this relation holds
for all members of both sets.

Establishing these relationships will create an overhead
during the construction of the LRPG, but once these rela-
tionships have been established it can speed up finding a re-
laxed plan significantly.

A good illustration of this can be found in the Depots do-
main. Truck objects have no other relation to other objects,
except for the place they are at: all the truck objects at the
same location are equivalent. This is closely related to func-
tional symmetry (Fox and Long 1999) and other symmetry
relationships defined in the literature (Rintanen 2003). How-
ever, we go much further than this. The Drive operator does
not restrict where trucks can drive to, so we apply this opera-
tor once to all truck objects to make the fact (at truck place)
true for all truck and place objects. Assuming no crate ob-
ject was in any truck in the initial state, all truck objects are
now equivalent. Crate objects require more steps to make
them equivalent because the initial state typically defines a
surface they are placed on and another crate that is stacked
on top of them.

Creating the LRPG
We will now explain how we construct an LRPG. The
pseudo code is shown in Algorithm 1. We shall now dis-
cuss every step in greater detail.

Initialise The starting point of constructing the lifted re-
laxed planning graph is the atoms in the initial state s0.
These are converted into lifted facts and added to the cur-
rent fact layer. Initially, every equivalent object set contains
a single Annotated Object and the set is constructed from the
set of objects O.

Update Equivalent Objects The next step in the algo-
rithm is to establish all possible equivalence relationships
between objects, this is done by the updateEquivalences
function. For any two objects which can be made equiva-
lent we merge their corresponding annotated objects into a
single equivalent object set. We keep a backlog of which ob-
jects are proven to be equivalent per fact layer. We will ex-
plain why this is necessary when we explain how to extract a

Algorithm 1: Constructing a Lifted Relaxed Planning
Graph till Level-Off Point
for o ∈ O do

Create a new Equivalent Object Set for o;
c action layer← null;
c fact layer← FactLayer();
for i ∈ s0 do

c fact layer→ add(i);
updateEquivalences(c fact layer);
done← False;
while ¬done do

c action layer← ActionLayer(c fact layer);
n fact layer← FactLayer(c action layer);
done← True;
for l ∈ Lifted Transitions do

if generateReachableFacts(l) then
done← False;

c fact layer← n fact layer;
updateEquivalences(c fact layer)

Procedure generateReachableFacts(l)
consistent sets← createSets(l, c fact layer);
for C ∈ consistent sets do

operator← substitute(l.operator , C);
c action layer add(operator);
for e ∈ operator→ effects do

n fact layer→add(e);

return True if a new fact was generated, False
otherwise

relaxed plan from the LRPG. Finally we update all the lifted
facts with respect to the updated equivalent object sets and
remove all duplicate facts from the current fact layer.
Generate Reachable Facts Given all the facts F which
are true in the current fact layer (c fact layer ) and the set
of lifted transitions T in the lifted transition graph, then
we map every fact f ∈ F to each precondition p ∈∪

t∈T from(t) ∪ free(t) it can unify with. Next we take the
Cartesian products of all mapped facts for each set from(t)
and free(t) and store the consistent mappings in Mtfrom and
Mtfree , respectively. The atoms which are made true by ex-
ecuting the operator top given the preconditions (mfrom ∈
Mtfrom ) ∪ (mfree ∈ Mtfree ) are added to the next fact layer
(n fact layer ). In addition we also copy all the lifted facts
from the current layer to the next layer by executing a spe-
cial operator NOOP, this operator has the copied lifted fact
as both its precondition and effect.

Note that the pseudo code — while producing the same
output — is not indicative of how this function is actually
implemented, it is presented this way for clarity.

While it is true that the facts in the intitial state are
grounded, we should not expect that all the facts in every
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Figure 2: Driverlog example domain
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Figure 3: Driverlog LRPG; D = {d1, d2}

fact layer are therefore grounded too.
The reason for this is twofold; Firstly we establish equiv-

alence relationships between objects and secondly not every
effect is constrained by the preconditions of an action. Con-
sider, for example, the to parameter of the Drive operator
from the Depots domain. It is not restricted by any precon-
dition which means any truck can drive to any place.

Example 0..3 Drive - truck , from, to
Preconditions: (at truck from)
Effects: ¬(at truck from) ∧ (at truck to)

In these situations, given an unrestricted parameter
⟨t, Dv⟩ ∈ aparameter | a ∈ A and a lifted fact l mapped to
any of the preconditions ⟨p, V ⟩ ∈ aprecs | ∃i∈{0,...,|V |}Vi =
⟨t, Dv⟩, then we add to the set lEi each annotated object ao
where Type(aoo) = t ∨ t ∈ SuperType(aoo).

For every generated effect e we check if it has been gener-
ated before, if there exists a lifted fact which can be unified
with e, we add the operator to its set of achievers. Other-
wise, we add it to the next fact layer. In addition, e will be
added to every Equivalent Object Set eog ∈ eE , this is done
to prove future equivalence relationships.

Example 0..4 As an example of how a LRPG looks like af-
ter construction, consider the Driverlog domain depicted in
Figure 2. We have two drivers who can walk over the path
s2 ↔ p1 − 2 ↔ s1 ↔ p1 − 3 ↔ s3 and board the only
truck in the problem located at location s3 . The goal of
the domain is to achieve the fact (driving d2 t1 ), the con-
structed LRPG is depicted in Figure 3. Please note that we
have removed all the static facts, like the connection between
the paths, and only list the first achiever of any fact for read-
ability.

Till fact layer 2 the LRPG is identical to that of the
grounded RPG. However, when reaching fact layer 2 we
can make both drivers equivalent because both drivers have
reached the initial location of the other. Thus in fact layer 2
both drivers can be used interchangeably which means that
we now know that driver d2 can reach the fact (at d2 s3 )
even though no action in action layer 1 achieves this fact.

In general this means that the number of fact layers in the
LRPG will at most be equal to that of a grounded RPG but
more often than not contains considerable fewer. As detailed
in previous work(Ridder and Fox 2012) performing reacha-
bility analysis based on these LRPGs consumes far less re-
sources and is quicker than the grounded approach too, mak-
ing it a more viable tool for larger domains because it scales
better as the problem instances become larger.

Calculating the Heuristic
The question that has, until now, remained open is: how
good are the heuristic estimates we can derive from the
LRPG? To test this we will perform a direct comparison to
the FF heuristic and mimic it as closely as possible but there
are some key differences which we will discuss in this sec-
tion. The reader is assumed to have a working knowledge of
the FF heuristic (Hoffmann 2001).

Given a planning problem Π we begin, like FF, by con-
structing a LRPG until we find a fact layer which contains all
goal atoms Πsg . From this graph we construct a relaxed plan
by adding all facts we want to achieve in a priority queue
and then picking an achiever for every fact in this queue.
The facts to achieve are ordered by beginning with the facts
which appear latest in the LRPG. When multiple achievers
can achieve a given fact we use the same preferences as FF;
1) Always prefer a NOOP when one is available; 2) If a
NOOP is not available we give each achiever an estimate
of how difficult it is to achieve its preconditions. This esti-
mate is calculated by summing the fact numbers for each of
the achievers preconditions, where the layer number is taken
from the first layer where the precondition first appears.

The above description is how FF extracts a relaxed plan
from an RPG. Unfortunately, if we were to apply the above
algorithm and derive a heuristic from the LRPG, it would
not be very informative. To explain why this is the case we
refer back to the LRPG constructed for the driverlog domain
depicted in Figure 3. Following the rules above yields fol-
lowing relaxed plan:

• (walk d1 s1 p1-3)

• (walk d1 p1-3 s3)

• (board {d1,d2} t1 s3)

The astute reader will have realised that the relaxed plan
above solves the problem of achieving (driving d1 t1 )
(when we bind {d1 , d2} to d2 ). The reason why this hap-
pens is because we prove that d1 and d2 are equivalent be-
fore any of these drivers get into the truck. Thus, when ex-
tracting the relaxed plan from the LRPG it will trace back
to the driver which gets there first. This might not be the
driver we want. To solve this issue and get better heuristic
guidance, we need to do two things.

First of all we need to bind the variable domains of the
chosen achiever so it respects the bindings of the fact it
achieves. In our example when we pick the board operator
as an achiever we need to bind {d1 , d2} to d2 . While in this
example this equates to grounding the achiever, this is nor-
mally not the case. For example if the goal was to achieve
(at t1 s1) and the cheapest achiever was (drive {d1, d2} t3
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s1) , there would be no need to bind the variable referring to
which driver should drive the truck.

When we apply the necessary binding the relaxed plan
looks like this:

• (walk d1 s1 p1-3)

• (walk d1 p1-3 s3)

• (board d2 t1 s3)

Here we notice that something strange is going on: we
enforce that driver d2 should get into the truck, but the pre-
conditions for this achiever are linked to a different driver,
d1 . We need to substitute d2 for d1 in order to make the
relaxed plan valid. Whenever we need to make a substitu-
tion between different equivalent object sets, we effectively
lose information because we are solving a different relaxed
problem.

To retrieve part of this information we need to augment
the heuristic value by adding the cost of making two object
sets equivalent. In this case we want to add the cost of mak-
ing d2 equivalent to d1 . One way of doing this is by solving
the following planning problem:

Definition 10 — Equivalence Planning Problem
Given a planning problem Π = ⟨T, O, P, A, s0, sg⟩ and two
equivalent objects o1 and o2, then we define F as the set of
all initial atoms which contains either object F : {⟨p, V ⟩ ∈
s0 | ∃v∈V o1 ∈ Dv∨o2 ∈ Dv}. We then change the variable
domains v ∈ V of every atom ⟨p, V ⟩ ∈ F such that:

v =





o1, if Dv = {o2}
o2, if Dv = {o1}
v, otherwise

(2)

The equivalence planning problem is then defined as
Π′ = ⟨T, O, P, A, s0, F ⟩.

While this would work, it might be quite costly to use
this method since, because on a reasonable sized problem
we might need to solve many of these additional equiva-
lence planning problems. Also, while solving an equiva-
lence planning problem, we might run into the same issue.
Therefore, as a simple approximation, we take the number of
the fact layer at which the equivalent object sets were made
equivalent as a supplement to the heuristic estimate, and add
it to the length of the extracted relaxed plan.

In our example the equivalent object sets of both drivers
become equivalent at fact layer 2, the total heuristic there-
fore becomes 5 which, incidentally, is the length of the opti-
mal plan. While this works well in this particular example,
there are examples where our heuristic performs less well
than the FF heuristic. For example the problem in Figure 4
is to get d1 to location G. The length of each dotted path is
n. The problem with this structure is that d2 will be made
equivalent with d1 at fact layer 2n+1, but (at d2 G) is made
true at fact layer 2n. Thus, when extracting a relaxed plan
we find a plan of length 2n, but then we need to substitute
d1 for d2 which will cost 2n+1 for a total heuristic value of
4n + 1. By contrast, FF will find the correct heuristic value
of 2n + 1.

d1

d2

n

n

n
G

Figure 4: A case where our heuristic performs poorly

Results
We will now present results showing how well our lifted
heuristic estimate works by comparison to FF. We used the
same codebase as FF and modified it so that it uses our
heuristic function. We compared the number of states ex-
plored under the two heuristics, as well as the quality of the
plans found.

We run all our experiments on an Intel Core i7-2600 run-
ning at 2.4GHz and allowed 4GB of RAM, we allowed for
10 minutes of computation time. We have taken 7 problem
domains from various planning competitions, and we now
discuss the results obtained in these domains.

Driverlog
The results for the Driverlog domain are depicted in Fig-
ure 5(a) and Figure 5(b). The results are a mixed bag,
for some problem instances we produce better quality plans
and faster but for others we do not. The reason for this is
twofold. First of all, recall the example we gave in the Sec-
tion Calculating the Heuristic if the problem links the var-
ious locations is such a way it will misdirect the search ef-
fort. Refering back to Figure 4, if our goals is to get d1 to
G we misguide the heuristic because moving d2 towards the
goal discreasese the heuristic value by two whereas moving
d1 will only decrease the heuristic value by one. This is
why the number of states explored is higher whenever more
states are explored by our heuristic.

On the other hand, the relationship between the packages
and the trucks in the domain can help us get a better heuris-
tic estimate. Imagine a problem domain where we have four
locations, s1, s2, s3 and s4 which are all connected as fol-
lows: s1 ↔ s2 ↔ s3 ↔ s4. In the initial state a truck
is at s3, a package p1 starts at the same location and needs
to be delivered to s4 while a second package p2 starts at s1
and needs to be delivered at the same location. The relaxed
plan generated by FF will load p1, drive the truck in until it
reaches all locations, load p2, and unload both packages at
s4 — a heuristic value of 7. Our heuristic will produce the
same results, with the exception that both packages will be
made equivalent and we need to substitute p1 for p2 which
adds 4 to the heuristic totalling 10, which is closer to the
optimal heuristic of 9.

Zeno
The results for the Zeno domain are depicted in Figure 6(a)
and Figure 6(a). The Zeno domain does not contain any con-
straints where planes can fly to except for their fuel level. It
is therefor not surprising that the states explored and plan
quality do not differ significantly from that of the FF heuris-
tic.
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Figure 5: Driverlog
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Figure 6: Zeno

Blocksworld
The results for the Blocksworld domain are depicted in Fig-
ure 7(a) and Figure 7(b). On this domain our heuristic out-
performs FF in terms of plan quality and number of states
visited. This is because the added costs for the substitution
proves to be a very good heuristic estimate. For example,
consider the following problem where we have blocks A,
B, and C stacked in that order and we want to achieve the
goal where A is on top of C and C is on top of B. The lifted
heuristic will unstack C from B, B from A and finally pick
up A from the table, to achieve the final goal we have to
substitute A for C and C for A which gives us the heuristic
estimate of 9. Compare this to the FF heuristic which is 4
and the optimal heuristic which is 8.
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Figure 7: Blocksworld

Storage
The results for the Storage domain are depicted in Figure
8(a) and Figure 8(a). This domain contains a lot of static
facts which differ for many of the objects defined in the do-
main. This means that very few objects can be shown to be
equivalent, this explains why for quite a few domains we see
the exact same results between both heuristic approaches.
After all, if we can prove no object equivalences our heuris-
tic approach is similar to FF. In other cases we notice that
we often substitute crates before they land on their final des-
tination, much in the way as in the Blocksworld domain. In

some cases (like in problem file 07) this gives us a benefit as
substituting crates augments the heuristic in such a way that
it makes up for the fact that a hoist has to move back and
forth to deliver the crates to their final destination. Unfor-
tunatelly this does not always pan out well, which explains
why we cannot solve some domains which FF can.
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Figure 8: Storage

Depots
The results for the Depots domain are depicted in Figure
9(a) and Figure 9(b). On quite a few domains our lifted ap-
proach needs to visit considerably fewer states, but the plan
quality does suffer on most domains. The reason for this
is that, much like the Blocksworld domain, crates can be
made equivalent and compensate for some of the delete ef-
fects which are ignored. However, unlike the Blocksworld
domain where the table is an infinite surface, the surfaces we
can stack crates on are finite and distributed over many loca-
tions. In some cases our lifted heuristic misdirects the search
by bringing crates closer to its initial states but moving away
from solving the actual problem.
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Figure 9: Depots

Rovers
The results for the Rovers domain are depicted in Figure
10(a) and Figure 10(b). Like the Storage domain we cannot
prove many equivalent relationships for most of the problem
instances in this domain. This is due to the static facts which
dictates which equipment different rovers have on board and
what waypoints they can traverse. It is therefor not surpris-
ing that we generate the same plans as FF on most problem
instances. The number of states visited does differ, when
examinating the results we found that our lifted heuristic es-
timates were generally lower. This is because we prefer to
reuse actions in the relaxed plan, whereas FF selects action
based on first layers its preconditions appear in. This gives
us an incentive to reuse the same rover for different jobs
leading to longer plans and more states to explore in some
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cases. For the larger domains we found that we ran out of
time before we could explore as many states as FF does,
this is because we use a different internal encoding of state
spaces and facts than FF does which means that for every
heuristic computation we spend time considerable convert-
ing these internal representations.
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Figure 10: Rovers

Satellite
The results for the Satellite domain are depicted in Figure
11(a) and Figure 11(b). Like the rovers in the Rovers domain
the satellites can not be made equivalent in most problem in-
stances due to different instrument configuration, but unlike
rovers our plans are vastly different from those generated by
FF. The reason for this is that the relaxed plans extracted
by FF — when having identical satellites to its deposal like
on problem file 04 — tend to use one of them to reach the
goal while the relaxed plans generated by our lifted heuris-
tic tend to utilise both of them. This is because when we
look for an achiever for fact like (have image Star5 image1
we will select the achiever (take image satellite1, satellite2,
..., satelliten Star5 instrument1, instrument2, ..., instrumentn
image1) and we only have to consider which satellite and
which instrument at a later state. We can see from the graph
that in quite a few cases this gives us a better heuristic esti-
mate, but at the same time also produces better plans. The
reason why our plan length is higher on some problems is
because we utilise more satellites compared to FF, leading
to more actions but most of them can be executed in paral-
lel.
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Figure 11: Satellite

Conclusions
In this paper we have demonstrated a new lifted heuristic
and compared it to its grounded equivalent in the FF frame-
work. We have discussed the weaknesses of this heuristic
and shown when the heuristic estimate outperforms its FF
equivalent. In previous work we have shown that performing

reachability analysis on the lifted structure uses less memory
and is quicker on most domains tested. With this preliminary
work we have shown that this lifted approach is able to pro-
duce informative heuristics and compares favourably to FF.
We hope further research in this direction will yield planners
which are better scalable and solve larger problem instances
than currently can be tackled due to grounding.

Future work in this direction will explore different ways
of computing heuristics, including utilising the Lifted Tran-
sition Graph to calculate heuristics much in the same way
as Fast-Downward does. We have good hopes for this
approach, because while solving SAS+ − 1 tasks is NP-
complete(Helmert 2004), some classes can be solved in
polynomial time. For example, if the number of low-level
variables is bound to a constant. While most planning do-
mains do not have this property we might be able to exploit
the equivalence relationships between objects, reducing the
number of low-level variables we need to consider.
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Abstract

The efficiency of heuristic search planning crucially depends
on the quality of the search heuristic, while succinct repre-
sentations of state sets in decision diagrams can save large
amounts of memory in the exploration. BDDA* – a symbolic
version of A* search – combines the two approaches into one
algorithm. This paper compares two of the leading heuris-
tics for sequential-optimal planning: the merge-and-shrink
and the pattern databases heuristic both of which can be com-
piled into a vector of BDDs and be used in BDDA*. The
impact of optimizing the variable ordering is highlighted and
experiments on benchmark domains are reported.

Introduction
Explicit-state heuristic search planners have shown advan-
tages to symbolic planners with binary decision diagrams
(BDDs) (Bryant 1985) in cost-optimal planning, suggesting
that the increased quality of search heuristics sometimes ex-
ceeds the structural savings for representing and exploring
large state sets in advanced data structures.

For the automated construction of search heuristics for
BDD-based planning, symbolic pattern databases (PDBs)
have been proposed (Edelkamp 2005). They correspond to
a complete (or partial) backward exploration of the concrete
(or abstracted) state space. These planning heuristics can be
exploited in a symbolic version of A* search, BDDA* for
short (Edelkamp and Reffel 1998).

Merge-and-shrink (M&S) is among the strongest heuris-
tics for explicit-state space planning (Helmert, Haslum, and
Hoffmann 2008). Newer proposals further improve its qual-
ity (Nissim, Hoffmann, and Helmert 2011; Katz, Hoffmann,
and Helmert 2012) and outperform other state-of-the-art
heuristics like LM-cut (Helmert and Domshlak 2009) on a
sizable number of domains. Furthermore, it can compute
perfect heuristics for some simpler benchmark domains in
polynomial time.

In this paper we extract the memory structure of the M&S
heuristic in form of an algebraic decision diagram (ADD)
(Bahar et al. 1997). This allows to enrich a symbolic heuris-
tic planner to exploit this expressive estimate. The precom-
puted ADD is converted to a vector of BDDs and plugged
into BDDA* for computing cost-optimal plans. It exactly
matches the estimate quality of the explicit-search variants
and is general to all existing M&S variants. We will also

look at refinements to BDDA* and propose List BDDA*,
which exploits a list representation of the search frontier
(rather than a matrix representation).

PDBs perform surprisingly well compared to M&S. In our
experiments the former yield the perfect heuristic in more in-
stances than the latter. In several cases the construction does
not even need to perform abstraction, but resorts to (possi-
bly truncated) backward search in the concrete state space.
While the M&S heuristic is strictly more informed than the
PDB heuristic (Helmert, Haslum, and Hoffmann 2008) in
case of explicit-state search, this seems not necessarily to
be the case in symbolic search. However, we illustrate that
there are examples for exponential gaps between the M&S
and the PDB heuristics that fail to work for a symbolic con-
struction. Furthermore, we show that ADD reduction can
yield smaller structures than the one applied in the M&S ab-
straction. We will also see that the variable ordering in the
two heuristics is a crucial parameter to the exploration and
produces outcomes of large variety.

The paper is structured as follows. First, we reconsider
explicit-state and symbolic heuristic search. Next, we turn
to the set of refinements including a new BDDA* version
and to the extraction of the M&S heuristic as an alternative
to the symbolic PDB heuristic. Limits and possibilities are
discussed. In the experimental results we compare the two
heuristics and discuss the outcome and effects of changing
the variable ordering in both cases.

Heuristic Search Planning
A planning task consists of variables of finite domain so that
states are assignments to the variables, an initial state, the
goal, and a finite set of operators each being a pair of pre-
conditions and effects. In cost-based planning, operators are
associated with action cost values, which often are integers
– or alternatively rational numbers, which can be cast to in-
teger values. The task is to find a path (the plan) from the
initial state to the goal. The plan is optimal, if its cost is
smallest among all possible plans. A heuristic is a mapping
from states to natural numbers or infinity, and admissible if
for all possible states the value is not greater than the cost of
an optimal plan. We refer to a finite domain variable encod-
ing of the planning problem, abbreviated as SAS+ planning
(Bäckström and Nebel 1995). A planning task abstraction is
a planning task based on a mapping for the initial state, the
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goal state as well as the operators. We consider two heuris-
tics based on abstraction.

Pattern Database
The pattern database (PDB) heuristic, inspired by a selection
of tiles in the sliding-tile puzzle (Culberson and Schaeffer
1998), has been extended to the selection of state variables in
other domains and in planning (Edelkamp 2001). More gen-
eral definitions have been applied, shifting the focus from
the mere selection of a subset of the SAS+ variables to dif-
ferent state-space abstractions that are computed prior to the
search. A PDB stores the shortest path distance from each
abstract state to the set of abstract goal states. Partial PDBs
(Anderson, Schaeffer, and Holte 2007) refer to not conduct-
ing the backward search to completion but truncating the
search at goal distance d and assigning all remaining states
the heuristic value d+1. As a slightly better estimate, we can
take the minimum value of (i + j) > d of the goal distance
i of a state within the PDB plus the cost j of an operator.
Implicit PDBs (Katz and Domshlak 2010) are a refinement
imposed by different decompositions of the causal graph.

Merge-and-Shrink
The merge-and-shrink (M&S) heuristic (Helmert, Haslum,
and Hoffmann 2008; Nissim, Hoffmann, and Helmert 2011)
is induced by a distance-preserving abstraction, originally
proposed in the context of directed model checking (Dräger,
Finkbeiner, and Podelski 2006; 2009). The abstract state
space in this heuristic is built incrementally. The rough idea
is that SAS+ variables are greedily chosen to construct a
larger state space by computing the (synchronous) product
of the existing state space and the one induced by the next
SAS+ variable.

If the state space becomes too large pairs of states are uni-
fied1. The approach is layered, so that the union of two state
sets is realized by changing the mapping from the state set
in one layer to the state set in the next layer. There are dif-
ferent strategies to compute the cross-product state spaces.
Most current proposals work on a linear arrangement, mean-
ing that one variable is added at a time. Non-linear arrange-
ments that combine arbitrary disjoint variables support sets
(limiting the size of the product space) are involved but may
yield stronger union operations.

The shrinking is based on the notion of bisimulation. Two
states s and s′ are bisimilar if they agree on whether or
not the goal is true and every planning operator leads to
the same abstract state from both s and s′. If only bisim-
ilar states are aggregated, then M&S is guaranteed to be
perfect. The bisimulation shrinking strategy computes the
coarsest bisimulation, and in the shrinking step it aggregates
only bisimilar (abstract) states. In most benchmark domains,
however, coarsest bisimulations are still large even under op-
erator projection.

1The alternative term merge conflicts with the name of the
heuristic as the step of merging the states is actually referred to as
shrinking, while the construction of the product state space graph
is referred to as merging.

Greedy bisimulation (gop) is a relaxed variant of bisim-
ulation, which demands the bisimulation property only for
transitions (s, s′), where the abstract goal distance from s′

is at most as large as the abstract goal distance from s. This
relaxation forfeits the guarantee of providing a perfect esti-
mate.

Motivated by the size of bisimulations, a more approx-
imate shrinking strategy (gop’) builds the coarsest bisim-
ulation and keeps unifying states until the size limit M is
reached. The latter may happen before a bisimulation is ob-
tained, in which case it looses information. The strategy
attempts to make errors only in more distant states, where
the errors will hopefully not be as relevant.

Symbolic A* Search
The main limitation for applying PDBs in search practice
is the restricted amount of RAM. For the exploration of
large state spaces, symbolic search can save huge amounts of
memory and computation time. State sets (Pang and Holte
2011) are represented and modified by accessing their char-
acteristic functions.

Decision diagrams (Wegener 2000; Bahar et al. 1997;
Bryant 1985) are a memory-efficient data structure used to
represent Boolean (or integer-valued) functions as well as to
perform set-based search, where the diagram represents all
binary state vectors that evaluate to certain values. More pre-
cisely, a BDD (an ADD) is a directed acyclic graph with one
root and two (several) terminal nodes, called sinks. Each
internal node corresponds to a binary variable of the state
vector and has two successors (low and high), one repre-
senting that the current variable is false and the other repre-
senting that it is true. For any assignment of the variables
on a path from the root to a sink the represented function
will be evaluated to the value labeling the sink. Moreover,
decision diagrams are unique for a fixed variable ordering
by applying the two reduction rules of (1) eliminating nodes
with the same low and high successors and (2) merging two
nodes representing the same variable that share the same low
successor as well as the same high successor.

In order to perform symbolic search we need two sets of
variables, one (x) representing the current states and another
(x′) representing the successor states. To find the successors
of a set of states S represented in the current state variables
given a BDD T (the transition relation) for the entire set of
operators we use the image operator, i. e., image(S, x) =
∃x.S(x) ∧ T (x, x′)[x′ ↔ x], where [x′ ↔ x] denotes the
swap of the two sets of variables. Similarly, we can perform
search in backward direction by using the pre-image opera-
tor, i. e., pre-image(S, x′) = ∃x′.S(x′)∧T (x, x′)[x↔ x′].

Symbolic PDBs (Edelkamp 2005) are PDBs that have
been constructed symbolically as decision diagrams for later
use either in symbolic or explicit heuristic search. Their
construction exploits that the transition relation is defined
as a relation. The savings observed by the symbolic repre-
sentation are substantial for many planning domains. Dif-
ferent to the posterior compression (Ball and Holte 2008),
the construction in (Edelkamp 2005) works on compressed
representation, allowing much larger databases to be con-
structed. For such PDB construction, backward symbolic
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search is used. In the case of partial PDBs, the construction
is truncated at some fixed point in time. While this works
in the concrete state space, PDB construction usually takes
place in abstract space, imposed by an abstraction function
that often projects some variables to don’t cares. The au-
tomated selection of variables is important for its success
but involved (Edelkamp 2001; 2007; Haslum et al. 2007;
Kissmann and Edelkamp 2011).

Algorithmically, we start with the abstract goal set and
iterate to successively compute the pre-image. Each state
set in a layer is efficiently represented by a correspond-
ing characteristic function. We may assume that the vari-
able ordering is fixed and has been optimized prior to the
search. For a given abstraction function the symbolic PDB
Heur(value, x) is initialized with the projected goal. As
long as there are newly encountered states we take the cur-
rent backward search frontier and generate the predecessor
list with respect to the abstracted transition relation. Then
we attach the current BFS level to the new states, merge
them with the set of already reached states, and iterate.
For non-unit action costs this process can be extended from
breadth-first to cost-first levels, and it is possible to com-
bine different symbolic heuristics by taking their maximum
or by a controlled combination of their sum. The variables
encoded in value are often queried at the bottom or at the
top (in which case we obtain the equivalent to a vector of
BDDs). For BDDA* it is more convenient to choose the one
where the heuristic relation is partitioned into Heur0(x),
. . ., Heurk(x), with Heur(value, x) =

∨k
i=0(value =

i) ∧Heur i(x).
BDDA* (Edelkamp and Reffel 1998), a.k.a. SetA*

(Jensen, Veloso, and Bryant 2008), operates on a BDD pri-
ority queue Open . In case of discrete cost-values the Open
sets can be represented by BDDs. For the organization of the
search that avoids BDD arithmetic, it is convenient to parti-
tion the state space. As we aim at cost-optimal symbolic
sequential planning, the matrix-based version of BDDA*
works on a partitioning of the search space in g- and h-
values, where g is the cost of the path traversed so far and
h is the heuristic estimate on the cost to reach the goal. To
guarantee optimal cost, BDDA* expands this matrix along
the f -diagonals with increasing g-values. The successors
of the BDD Openg,h for a chosen transition with cost c are
unified with the BDD Openg+c,h′ , where h′ ∈ {0, . . . , k}
is the partitioning obtained by the heuristic evaluation of the
successor set.

Basic Improvements
Our starting point is the IPC 2011 version of the planner
GAMER2, described in (Kissmann and Edelkamp 2011). It
applies symbolic PDB construction (for at most half the
time) and BDDA* search (for the rest of the time) for non-
unit cost domains or bidirectional BFS (for the full time) for
unit cost domains. If backward search takes too long, ab-
stractions are applied, otherwise a (partial) PDB in the con-
crete search space is constructed. In IPC 2011 GAMER did
not score as well as it did in 2008. Of the twelve planners it

2available at http://www.plg.inf.uc3m.es/ipc2011-deterministic

finished ninth with only 148 solutions for the 280 instances
(14 domains with 20 instances each), while one of the FAST
DOWNWARD STONE SOUP versions (Helmert, Röger, and
Karpas 2011) won with a total of 185 solutions. If we com-
pare the number of solved instances of the domains with
unit and with non-unit action costs the results are quite pe-
culiar. In the four domains with unit action costs GAMER
found only 23 solutions; only one participant was worse than
that. In the remaining ten domains with non-unit action costs
GAMER found 125 solutions; only three other planners were
able to find more (with the maximum being 131). Based on
the results of the competition we implemented some small
improvements, which are as follows.

In the solution reconstruction for bidirectional BFS,
GAMER supposed that at least one forward and at least one
backward step were performed. The two easiest problems
of VISITALL require only a single step, so that the solution
reconstruction crashed.

In some cases, parsing the ground input took more than
15 minutes, so that actually no search whatsoever was per-
formed in the domains with non-unit action costs. First it
was parsed in order to generate a PDB, the calculation of
which was killed after 15 minutes, and then the input was
parsed again for BDDA*. In the domains with unit action
costs it sometimes also dominated the overall runtime. Thus,
we switched to a parser generator for Java programs, with
which the parsing typically takes at most a few seconds.

In the most complex cases, generating the BDDs for the
transition relation takes a long time, as well. The planner
had to generate them twice in case of domains with non-unit
action costs if it did not use the abstraction, once for the
PDB generation and once for BDDA*. Instead, we store the
transition relation BDDs, the BDD for the initial state and
that for the goal condition on the hard disk; reading them
from the disk is often a lot faster than generating them again
from scratch.

In two of the new domains, namely PARKING and TIDY-
BOT, we found that the first backward step takes too long, of-
ten even more than 30 minutes, so that the decision whether
to use bidirectional or unidirectional BFS could not be fin-
ished before the overall time ran out. In these cases, the sin-
gle images for all the operators were quite fast, but the dis-
junction took very long. Thus, during the disjunction steps
we entered the possibility to check whether too much time,
in this case 30 seconds, has passed. If it has we stop the dis-
junctions and the planner only performs unidirectional BFS
(or PDB generation using abstractions). This enabled us to
find some solutions in TIDYBOT. The problem here is that
the goal description allows for too many possibilities, be-
cause variables from only very few of the SAS+ groups are
present.

While the original planner used bidirectional BFS for do-
mains with unit action costs, we tried running BDDA* in all
cases, no matter if we are confronted with them or not. Thus,
for the domains with unit action costs we treated all opera-
tors as if they had a cost of 1. We call this implementation
Matrix BDDA*.
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Algorithm 1 List-BDDA*.

Input: A: finite set of operators.
I: initial state.
G: goal description.
c : A 7→ {1, . . . , C}: action costs.
Heurh: heuristic relation.
To: transition relation for operator o ∈ A.

Output: cost-optimal plan.
Open0 ← I
for all f = 0, . . .

for all g = 0, . . . , f
h← f − g
S ← Openg ∧Heurh
if (h = 0) and (S ∧ G 6= 0) return ConstructSolution
for all i = 1, . . . , C
Succi(x

′)← ∨
a∈A,c(a)=i ∃x . S(x) ∧ To(x, x′)

Openg+i ← Openg+i ∨ Succi[x
′ ↔ x]

List BDDA*
In Matrix BDDA*, all successors are classified according to
their h-value by applying conjunctions with all the heuris-
tic BDDs. When the number of heuristic values grows this
can be inefficient, since some of these conjunctions could be
avoided.

The representation in the matrix can be simplified to the
vector for the states in the Open list ordered along the g-
value. The reasoning behind this strategy is to defer the
heuristic calculation by computing the conjunction of the
successor set with the heuristic estimate only when it is
needed for expansion in the currently traversed f -diagonal.

The pseudo-code of the resulting algorithm List BDDA*
for non-zero cost operators is shown in Algorithm 1. All
inputs to the algorithmA, I,G, c,Heurh, To are represented
as BDDs.

It is simple to add duplicate detection to the algorithm us-
ing another set Closed for the set of expanded states. The
handling of zero-cost operators adds another BFS loop to
the code as these operators are to be preferred in the ex-
ploration. While Matrix BDDA* uses BFS to get the states
reachable with zero-cost operators independent of their ac-
tual h values, in the list version we apply a conjunction with
the heuristic value to get only those states in the current f -
diagonal.

Symbolic Merge-and-Shrink
It is not difficult to observe that the precomputed memory
structure of the M&S heuristic can be cast as a symbolic
representation of an integer-valued function. This function
can be extracted in form of an ADD (Bahar et al. 1997) al-
lowing to enrich a symbolic heuristic planner to exploit this
expressive estimate. The precomputed ADD is converted to
a vector of BDDs (Bryant 1985) and can be plugged into
an optimal symbolic heuristic search planner. Such an ap-
proach is general to all M&S variants using a linear merge

strategy, including the latest improvements based on bisim-
ulation reductions (Nissim, Hoffmann, and Helmert 2011).

Every intermediate abstraction corresponds to a layer in
the ADD and each abstract state corresponds to an ADD
node. When a new variable is merged into the abstraction,
every state is split into k states in the next level, one for each
value of the variable. ADD nodes representing the parent
state are connected with the nodes representing its succes-
sors. As M&S works with finite domain variables but the
ADD is defined for binary variables, each node with k suc-
cessors is converted to a binary tree with log2 k layers.

To compute the ADD of an M&S heuristic we start
by generating the sink nodes associated with the different
heuristic values of the abstract states in the last layer. Then,
recursively, nodes in the previous layer can be constructed
pointing to the nodes in layers already computed. During
the ADD construction we ensure the application of the re-
duction rules, so that the size of the final ADD is usually
smaller than the M&S heuristic structure.

ADD Complexity
The symbolic ADD representation of the M&S heuristic can
be computed in time and space O(nM), where n is the size
of the Boolean state vector and M is the pre-defined maxi-
mum number of states. Moreover, the representation of the
heuristic as a sequence of BDDs h0, . . . , hmax can be com-
puted in time and space O(hmaxnM). The time and space
complexities are implied by the maximum sizes of the state
spaces for the construction of the next-variables tables in
the explicit search construction of the M&S heuristic. BDD
reduction is a linear time operation (Sieling and Wegener
1993) and only decreases the size.

The ADD sizes for the two M&S heuristics are shown
in Table 1. For each domain we provide the number of in-
stances in which the heuristic computation was finished in
30 minutes as well as the sizes of the largest ADD for each
domain. Surprisingly the ADDs are small, especially for the
greedy version of M&S, showing that not much memory is
spent once the ADD has been computed.

Limits and Possibilities
In Proposition 2.1 in (Nissim, Hoffmann, and Helmert 2011)
referring to (Helmert, Haslum, and Hoffmann 2007) it is
said that the M&S heuristic strictly generalizes the PDB
heuristic, as with only merging variables by computing their
synchronous product all pattern database heuristics based
on projecting the variables can be constructed. Moreover,
(Nissim, Hoffmann, and Helmert 2011) states that M&S can
compute perfect heuristics in polynomial time, where PDBs
cannot. The distinguishing example is the GRIPPER domain.

In a symbolic setting, this reasoning, however, is no
longer immediate. If all the variables are included in the pat-
tern, the original state space can be fully traversed resulting
in the optimal heuristic. As shown in (Edelkamp and Kiss-
mann 2008), the BDD exploration that computes the perfect
heuristic in GRIPPER is polynomial. Thus, even though it
is easier to relax M&S for computing non-perfect heuris-
tics (Katz, Hoffmann, and Helmert 2012), as the represen-
tational power of both alternatives is equivalent (an ADD
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Table 1: Number i of instances with M&S heuristic and
maximum number n of ADD nodes over all instances for
all domains of the sequential optimal track of IPC 2011.

M&S (gop’) M&S (gop)
Problem i n i n

NOMYSTERY 20 197,445 20 915
PARKING 0 — 20 2,260
TIDYBOT 0 — 20 15

VISITALL 20 3,225,813 20 7,381
BARMAN 20 177,294 20 45

ELEVATORS 20 62,594 0 —
FLOORTILE 20 1,278,950 8 6,283

OPENSTACKS 20 102,486 4 134,780
PARC-PRINTER 19 4,606,533 20 11,788
PEG-SOLITAIRE 20 42,170 0 —

SCANALYZER 16 356,698 6 29,921
SOKOBAN 20 1,339 1 33,525

TRANSPORT 20 257,898 20 753
WOODWORKING 20 248,263 20 439,489

A

B D

C

G

p

¬p

p

¬p

p p¬p

Figure 1: Example of bisimulation. A, B, C, D and G are
states in one level of the M&S process, while p and ¬p are
variable assignments that serve as a precondition of the ac-
cording operators.

for M&S and a list of BDDs for the symbolic PDB) both
approaches can potentially derive optimal heuristics in the
same domains.

However, even if the M&S bisimulation gets the perfect
heuristic, it does not always result in a reduced represen-
tation of the ADD. First, we observe that for any (e. g.,
the perfect) heuristic – no matter how it is computed – by
the uniqueness property, the according ADDs (following the
same variable ordering) have to be the same. Secondly, we
can construct an intuitive example, where shrinking is not
able to compute the most reduced form of the heuristic.

Figure 1 shows an example where there are not any bisim-
ilar states. The transition labels have already been reduced
so that they refer to variables that have not yet been merged.
In the example these labels are preconditions and they only
refer to a binary variable p. All the transitions have unit cost
and the goal is to reach state G.

We say that two abstract states s and s′ are equivalent,
if and only if, for every value assignment to the variables
that have not yet been merged the goal distance remains the
same. If two abstract states are equivalent, their correspond-

ing ADD nodes can be unified according to the ADD re-
duction rule (2). It is easy to see that states A and B in
the example are equivalent because in case that p holds both
have a cost of 1, while if ¬p holds both have a cost of two.
However, they are not bisimilar because B does not have
any transition to state C. Obviously, states C and D are not
bisimilar, given that their transitions have different labels.
Therefore, no pair of states is reduced by bisimulation.

However, since in the end only the distance to the goal
matters, those transitions that are not part of an optimal path
should not be taken into account. In the example, if the tran-
sition A→ C is not necessary then A and B are equivalent.
Checking if a transition is necessary in any optimal path is
not trivial as it needs to consider all the combinations of val-
ues of the variables that have not been merged.

It is possible to extend the example by adding an exponen-
tial number of equivalent states that are not bisimilar because
they have different transitions that are not needed by any of
their optimal paths. Therefore, this can cause an exponential
gap between the size of the intermediate abstraction and the
final reduced heuristic.

On the other hand, symbolic backward search iteratively
constructs the reduced BDDs for every cost. In the ab-
sence of zero-cost operators, the intermediate BDDs are al-
ways fully reduced. Thus, in some domains the size of the
BDDs used by symbolic partial PDBs may be exponentially
smaller than the M&S representation. The counterpart is
that these BDDs are computed with images of the transition
relation, which in some domains may be expensive.

Experiments
We use two planners as the basis for our experiments,
namely FAST DOWNWARD3 (FD) (Helmert 2006) offering
the M&S heuristic for explicit-state planning, and GAMER
for executing symbolic heuristic search. Both systems in-
clude their latest improvements.

The software infrastructure is taken from the resources
of the International Planning Competition IPC 2011. We
implemented the proposed refinements in GAMER (Matrix
BDDA* and List BDDA*) using the CUDD library of Fabio
Somenzi (compiled for 64-bit Linux using the GNU gcc
compiler, optimization option -O3). For the experiments
we used our own machine (Intel Core i7 920 CPU with
2.67GHz and 24GB RAM) with the same settings con-
cerning timeout (30 minutes) and maximal memory usage
(6GB) as in the competition. While the time and memory
settings are the same as in the competition, other parameters
of the computer are different.

We did experiments with two different configurations
of the M&S heuristic, one using only greedy bisimula-
tion (gop) and one using DFP-gop (gop’) with parameter
M = 200,000. The M&S planner presented in the com-
petition used these two strategies serially, first the version
with gop for 800 seconds and afterward the one with DFP-
gop for 1,000 seconds. We decided to run both parts inde-
pendently to see how well we perform against a more tradi-

3Retrieved on February 22nd 2012 from the FAST DOWNWARD
repository at http://hg.fast-downward.org.
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tional, i. e., non-portfolio, planner as well. The pattern se-
lection for symbolic PDBs is the same as used by GAMER
in the competition (Kissmann and Edelkamp 2011).

We look at two different variable ordering strategies used
by the competition planners, the one applied in FD and
the one applied in GAMER. The FAST DOWNWARD or-
dering looks at strongly connected components and weights
of the causal graph (Helmert 2006). Highly related vari-
ables are pushed to the top and goal variables are pushed
to the bottom of the ordering. The GAMER ordering also
looks at the dependency of variables and is the result of
a random local search to improve the ordering accord-
ing to incrementally computing the optimization function∑

1≤i,j,≤n,(ui,vj)∈D(π(i)−π(j))2, where π denotes the ap-
plied permutation and D denotes the set of the causal de-
pendencies. Thus, highly related variables are pushed to the
middle of the ordering.

The results are shown in Table 2. All the small improve-
ments in Matrix A* compared to GAMER helped mainly in
the domains with unit action costs. There we are now able to
find the two trivial solutions in VISITALL, in PARKING we
find one solution and in TIDYBOT we find eight solutions –
in both domains we failed completely in the competition. In
the domains with non-unit action costs the new parser helped
us to find three additional solutions in the SCANALYZER do-
main. Overall, Matrix BDDA* solves 158 problems, which
is 12 problems more than the competition version of GAMER
run on our machine.

When comparing both implementations of BDDA*, List
BDDA* is better than Matrix BDDA* when the M&S
heuristic is used or when PDBs are used in FAST DOWN-
WARD ordering; in case of PDBs and GAMER ordering both
find the same number of solutions. On the other hand, ex-
plicit A* beats both BDDA* versions when using FAST
DOWNWARD ordering and one of the M&S heuristics, while
with GAMER ordering it is better with the gop M&S heuris-
tic but worse with the gop’ heuristic. With FAST DOWN-
WARD ordering and the PDB heuristic both BDDA* ver-
sions are better than explicit A*, while with GAMER or-
dering there is no difference in the total number of found
solutions.

The symbolic PDB heuristic did not use abstraction in
most of the domains. With GAMER ordering abstraction
is used in some problems of PARC-PRINTER, PARKING,
SOKOBAN and TIDYBOT. With FAST DOWNWARD or-
dering abstraction is also used in FLOORTILE and OPEN-
STACKS. In all the other domains the heuristics were com-
puted by symbolic backward search until all states had been
reached or the time limit of 15 minutes had been expired.
The perfect heuristic was found for 70 problems when using
GAMER ordering and for 60 with FAST DOWNWARD order-
ing.

The results are highly influenced by the choice of the vari-
able ordering. Overall the FAST DOWNWARD ordering is
better for the M&S heuristic, while GAMER’s ordering helps
the symbolic exploration. Due to this, the integration of
symbolic search and the M&S heuristic is difficult because
both have to use the same ordering.

The variable ordering matters not only for the kind of

planner used but also for the domain it is used on. For exam-
ple, in NOMYSTERY, PARKING, VISITALL, FLOORTILE,
PARC-PRINTER, and SCANALYZER the FAST DOWN-
WARD ordering is better in most cases for all planners, while
in ELEVATORS, OPENSTACKS, SOKOBAN, and WOOD-
WORKING the GAMER ordering is the better choice.

Overall, the best choice is to use any of the three planners
with PDBs and GAMER ordering. However, as the M&S
heuristic takes less time to compute it is more suitable to
be run more than once. Using the same configuration as
in the competition, FD with the M&S heuristic can solve
171 problems, 2 more than in the competition, probably due
to some bugfixes and performance boosts in that planner as
well. On our machine, neither of the two versions took more
than 600 seconds for any of the solved instances, so that a
combination of both really is reasonable. The memory limit
of 6GB is what prevents them from finding more solutions.

Given a perfect oracle that tells us for each domain which
heuristic, which ordering, and which version of BDDA* to
use we would be able to find 185 solutions. In order to come
up with such an oracle we have to investigate the differences
between the planners, heuristics and orderings further and
find out why some work better than others in certain do-
mains.

Conclusion
According to the outcome of the last two IPCs, heuristic and
symbolic search are two leading methods for sequential op-
timal planning.

In this paper we have seen a head-to-head race of two
symbolic high-quality estimates, namely the PDB and the
M&S heuristic. Surprisingly, the former won (if we stick to
a single planner run). With PDB search, we arrive at 158
solutions in the set of competition instances (30 to 32 in the
domains with unit action costs and 126 to 128 in those with
non-unit action costs, dependent on the actual planner used).
If we would use Matrix BDDA* for the unit cost problems
and List BDDA* for the problems with non-unit costs we ar-
rive at 160 problems being solved. With this we are still be-
hind the number of 171 problems solved by explicit search
with two different versions of the M&S heuristic. Never-
theless, the performance of solving 128 instances with non-
unit costs is closing the gap to the state-of-the-art. With 131
found solutions only one of the FAST DOWNWARD STONE
SOUP planners is better. Moreover, if we were to exclude
the PARC-PRINTER domain, which is special due to the
extremely high and diverse action costs, the picture would
actually be fortunate for us.

The variable ordering for the M&S heuristic influences
both the quality of the estimate and the symbolic explo-
ration. The heuristic choice applied in FD pleases the M&S
heuristic, while the optimization applied in GAMER pleases
symbolic exploration. Future work is needed to combine the
two for a competitive BDDA* exploration with the M&S
heuristic.

The small ADD sizes for the M&S heuristic documented
in this paper suggest that there is sufficient memory for com-
puting the maximum of more than one heuristic (in ADD
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Table 2: Number of solved problems for all domains of the sequential optimal track of IPC 2011.
Domain FAST DOWNWARD Ordering GAMER Ordering

Explicit A* Matrix BDDA* List BDDA* Explicit A* Matrix BDDA* List BDDA*
gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB gop gop’ PDB

NOMYSTERY 13 20 14 14 20 16 15 20 16 13 12 12 14 17 14 13 18 13
PARKING 7 0 0 3 0 0 3 0 0 0 0 0 0 0 1 0 0 1
TIDYBOT 13 0 12 6 0 6 6 0 6 13 0 8 9 0 6 6 0 5

VISITALL 13 11 10 5 5 12 12 12 12 11 9 11 11 10 11 11 10 11
Total (unit cost) 46 31 36 28 25 34 36 32 34 37 21 31 34 27 32 30 28 30

BARMAN 4 4 4 4 4 4 4 4 4 4 4 4 6 5 4 4 4 4
ELEVATORS 0 11 18 0 16 19 0 16 19 6 12 19 6 14 19 5 17 19
FLOORTILE 3 7 12 3 7 12 3 7 12 3 4 11 3 4 8 3 4 8

OPENSTACKS 4 16 15 4 15 14 4 15 15 5 16 16 4 20 20 5 20 20
PARC-PRINTER 11 14 10 8 11 7 10 11 9 11 12 10 8 9 7 10 7 8
PEG-SOLITAIRE 0 19 19 0 19 19 0 19 19 0 19 19 0 19 17 0 19 17

SCANALYZER 6 10 9 6 9 9 6 9 9 3 8 9 3 8 9 3 7 9
SOKOBAN 1 20 4 1 13 12 1 12 12 3 20 17 2 18 19 2 18 19

TRANSPORT 6 7 9 6 7 9 6 7 10 6 6 9 6 6 7 6 6 8
WOODWORKING 9 6 7 10 7 5 10 7 7 9 9 13 6 8 16 13 12 16

Total (others) 44 114 107 42 108 110 44 107 116 50 110 127 44 111 126 51 114 128

Total (all) 90 145 143 70 133 144 80 139 150 87 131 158 78 138 158 81 142 158

representation). This results in a consistent, strictly more in-
formed heuristic for the (BDD)A* exploration and provides
a way of combining the accuracy of PDBs and M&S heuris-
tics.

In many instances that are solved by BDDA* with PDBs
no abstraction is applied, meaning that blind symbolic back-
ward search in the concrete state space is either finalized or
truncated by the time limit. As a consequence at least in do-
mains where backward search does not explode immediately
(due to illegal states produced), bidirectional blind symbolic
search is best.

Another competitor to look at would be the planning
heuristic h+. In a restricted setting it has been compiled into
a logic program and to a d-DNNF, where d-DNNFs are an-
other succinct representation for Boolean functions (Bonet
and Geffner 2008).

Acknowledgments
Thanks to Deutsche Forschungsgesellschaft (DFG) for sup-
port in the project ED 74/11-1. Thanks to the Spanish
Government for support in the MICINN projects TIN2011-
27652-C03-02, TIN2008-06701-C03-03 and to the Co-
munidad de Madrid for support in the project CCG10-
UC3M/TIC-5597.

References
Anderson, K.; Schaeffer, J.; and Holte, R. C. 2007. Partial
pattern databases. In SARA, 20–34.
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Abstract

Many practical planning problems necessitate the generation
of a plan under incomplete information about the state of the
world. In this paper we propose the notion of Assumption-
Based Planning. Unlike conformant planning, which at-
tempts to find a plan under all possible completions of the
initial state, an assumption-based plan supports the assertion
of additional assumptions about the state of the world, sim-
plifying the planning problem. In many practical settings,
such plans can be of higher quality than conformant plans.
We formalize the notion of assumption-based planning, es-
tablishing a relationship between assumption-based and con-
formant planning, and prove properties of such plans. We
further provide for the scenario where some assumptions are
more preferred than others. Exploiting the correspondence
with conformant planning, we propose a means of comput-
ing assumption-based plans via a translation to classical plan-
ning. Our translation is an extension of the popular approach
proposed by Palacios and Geffner and realized in their T0
planner. We have implemented our planner, A0, as a variant
of T0 and tested it on a number of expository domains drawn
from the International Planning Competition. Our results il-
lustrate the utility of this new planning paradigm.

Introduction
In many real-world planning problems, only a subset of the
state of the world may be known. Conformant planning,
conditional planning, probabilistic planning and contingent
planning are among the approaches used to address such
planning scenarios. Whereas classical planning assumes
complete information about the state of the world, confor-
mant planning assumes incomplete information but necessi-
tates generation of a plan that relies only on what is known.
This makes planning difficult and can lead to poor plans.

In this paper we define the notion of assumption-based
planning. Assumption-based planning attempts to find a
middle-ground between conformant and classical planning
wherein the planner dynamically asserts reasonable, calcu-
lated assumptions about the uncertainty in the world in order
to generate a valid plan given those assumptions. In contrast
to contingent planning that exploits strategic sensing to re-
solve uncertainty, assumption-based planning is well-suited
to scenarios where resolving uncertainty directly is impos-
sible, difficult, or expensive. Consider the simple task of
planning your trip home at the end of a work day. You don’t

know for certain that the subway will be running, you have
no way of finding out, but it’s reasonable to assume so. Mak-
ing this assumption supports generation of a reasonable plan.
The conformant plan might have you walking home!

The term assumption-based planning has been coined for
a number of diverse planning activities that broadly relate to
assumptions. Albore and Bertoli (2004; 2006) used the term
to describe a notion of planning in which an assumption is
provided a priori as a linear temporal logic (LTL) formula
and a plan is generated predicated on this assumption. Their
work is more closely related to planning with LTL domain
control knowledge (e.g., Bacchus and Kabanza 2000). Pel-
lier and Fiorino (2004; 2005) also use the term to describe
a multi-agent approach to devising a shared global plan via
a conjecture/refutation cycle, where agents exchange pro-
posals and counter-proposals in an argumentation dialogue.
Their basic formulation shares commonalities with our ap-
proach, but the approach to plan generation is fundamentally
different and the two pieces of work were developed inde-
pendently.

Here, assumption-based planning is related to the char-
acterization of abduction as theory formation (e.g., Poole,
Goebel, and Aleliunas 1987) wherein additional facts about
the world are conjectured in order to explain an observa-
tion. It is also somewhat related to the notion of generating
explanations for dynamical systems (e.g., Sohrabi, Baier,
and McIlraith 2011). Indeed, Reiter and de Kleer (1987)
established the relationship between abduction (explanation
generation) and assumption-based reasoning for static sys-
tems, and Conrad and Williams (2011) employed aspects
of assumption-based truth maintenance in their Drake ex-
ecutive for temporal plans. In (Göbelbecker, Gretton, and
Dearden 2011; Bonet and Geffner 2011; Albore and Geffner
2009), contingent planners may make assumptions that can
be verified through sensing later on.

In contrast to previous work, we provide a formal
characterization of assumption-based planning establish-
ing a correspondence to conformant planning. Exploit-
ing this correspondence, we provide a translation of an
assumption-based planning problem to a classical planning
problem. , building on the popular translation developed by
Palacios and Geffner (2009). We prove the soundness and
completeness of our translation. This provides us with a
means of generating assumption-based plans using classical
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planners.
We also argue for the merit of preferred assumption-based

plans and propose a means of realizing such plans via cost-
based planning. We implement these two approaches and
perform experiments to illustrate their viability and assess
some of their properties.

Beyond planning, the assumption-based planning
paradigm has compelling applications in a diversity of
application areas including diagnosis and verification.

Characterization
In this section we formally define assumption-based plan-
ning and initial state assumption-based planning, as well as
state the equivalence of the two given deterministic actions
and no exogenous events.

Background
We now define the fundamental notions that will be used
in the rest of the paper. Our first definition is for planning
problems. 1

Definition 1 (Planning Problem) A planning problem is a
tuple P = (F,O, I,G) where F is a finite set of fluent sym-
bols,O is a finite set of action operators, I is a set of clauses
over F , defining the set of possible initial states, and G is a
boolean formula over symbols in F , that defines a goal con-
dition.

Every action a ∈ O is defined by a conjunction of fluent
literals, prec(a) (preconditions) and a set of conditional ef-
fects C → L where L is a fluent literal that is made true
when the action is executed and the conjunction of fluent
literals C holds. An unconditional effect is one in which
C = true; L is made true every time the action is executed.

Example 1 Consider a car-driving domain in which a car
can drive between locations. There are three actions:
drive(x, y), turnOn , and turnOff . There are only two lo-
cations: home and office. Initially we only know that the
car is at home and that its engine is not on. Hence, the initial
state I is given by {at(home),¬at(office),¬engineOn}.
Action turnOn turns the engine on if the battery is work-
ing, represented by the conditional effect {batteryOk →
engineOn}, and has no preconditions (i.e., prec(a) = true).
Action drive(x, y) requires as precondition that at(x) and
that engineOn, and has the (unconditional) effects at(y),
¬at(x). Action fixBattery has no precondition and a single
conditional effect ¬batteryOk → batteryOk . Finally, the
objective is to bring the car to the office: G = at(office).

A planning state s is defined by a set of fluent symbols,
which represent all that is true. Each system state s induces
a propositional valuation Ms : F → {true, false} that maps
any fluent literal in s to true, and all other literals to false.

We say a state s is consistent with a set of clauses C, if
Ms |= c, for every c ∈ C. Intuitively, Ms |= φ stands for
“boolean formula φ holds true in state s”.

1In the planning literature, the following definition is usually
used for conformant planning problems. Here we do not wish to
cast a planning problem as conformant a priori. As we will see,
this definition generalizes also to our assumption-based paradigm.

An action a is executable in a state s if Ms |= prec(a).
If a is executable in a state s, we define its successor state
as δ(a, s) = (s \ Del) ∪ Add, where Add contains a flu-
ent f iff C → f is an effect of a and Ms |= C. On the
other hand Del contains a fluent f iff C → ¬f is an ef-
fect of a, and Ms |= C. We define δ(a0a1 . . . an, s) =
δ(a1 . . . an, δ(a0, s)), and δ(ε, s) = s. A sequence of ac-
tions α is executable in s if δ(α, s) is defined. Furthermore
α is executable in P iff it is executable in s, for any s con-
sistent with I .

Below we define the notion of execution trace which in-
tuitively characterizes maximal state trajectories that could
result from the execution of an action sequence when per-
formed in some of the possible initial states of a planning
problem.
Definition 2 (Execution Trace) A sequence of planning
states σ = s0s1 · · · sk is an execution trace of α =
a0a1 . . . an in planning problem P = (F,O, I,G) iff (1)
s0 is consistent with I , (2) δ(ai, si) = si+1, for all i < k,
and (3) either k = n + 1 or k < n + 1 and δ(sk, ak) is
undefined.
Definition 3 (Successful Execution Trace) An execution
trace σ for α is successful iff |σ| = |α|+ 1.

Naturally, we are interested in execution traces that lead
to goal satisfaction, i.e., for which the goal holds in the final
state of the sequence of planning states. Formally,
Definition 4 (Leads to) An execution trace σ = s0 · · · sk
leads to (goal formula) G, iff Msk |= G.

With the previous definitions in hand, we define the stan-
dard notion of conformant plan.
Definition 5 (Conformant Plan) A sequence of actions α
is a conformant plan for P = (F,O, I,G) iff every execu-
tion trace of α is successful and leads to G.

In our car-driving example, the sequence
fixBattery ; turnOn; drive(home, office) is a conformant
plan. The reader can easily verify that action fixBattery is
needed in any conformant plan, since two planning states are
consistent with I: {at(home), batteryOk ,¬engineOn},
and {at(home),¬batteryOk ,¬engineOn}.

Assumption-Based Planning
Consider an extension of our car-driving example where,
in addition to the battery, many other car components are
modeled as potentially malfunctioning. In the absence of
information regarding the status of each component, a con-
formant plan would require fixing each component, which
would result in either a long, poor quality plan, or possibly
no plan at all. A contingent plan could be similarly poor,
requiring significant computation or contingencies for un-
likely scenarios. Instead we would like the planning system
to simplify the task, as people do, by automatically assum-
ing, in the absence of evidence to the contrary, that the bat-
tery and other components are functioning correctly in the
initial state. Later on, we would like the planner to be capa-
ble of assuming that the freeway is not blocked in the state
immediately before entering it. In general, we would like
the planner to be able to make reasonable assumptions about
any state along the execution.
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Given a planning problem with an incomplete initial state,
the task of assumption-based planning requires computing
two elements: (1) a set of assumptions that are made at
different states during the execution of the plan, and (2) a
sequence of actions that, given the assumptions, is guaran-
teed to reach the goal. As such, the main difference between
assumption-based planning and conformant planning is re-
lated to the computation of assumptions in addition to the
computation of a plan.

Formally an assumption-based planning problem is a tu-
ple P = (F,O, I,G, T ), where F , O, I , and G are defined
exactly as for regular planning problems (Definition 1), and
T is a subset of F and denotes the set of assumable fluents.
T may be equivalent to the set of domain fluents or it may be
restricted to an application-specific subset, such as the set of
fluents corresponding to the normal functioning of car com-
ponents in our car example. An assumption-based plan is a
pair (ρ, α) where α = a0 · · · ak is a sequence of actions and
ρ = h0 · · ·hk+1 is a sequence of boolean formulae. Each hi
is a boolean formula over the fluents in T and represents as-
sumptions made about the i-th state visited when performing
α.

The execution traces that we will be interested in are those
that conform to ρ; i.e., are such that they are consistent with
the assumptions. Formally,
Definition 6 (Conforms to) An execution trace σ =
s1 · · · sk conforms to a sequence of boolean formulae ρ =
h1 · · ·hn with k ≤ n iffMsi |= hi, for every i ∈ {1, . . . , k}.
Finally, each of the execution traces of α that conform to
ρ must actually lead to the goal. A formal definition of an
assumption-based plan follows.
Definition 7 (Assumption-Based Plan) The pair (ρ, α),
where α is a sequence of k actions, and ρ is a sequence of
k+ 1 boolean formulae over T is an assumption-based plan
for P = (F,O, I,G, T ) iff any execution trace of α that
conforms to ρ is successful and leads to G, and furthermore
at least one such execution trace exists.

Intuitively for every consistent completion of the initial
state the execution trace is either successful and leads to
the goal or is pruned by ρ. Note that by the definition of
conforms to, if an execution is not successful and doesn’t
conform to ρ, then it is pruned before the terminating state.
Assumption-based planning may be reduced to a conformant
plan when all assumptions are restricted to be trivial. An as-
sumption is trivial when it is entailed by the state in which
it is made. Trivial assumptions may be forced by restricting
the set T , the extreme case being when T is empty.

In our car example, π = (ρ, α), with ρ =
batteryOk ; true; true, α = turnOn; drive(home, office) is
an assumption-based plan that assumes the battery is ini-
tially working and uses two actions to achieve the goal.

An important fact to note at this point is that, given the
current definition of the problem, assumptions may in some
cases provide too much flexibility. In fact, one can imag-
ine cases in which we assume the preconditions of an ac-
tion that achieves the goal or even simply assume that the
goal is true in the initial state. Of course, this could lead to
over-simplified solutions, which may not be desirable. This

issue can be tackled by defining a notion of quality over
assumption-based plans. We discuss this in more detail in
the preferred assumption-based planning section.
Relation to Abduction The notion of assumption-based
planning draws some intuition from the notion of abduction
and in particular from the logical characterization of abduc-
tion as theory formation (e.g., Poole, Goebel, and Aleliu-
nas 1987; Console, Dupre, and Torasso 1989). Informally,
given an observation, abduction is inference to the best ex-
planation for that observation. More formally, given a back-
ground theory Σ, a distinguished set of abducible literals E ,
and an observation formula O, the formula E constructed
from E is an abductive explanation for O iff (i) Σ 6|= O, (ii)
Σ ∪ E is satisfiable, and (iii) Σ ∪ E |= O. The definition of
best abductive explanation is often application specific and
imposes further criteria on E. Note that the designation of a
distinguished set of literals, T , from which assumptions are
drawn is analogous to the abducibles used to characterize
the notion of abductive inference, as described above. This
set is domain specific and is used to restrict assumptions to
those that are reasonable for the domain. For example, in
automated diagnosis, the abducibles are restricted to literals
that designate the malfunctioning of different system com-
ponents – the building blocks of diagnoses.

Initial-State Assumption-Based Planning
In many settings it is convenient or sufficient to make as-
sumptions only about the initial state of the world. In other
words, to make hi = true for every i > 0. We call this
class of problems initial-state assumption-based planning.
An initial-state assumption-based plan is denoted by (h0, α),
where h0 is a boolean formula over T that corresponds to an
assumption made on the initial state.

The formal relation between conformant planning and
initial-state assumption-based planning is straightforward,
and is established in the following proposition.
Proposition 1 The tuple (h0, α) is an initial-
state assumption-based plan for planning problem
P = (F,O, I,G, T ) iff α is a conformant plan for
P ′ = (F,O, I ∪ h0, G).
Note that this proposition does not imply that an
assumption-based plan can be directly computed using a
conformant planner, since a conformant planner is not able
to compute assumptions. In addition, a relation between
assumption-based planning and initial-state assumption-
based planning can be established.
Theorem 1 If P = (F,O, I,G, T ) and (ρ, α) is an
assumption-based plan for P , then there exists an h0 and
a T ′ such that (h0, α) is an initial-state assumption-based
plan for P ′ = (F,O, I,G, T ′). Furthermore, h0 can be
computed from ρ, P and α in time 2O(|α|).
Proof sketch: By applying regression rewriting (Waldinger
1977) to the sequence of assumptions, ρ, regressing them
over the plan αwe can obtain a formula φG that corresponds
to the conditions under which α is executable in the initial
state. From φG we can extract h0, which must be consistent
with I but not entailed by I . This regression may require
assumptions in the initial state of fluents not in T , but this
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will not affect which execution traces succeed and lead toG.
Regression is worst-case exponential in |α|, but is linear in
|α| if there are no actions with conditional effects in α. �

As a consequence of this theorem, if α is a sequence of
actions for which there is some ρ such that (ρ, α) is an
assumption-based plan, then we can construct an assump-
tion h0 on the initial state using α such that (h0, α) is an
assumption-based plan. The proof of the above theorem
(omitted here for space) actually gives a constructive algo-
rithm for h0 that relies on regressing ρ over α.

The proof of Theorem 1 establishes a means of construct-
ing an initial-state assumption-based plan (h0, α) from an
arbitrary assumption-based plan (ρ, α) via regression. Un-
der certain conditions, one can similarly construct an ar-
bitrary assumption-based plan (ρ, α) from an initial-state
assumption-based plan (h0, α) by progressing aspects of h0
(Lin and Reiter 1997). Intuitively, this provides a means
of generating an assumption-based plan that makes assump-
tions at the point at which they are needed, and no sooner.
This has particular value with respect to monitoring the ex-
ecution of a plan, and may be used in settings in which ex-
ogenous events may occur.

We now analyze aspects that relate to the complexity
of assumption-based planning. As it turns out, the defini-
tion of assumption-based planning is general enough that
its complexity seems to lie across a spectrum of complexity
classes, depending on which literals are allowed to be as-
sumed. Below we provide two complexity results showing
that assumption-based planning is complete for two com-
plexity classes. Our first result follows directly from the fact
that conformant planning is EXPSPACE-complete (Haslum
and Jonsson 1999).
Theorem 2 Given an assumption-based planning problem
P = (F,O, I,G, T ), where T contains no fluents men-
tioned in non-unary clauses of I , deciding whether or not
an assumption-based plan exists is EXPSPACE-complete.
However, as more information can be assumed, the com-
plexity of the decision problem move down to that of classi-
cal planning.
Theorem 3 Given an assumption-based planning problem
P = (F,O, I,G, T ), where T contains all fluents men-
tioned in non-unary clauses of I , deciding whether or not
an assumption-based plan exists is PSPACE-complete.
Proof sketch: For membership, we propose the following
NPSPACE algorithm: guess the assumptions h0 such that
I ∪ h0 has a unique model, then call a PSPACE algorithm
(like the one suggested by de Giacomo and Vardi (1999))
to decide (classical) plan existence. Then we use the fact
that NPSPACE=PSPACE. Hardness is given by the fact that
classical planning, a PSPACE-complete problem (Bylan-
der 1994), can be straightforwardly reduced to assumption-
based planning. �

Naive Approach to Assumption-Based Planning
Theorem 3 implies that when the set of assumable fluents
contain all fluents appearing in non-unary clauses of I ,

assumption-based planning can be reduced to classical plan-
ning. Indeed, a naive algorithm for this type of assumption-
based planning can be proposed by building a classical plan-
ning problem in which the planner first has to “guess” an
assumption on the initial state, and then find a sequence of
actions.

Specifically, the classical problem P ′ is like P but aug-
mented with additional actions that can only be performed at
the initial state and have as an objective to generate an initial
state consistent with I . There is an exponential number of
these actions. If a0a1 . . . an is a plan for P , we construct the
initial-state assumption-based plan α as follows. h0 is con-
structed with the facts true in the state s that a0 generates. a
is simply set to a1 . . . an. Of course, the approach derived
by the proof of this theorem is very impractical as it grows
the size of the problem exponentially. In an extended ver-
sion of our car example, in which we have n components of
the car whose state is unknown, we would have 2n actions
that complete the initial state. Alternatively, some domains
may lend themselves to achieve the same completion effect
by applying a sequence of actions. In our example, each
sequence of these actions generates one of the possible 2n

states.
An important limitation of both of the aforementioned

approaches is that actions performed at the beginning of
the plan make an explicit commitment to a single initial
state. In many practical applications, such a compromise
seems too excessive. Computationally, committing to a sin-
gle state may lead the search astray. From a high-level
perspective, committing to a single state produces assump-
tions that may be too restrictive, which may be undesir-
able. Both approaches outlined above have been used in
the past to tackle diagnosis problems in which the ini-
tial state is unknown (Sohrabi, Baier, and McIlraith 2010;
Haslum and Grastien 2011).

A Translation-Based Approach
In this section we propose an alternative translation of
assumption-based planning into classical planning that
builds on top of Palacios and Geffner’s KT,M translation
(2009) – henceforth denoted by P&G– which translates con-
formant planning into classical planning. The main objec-
tive of our translation is to avoid the excessive commitment
exhibited by the naive translation of assumption-based plan-
ning into classical planning. We describe the basics of the
translation, analyze its properties, and finally compare it to
other extensions of P&G.

The KA
T,M Translation

Given a planning problem P = (F,O, I,G), we generate
a new planning problem P ′ = (F ′, O′, I ′, G′); we call this
process the KA

T,M translation, which builds on P&G KT,M

translation. For each literal L we associate a set of merges,
ML. Each merge is a finite set of tags, which in turn are
conjunctions of literals that are unknown in the initial state.
Each merge characterizes a partition of the initial state in the
sense that I |= ∨t∈m t is required to hold for each mergem.
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A tag intuitively represents a partial completion of the ini-
tial state in which every L ∈ t is initially true – it is a “case”
in which L is initially true. Problem P ′ contains fluents of
the form KL, for each L ∈ F , Kt and K¬t for each tag t,
and KL/t for each L ∈ F and each tag t in a merge of ML.
KL intuitively represents that L is known. KL/t represents
the fact that L is known given that t is true in the initial state.

The main difference between P&G and our translation is
that we consider a set of assumption actions, which allow
the planner to assume that a tag t was true in the initial
state. More specifically, given a set T of assumable tags,
there is an assumption action associated to each t ∈ T that
assumes t is true in the initial state. Instead of using the
standard P&G merge actions, we use the contingent merge
actions introduced by Albore, Palacios, and Geffner (2009).
Furthermore, our translation augments P&G with additional
conditional effects to handle assumptions. More precisely,
P ′ is such that the following holds.
(1) I ′ = {KL | I |= L} ∪ {KL/t | I, t |= L} ∪ {ok}. I ′
differs from P&G’s only in the ok fluent which is added to
keep track of consistency and is explained in detail later.
(2) For each literal L, and each tag t in some merge of
ML, O contains the so-called contingent merges proposed
originally by Albore, Palacios, and Geffner (2009); they are
of the form [

∧
t∈m(KL/t∨K¬t)]→ KL. These generalize

P&G’s merge actions for the case in which a tag t is refuted
by assumptions.
(3) Like P&G, for each action a with conditional effect
C → L,O′ contains the conditional effects [

∧
c∈C Kc/t]→

KL/t and [
∧
c∈C ¬K¬c/t] → ¬K¬L/t, for each tag t in

some merge of ML.
(4) In addition to P&G, for each tag t in the set of assumable
tags, T , we create an assumption action Assume(t), with
precondition ¬K¬t∧¬Kt∧¬K¬t′∧¬Kt′ and effectsKt,
¬K¬t, K¬t′, ¬Kt′ for every tag t′ that is inconsistent with
t, i.e., contains the complement of a literal in t.
(5) For each merge set ML that contains tag t, and each
merge m ∈ ML, the conditional effects KL/t → KL, and
KL/t ∧K¬L → ¬ok are added to the Assume(t) action.
The first conditional effect makes L known if it is the case
that KL/t. The second conditional effect takes care of po-
tential inconsistencies that could arise when assuming a lit-
eral that implies thatL is known, when¬L is already known.
In such cases the action deletes the fluent ok signaling incon-
sistency.
(6) For each action a ∈ O the version of a in O′ contains
the precondition ok ∧∧L∈prec(a)KL.
(7) While building a plan, the planner should not make in-
consistent assumptions. To illustrate this, consider that both
c1 = ¬L1∨L2 and c2 = ¬L3∨L1 are clauses in I , and sup-
pose a plan contains the action Assume(L3). Then action
Assume(¬L2) cannot consistently occur after Assume(L3)
because that would imply that c1 would be contradicted (L1

is forced to be true by c2 and the assumption of L3). Thus
whenever we assume a tag t, we may need to update the
knowledge about other tags. We achieve this by adding spe-
cific conditional effects to assumption actions. Such effects
reflect logical inferences among clauses defining the initial

state and we obtain them by performing resolution. In our
example, if one carries out a resolution step between c1 and
c2, then we obtain the clause c3 = ¬L3 ∨ L2, from which
it is straightforward that L2 is forced to be true after assum-
ing L3. Using c3 we write a new effect for Assume(¬L3)
that states KL2 as a new effect. This idea can be extended
further by computing all possible resolution steps with the
clauses in the initial state.

In the general case, however, tags may be conjunctions
of literals, and thus the relationship between different tags
may not be entirely obvious by just looking at the clauses
that result from resolution. In such a case, for each tag t, we
add to I the clauses corresponding to vt ↔ [

∧
L∈t L], where

vt is a new variable that represents a tag t. After carrying
out all possible resolutions there will be clauses that only
contain variables of the form vt, and we only consider these
clauses to generate the effects.

Let us denote by I+ the set of clauses that result after per-
forming resolution. Now we are ready to specify the condi-
tional effects that are going to be added to Assume(t). For
each clause in c ∈ I+ of the form {`1, `2, . . . , `n}, such
that each `i is either t or ¬t (or vt or ¬vt), for some tag t,
we add the conditional effect [

∧
`∈c\{`i}K¬`] → K`i, for

every i ∈ {1, . . . , n}.
Note that the construction of I+ is clearly worst-case ex-

ponential. Nevertheless, in practice, there are usually few
resolution steps that can be made between clauses in I as
usually I is formed by groups of clauses relatively indepen-
dent of each other. Furthermore, when tags are of size 1,
we do not need to add the clauses involving vt as literals
themselves represent their tags.
(8) Finally, G′ = {KL | L ∈ G} ∪ {ok}.

Just like P&G KT,M translation, our KA
T,M translation is

sound in the following sense.
Theorem 4 The KA

T,M translation is sound; i.e., if α is a
plan for KA

T,M (P ), then there is an assumption-based plan
(ρ, α′) for the original problem. Furthermore, (ρ, α′) can
be computed from α in linear time.

The KA
i (P ) Translation

As with P&G’sKT,M translation, theKA
T,M translation does

not define explicitly how the merges/tags are computed from
the original problem. In addition, it provides no complete-
ness guarantees. A practical realization of P&G’s KT,M is
given by the so-called Ki translation (Palacios and Geffner
2009). Ki defines an explicit way to compute merges. It is
a sound translation (in the sense defined above). In addition,
if i is not greater than the so-called width of the problem P ,
then it is also complete.

We have defined an analogous version of the Ki trans-
lation, that we call KA

i . KA
i is a version of Ki in which

merges and tags are computed using the same procedure as
for the case of Ki. Due to lack of space we cannot elab-
orate on this process, but we refer the reader to Palacios
and Geffner’s paper (2009) for reference. After the tags and
merges are determined, however, it may be that the set of
tags does not capture the set of assumable fluents. In such
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a case, we create additional tags for those assumable fluents
that are not captured.

Since KA
i is a particular form of the translation KT,M ,

we obtain that it is sound as a corollary of Theorem 4. Fur-
thermore,
Theorem 5 Given an assumption-based planning problem
P = (F,O, I,G, T ), with width w(P ) ≤ i, the KA

i trans-
lation is complete; i.e. if there exists an assumption-based
plan (ρ, π) for P , in which ρ are conjunctions of literals in
T , then a plan exists for KA

i (P ).
In the previous result, w(P ) is defined analogously to P&G.
Negative Results Given P , Ki(P ) is polynomial in the
width of P (Palacios and Geffner 2009). Since our imple-
mentation involves a step in which previously we do a res-
olution fixpoint computation (Step (7)) we cannot guarantee
that the KA

i translation is polynomial on the width of P .

Preferred Assumption-Based Planning
The definition of an assumption-based plan allows the plan-
ner to assume any aspect of the state that can be constructed
from the subset of assumable literals and consistently as-
sumed. However, some assumptions will be more reason-
able than others. E.g., in our car example, if it’s summer, it
may be much more reasonable to assume batteryOk than
that the car hasGas . In the cold of winter, the opposite
may be true. To define the notion of a preferred assumption-
based plan, we employ a preference relation �, a transitive
and reflexive relation in Π× Π, where Π contains precisely
all assumption-based plans for a particular planning instance
(following Baier and McIlraith 2008). Plan optimality is de-
fined in the obvious way given relation �.

So far we have not discussed how to realize the pref-
erence relation ≺. The problem of specifying a preferred
assumption-based plan is somewhat analogous to the task
of specifying a preferred abductive explanations. (Indeed,
Reiter and de Kleer established the relationship between ab-
duction and assumption-based reasoning for nondynamical
systems in (Reiter and de Kleer 1987).) There is a rich litera-
ture on this subject. Drawing on this analogy, we may define
a syntactic, domain-independent notion of preference by re-
stricting assumables to literals and preferring plans that as-
sume the smallest number of literals. Appealing to domain-
specific notions of preference, if probabilistic information is
available, we may wish to define our preference relationship
in terms of the likelihood of the assumable being true given
what is known of the state. Alternatively, we could appeal
to background knowledge described in default logic (e.g.,
(Brewka 1989)).

The problem with any of these approaches is that they pro-
vide a means of preferring assumables, but not necessarily
a means of preferring assumption-based plans. In planning,
the actions themselves also contribute to the quality of the
plan – both the number of actions, and what actions are per-
formed. A high-quality assumption-based plan may dictate
making a number of reasonable assumptions at the outset,
and then minimizing plan length, or it may be characterized
by minimizing the number of assumptions and utilizing cer-
tain desirable actions.. As such a more compelling approach

is to appeal to a planning formalism for preference-based
planning such as PDDL3 (Gerevini et al. 2009), specify-
ing assumptions just as we specify preferences, but with the
variation that we penalize the use of assumptions (and ac-
tions) rather than the violation of preferences as is typically
done in preference-based planning. We might alternatively
characterize the problem as a net benefit problem (van den
Briel et al. 2004). Detailed discussion of how best to specify
such preferences is beyond the scope of this paper.

For the purposes of this paper, we will appeal to the
uniform notion of action cost in order to characterize pre-
ferred assumption-based plans, rather than defining � di-
rectly. Specifically, given an assumption-based planning
problem P , we build its translated instance KA

T,M (P ) =

(F,O, I,G), and then augment this instance to produce a
cost-based planning problem PC = (F,O, I,G) such that
each action a ∈ O has a non-negative cost C(a). Note that
this means that actions of the form Assume(t) will have a
cost associated with them. Likewise, so do the domain ac-
tions and merge actions. The task reduces now to finding a
cost-optimal plan.

Specifying how a domain expert would specify these pref-
erences in the original problem specification and ensuring
that the corresponding cost-based planning problem respects
the induced ≺ relation can be achieved in a variety of ways.
Detailed discussion of this issue is beyond the scope of this
paper. For the purposes of illustrating some of the properties
of this approach, we can directly and intuitively add costs to
the translated classical planning problem, as we do in the
section to follow.

Implementation and Experiments
The KA

1 translation was implemented in our A0 planner as
an augmentation of Palacios and Geffner’s T0 planner. In the
absence of the specification of assumables, the assumables
are set to all the fluents less those involved in G, precluding
assumption-based plans that assume G. We use FF (Hoff-
mann and Nebel 2001) to generate classical plans with the
translated domains and convert them back into assumption-
based plans. To generate preferred assumption-based plans,
we associate a cost with each action in the (translated) clas-
sical planning problem. The resulting cost-based planning
problem is solved using Metric-FF and LAMA.

Since the notion of assumption-based planning is
new, there are no systems to benchmark against. We
sought instead to evaluate the running time of A0 + FF
compared to an implementation of so-called naive
assumption-based planning, and to various cost distributions
for cost-based assumption-based planning. We also sought
to assess gross properties of the translation: proportion of
solution time; and size relative to its T0 counter part, and to
the original problem.
Domains: We exploited four domains from the Interna-
tional Planning Competition (IPC) benchmark suite: lo-
gistics, raokeys, coins, and blocks. Experiments are still
in progress for the latter two domains, but initial results
are promising; details will be given in the full paper. In
logistics, packages must be delivered to locations within
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Table 1: Comparing the seven configurations with the total time to solve in seconds on the left and plan length on the right. The
number of assumptions made appears in parentheses. The results are preliminary and experiments are in progress (X: unknown
failure in back-end planner. TTO: time out during translation. STO: time out during solving classical plan). All experiments
were run on a 2.80GHz machine with 2GB memory and a 30 minute timeout.

Prob Classical (t(s)/len) Cost-Based Metric-FF (t(s)/len) Cost-Based LAMA (t(s)/len)
A0 naive x=0.1 x=0.5 x=1 x=2 x=10 x=0.1 x=0.5 x=1 x=2 x=10

alog-1 0.06/44(2) 0.00/39(4) 0.26/39(2) 0.04/39(2) 0.03/39(2) 0.05/39(3) 0.29/39(3) 101.75/36(1) 37.58/36(1) 0.03/38(2) 0.02/38(2) 0.02/38(2)
alog-2 0.07/44(2) 0.01/ 51(16) 0.33/39(2) 0.04/39(2) 0.04/39(2) 0.06/39(3) 0.36/39(3) 6.03/36(1) 0.03/38(2) 0.02/38(2) 220.53/36(2) 251.66/36(2)
alog-3 0.06/44(2) 0.02/ 61(26) 0.33/39(2) 0.03/39(2) 0.04/39(2) 0.06/39(3) 0.35/39(3) 6.03/36(1) 0.03/38(2) 0.03/38(2) 0.03/38(2) 253.99/36(2)
alog-4 0.11/44(2) 0.27/ 129(94) 0.41/39(2) 0.05/39(2) 0.05/39(2) 0.06/39(3) 0.43/39(3) 6.35/36(1) 475.12/36(1) 0.04/41(2) 589.5/36(2) 0.05/41(2)
alog-5 0.06/50(2) 0.01/ 47(5) 0.39/45(2) 0.05/45(2) 0.05/45(2) 0.09/45(3) 0.69/45(3) 54.14/42(1) 38.67/44(2) 38.71/44(2) 38.53/44(2) 38.04/44(2)
alog-6 0.07/50(2) 0.01/ 50(8) 0.41/45(2) 0.06/45(2) 0.05/45(2) 0.11/45(4) 0.77/45(4) 4.45/42(1) 1.41/43(2) 1.49/43(2) 1.41/43(2) 1.45/43(2)
alog-7 0.07/52(3) 0.01/ 54(5) 0.03/51(3) 0.03/51(3) 0.03/51(3) 0.03/51(3) 0.07/51(3) 0.65/54(3) 0.67/54(3) 0.64/54(3) 0.66/54(3) 0.65/54(3)
alog-8 0.1/54(3) 0.01/ 50(6) 0.04/53(2) 0.03/53(2) 0.04/53(3) 0.05/52(4) 2.45/51(3) 13.6/55(2) 13.25/55(2) 13.32/55(2) 524.5/49(3) 669.47/51(3)
alog-9 0.08/56(5) 0.01/ 51(10) 0.10/61(2) 0.16/61(2) 0.15/61(4) 0.08/57(6) 9.80/51(4) 427.26/60(2) 423.53/52(3) 424.44/52(3) 423.99/52 93) 424.19/52(3)
alog-10 0.06/39(5) 0.01/ 36(6) 0.36/37(4) 0.04/39(5) 0.03/39(6) 0.06/36(5) 0.50/36(5) 8.93/33(1) 12.52/34(1) 0.03/37(4) 0.02/37(4) 156.15/33(4)
alog-11 0.14/55(6) 0.01/ 50(14) 1671.78/46(7) 0.21/48(9) 0.23/48(9) 1.56/52(11) 975.88/46(9) 53.21/43(1) 7.29/50(1) 71.76/51(6) 3.49/50(11) 99.78/49(11)
alog-12 0.16/61(8) 0.04/72(17) 160.64/61(5) 0.25/61(5) 0.32/58(4) 2.75/56(5) STO X X X X X
rao-2 0.05/10(2) 0.01/ 10(2) 0.02/ 10(2) 0.02/10(2) 0.03/ 10(2) 0.12/10(2) 33.33/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2) 0.02/10(2)
rao-3 36.39/16(3) 0.04/ 24(14) X X X X X 60.79/17(3) 57.93/18(3) 61.75/17(3) 75.57/17(4) 80.81/17(4)
rao-4 X 3.96/ 36 X X X X X X X X X X
rao-5 X X X X X X X X X X X X
coins-1 0.02/8(3) 0.01/10(4) 0.01/8(3) 0.01/8(3) X X X 0.02/9(0) X 0.02/8(3) 0.02/8(3) 0.02/8(3)
coins-7 0.05/13(5) 0.01/15(6) 0.03/13(5) 0.03/13(5) 0.04/13(5) 137.67/13(5) STO 9.1/26(0) 0.12/13(4) 0.07/13(5) 0.07/13(5) 0.04/13(5)
coins-8 0.08/14(5) 0.01/16(6) 0.04/14(5) 0.03/14(5) 0.04/14(5) 137.86/14(5) STO 10.07/26(0) 0.29/14(4) 0.07/14(5) 0.07/14(5) 0.04/14(5)
coins-17 0.61/21(7) 0.09/24(10) X X X X X 137.61/22(6) 4.85/21(7) 3.71/21(7) 2.79/21(7) 2.93/21(7)
coins-29 X 31.51/70(33) X X X X X 129.55/70(20) 149.45/68(20) 137.65/70(20) 132.58/69(20) 146.67/70(20)

and between cities. Within-city transportation is performed
by truck, between-city transportation is performed by air-
plane. The domain specifies bi-directional routes that con-
nect a subset of locations. The domain allows trucks to
move between any two locations within a city. To con-
vert this to an assumption-based planning problem, some
routes were made uni-directional (corresponding to one-
way streets, temporary closures, etc.) or closed completely.
Trucks were provided with 3 levels of gas (and empty), each
time a truck changes location, the gas level is decremented
by one level. Certain locations are designated as having gas
stations, permitting refueling. We refer to this modified do-
main as alogistics. The 12 instances we constructed varied
in the number of cities and trucks (2-4), and locations within
a city. Varying amounts of uncertainty were introduced into
the initial state of each instance via unknown truck gas levels
and locations, and the connectedness within cities.

The second domain we used was raokeys, a conformant
planning benchmark from IPC-2008. The problem instance
n has n + 1 keys and n lights each individually accessed
through a different locked doors. Under each such light is
a key. Starting with only key0 the agent must find all n
keys. To get a particular key, the agent must have found
the key that unlocks the corresponding door. It is unknown
which key is at what light, and which door is unlocked by
which key. Thus conformant plans are very long and must
consider a combinatorially explosive number of possible ini-
tial states. In contrast, this problem is simple for a human:
for the latest key found, try to find a key at each of the
lights, repeat. We experimented with 4 instances of raokeys:
raokeys2, raokeys3, raokeys4, raokeys5. These problem in-
stances were left alone to see how the planner would address

standard conformant planning problems.

Experiments: We ran 7 different experimental con-
figurations on the 16 problem instances described above
and 4 preliminary results from coins. (1) We ran A0 +
FF on the translated domains. (2) We generated a naive
assumption-based planning problem by augmenting each
problem instance with actions that create each of the dif-
ferent consistent completions of the initial state, then solved
with FF. (3)–(7) These configurations all relate to generating
preferred assumption-based plans. The configurations differ
with respect to the cost of the assumption actions relative to
the domain actions. E.g., x = 0.5 denotes that assumption
actions are twice as expensive as domain actions. All merge
actions were assigned equal (low) cost. Instances solved via
A0 + Metric-FF or LAMA.

Table 1 shows the results obtained on the seven configu-
rations for 20 instances. On the classical settings, A0 does
not take much more time than the naive method but makes
far fewer assumptions. Problems alog-1 to alog-4, are all
variants of the same problem instance but with progressively
more unimportant uncertainty. This domain is contrasted by
the raokeys problem instances in which A0 seems to take ex-
ponentially more time while the naive method works fairly
well. Strong conclusions cannot be made however because
of the small number of instances that can be solved. This
is conjecture, as there are only two and three data points to
draw from, however it fits with the explanation of runaway
dependency provided earlier. The reason the naive method is
able to handle the small instances (raokeys2, raokeys3, and
raokeys4) is because the conditional dependencies are not
considered, it merely needs to set the unknown fluents and
find a plan from there. This method is overcome once there
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are 5 lights, however, as the number of fluents that need to
be set is large enough to overwhelm it.

The cost-based run on metric-FF showed a clear trend that
x = 0.1 and x = 10 took longer to solve than values of x
closer to 1. All the alogistic instances require both assump-
tions and regular actions to be solved. When the cost dis-
crepancies are high, the search may be too focused building
plan prefixes with the cheapest action, without considering
other (useful) actions.

This is contrasted by the trend in raokeys2 where it takes
longer to solve the less assumptions are penalized. Consid-
ering that this is a fully conformant problem instance it is
reasonable that favouring assumption actions (which aren’t
necessary) can make it harder to find (prove) the optimal
plan.

Finally, the number of assumptions does indeed decrease
as they are penalized further. In these instances it isn’t pos-
sible to have a large difference in the number of assumptions
because on the one hand a few assumptions are required for
each instance, and on the other hand only a few assump-
tions are possible to make in one plan without inconsisten-
cies With further testing on problem instances that either al-
low or require many more assumptions we believe the trend
will be more apparent and interesting. It would be especially
good to test on some domains that can be solved fully con-
formantly and have many assumptions that are useful and
not mutex.

We evaluated the size of our A0 translations relative to the
original problem and to a comparable T0 translation. Given
the diversity of domains and the small number, our observa-
tions are somewhat anecdotal. For the alogistics domains,
A0 and T0 performed reasonably consistently. The number
of atoms was approximately double that in the original do-
main and there was a very small increase in the number of
actions. In the raokeys domains A0 and T0 both doubled the
number of actions, but there was no other clear trend, ex-
cept that A0 had one or two orders of magnitude more con-
ditional effects than the original domain, whereas T0 only
had a constant factor increase. These large number of con-
ditional effects are due to the dependencies between clauses
in the domain which results in a high number of clauses that
can be produced by the resolution algorithm.

We also evaluated the proportion of solution time ded-
icated to the translation. For the alogistics domains this
ranged from 5 - 25%, whereas with the raokeys domain,
it was closer to 50%. On the other hand, A0 took about
0.1 − 0.6 times the amount of time to translate alogistics
problem instances as T0. On raokeys2 the time spent was
about the same, but on raokeys3 A0 took almost 100 times
as long. Again, this is due to the unit propagation required
for the assumption actions.

Summary and Concluding Remarks
In this paper we introduce the notion of
assumption-based planning. We provide a formal char-
acterization of assumption-based planning, establishing
a correspondence to conformant planning. Exploiting
this correspondence, we provide a translation of an
assumption-based planning problem to a classical planning

problem, building on the popular translation developed by
P&G. We prove the soundness and completeness of our
translation. This provides us with a means of generating
assumption-based plans using classical planners. We also
argue for the merit of preferred assumption-based plans and
propose a means of realizing such plans using cost-based
planning. We describe A0, a planner that addresses the
subset of initial state assumption-based planning problems
and present experiments that illustrate the viability of our
approach and that assess some properties of our translation.

While this paper explores the generation of
assumption-based plans via a translation to classical
planning, the correspondence to conformant planning opens
the door to adapting a variety of conformant planners for
assumption-based planning (e.g., (To, Son, and Pontelli
2010)). Beyond planning, the assumption-based planning
paradigm has compelling applications in diagnosis and
verification of dynamical systems.
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Abstract

Stochastic Shortest Path (SSP) MDPs is a problem class
widely studied in AI, especially for probabilistic planning.
To make value functions bounded, SSPs make the severe as-
sumption of no dead-end states. Thus, they are unable to
model various scenarios that may have catastrophic events
(e.g., sending a rover on Mars). Even though MDP algo-
rithms are used for solving problems with dead-ends, a prin-
cipled theory of SSP extensions that would allow dead ends,
including theoretically sound algorithms for solving them,
has been lacking. In this paper, we propose three new MDP
classes that admit dead ends with increasingly weaker as-
sumptions. We present Value Iteration-based as well as the
more efficient heuristic search algorithms for optimally solv-
ing each class, and explore theoretical relationships between
these classes. We also conduct a preliminary empirical study
comparing the performance of our algorithms on different
MDP classes, especially on scenarios with unavoidable dead
ends.

Introduction
Stochastic Shortest Path (SSP) MDPs (Bertsekas 1995) is a
class of probabilistic planning problems thoroughly studied
in AI. They describe a wide range of scenarios where the ob-
jective of the agent is to reach a goal state in the least costly
way in expectation from any non-goal state using actions
with probabilistic outcomes.

While SSPs are a popular model, they have a serious lim-
itation. They assume that a given MDP has at least one com-
plete proper policy, a policy that reaches the goal from any
state with 100%-probability. Basic algorithms for solving
SSP MDPs, such as Value Iteration (VI) (Bellman 1957), fail
to converge if this assumption does not hold. In the mean-
time, this requirement effectively disallows the existence of
dead ends, states from which reaching the goal is impos-
sible, and of catastrophic events that lead to these states.
Such catastrophic failures are a possiblity to be reckoned
with in many real-world planning problems, be it sending a
rover on Mars or navigating a robot in a building with stair-
cases. Thus, insisting on the absence of dead ends signifi-
cantly limits the applicability of SSPs. Moreover, verifying
that a given MDP has no dead ends can be nontrivial, further
complicating the use of this model.

Researchers have realized that allowing dead ends in goal-
oriented MDPs would break some existing methods for solv-
ing them (Little and Thiebaux 2007). They have also sug-

gested algorithms that are aware of the possible presence of
dead-end states (Kolobov, Mausam, and Weld 2010) and try
to avoid them when computing a policy (Keyder and Geffner
2008; Bonet and Geffner 2005). However, these attempts
have lacked a theoretical analysis of how to incorporate dead
ends into SSPs in a principled way, and what the optimiza-
tion criteria in the presence of dead ends should be. This pa-
per bridges the gap by introducing three new MDP classes
with progressively weaker assumptions about the existence
of dead ends, analyzing their properties, and presenting op-
timal VI-like and more efficient heuristic search algorithms
for them.

The first class we present, SSPADE, is a small extension
of SSP that has well-defined easily-computable optimal so-
lutions if the dead ends are present but are avoidable pro-
vided that the process starts at a known initial state s0.

The second and third classes introduced in this paper ad-
mit that dead ends may exist and the probability of running
into them from the initial state may be positive no matter
how hard the agent tries. If the chance of a catastrophic
event under any policy is nonzero, a key question is: should
we prefer policies that minimize the expected cost of getting
to the goal even at the expense of an increased risk of failure,
or those that reduce the risk of failure above all else?

The former criterion characterizes scenarios where enter-
ing a dead end, while highly undesirable, has a finite “price”.
For instance, suppose the agent buys an expensive ticket for
a concert of a favorite band in another city, but remembers
about it only on the day of the event. Getting to the con-
cert venue requires a flight, either by hiring a business jet
or by a regular airline with a layover. The first option is
very expensive but almost guarantees making the concert on
time. The second is much cheaper but, since the concert is
so soon, missing the connection, a somewhat probable out-
come, means missing the concert. Nonetheless, the cost of
missing the concert is only the price of the ticket, so a ra-
tional agent would probably choose to travel with a regular
airline. Accordingly, one of the MDP classes we propose,
fSSPUDE, assumes that the agent can put a price (penalty)
on ending up in a dead end state and wants to compute a
policy with the least expected cost (including the possible
penalty). While seemingly straightforward, this intuition is
tricky to operationalize because of several subtleties, e.g.,
MDP description does not specify which states are dead ends
as it does for goals. This paper overcomes these subtleties
and shows how fSSPUDE can be solved with easy modifi-
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cations to SSP algorithms.
On the other hand, consider the task of planning an ascent

to the top of Mount Everest for a group of human alpinists.
To any human, the price of their own life can be taken as
infinite; therefore, for such an undertaking a natural primary
objective is to maximize the probability of getting to the goal
alive (i.e. minimizing the chance of getting into an accident,
a dead-end state). However, of all policies that maximize
this chance, we would prefer the least costly one (in expec-
tation). This is the optimization objective of the third MDP
class described in this paper, iSSPUDE. Solving this MDP
type is much more involved than handling the previous two,
and we introduce two novel algorithms for it.

Intuitively, the objectives of fSSPUDE and iSSPUDE
MDPs are related — as the fSSPUDE dead-end penalty gets
bigger, the optimal policies of the two classes coincide. We
provide a theoretical and an empirical analysis of this in-
sight, showing that solving fSSPUDE may indeed yield an
optimal policy for iSSPUDE if the dead-end penalty is high
enough.

Thus, the paper makes four contributions: (1) three new
goal-oriented MDP models that admit the existence of dead-
end states; (2) optimal VI and heuristic search algorithms for
solving them; (3) theoretical results describing equivalences
among problems in these classes; and (4) an empirical evalu-
ation tentatively answering the question: which class should
be used when modeling a given scenario involving unavoid-
able dead ends?

Background and Preliminaries
SSP MDPs. In this paper, we extend an MDP class
known as the Stochastic Shortest Path (SSP) problems with
an optional initial state, defined as tuples of the form
〈S,A, T , C,G, s0〉, where S is a finite set of states, A is a
finite set of actions, T is a transition function S ×A×S →
[0, 1] that gives the probability of moving from si to sj by
executing a, C is a map S × A → R that specifies action
costs, G is a set of (absorbing) goal states, and s0 is an
optional start state. For each g ∈ G, T (g, a, g) = 1 and
C(g, a) = 0 for all a ∈ A, which forces the agent to stay in
g forever while accumulating no reward.

An SSP must also satisfy the following conditions: (1)
Each s ∈ S must have at least one complete proper policy,
i.e. a rule prescribing an action to take for any given state
with which an agent can reach a goal state from any state
with probability 1. (2) Every improper policy must incur the
cost of∞ from all states from which it cannot reach the goal
with probability 1.
When the initial state is unknown, solving an SSP MDP
means finding a policy whose execution from any state al-
lows an agent to reach a goal state while incurring the least
expected cost. We call such a policy complete optimal, and
denote any complete policy as π. When the initial state is
given, we are interested in computing an optimal (partial)
policy rooted at s0, i.e. one that reaches the goal in the least
costly way from s0 and is defined for every state it can reach
from s0 (though not necessarily for other states).

To make the notion of policy cost more concrete, we de-
fine a cost function of as a mapping J : S → R ∪ {∞} and

let random variables St and At denote respectively the state
of the process after t time steps andAt the action selected in
St. Then, the cost function Jπ of policy π is

Jπ(s) = Eπs

[ ∞∑

t=0

C(St, At)
]

(1)

In other words, the cost of policy π at a state s is the expec-
tation of the total cost the policy incurs if the execution of π
is started in s. In turn, every cost function J has a policy πJ
that is J-greedy, i.e. that satisfies

πJ(s) = argmin
a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]
(2)

Optimally solving an SSP MDP means finding a policy
that minimizes Jπ . Such policies are denoted π∗, and their
cost function J∗ = Jπ

∗
, called the optimal cost function, is

defined as J∗ = minπ J
π . J∗ also satisfies the following

condition, the Bellman equation, for all s ∈ S:

J(s) = min
a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]
(3)

Value Iteration for SSP MDPs. The Bellman equation sug-
gests a dynamic programing method of solving SSPs, known
as Value Iteration (VISSP ) (Bellman 1957). VISSP starts by
initializing state costs with an arbitrary heuristic cost func-
tion Ĵ . Afterwards, it executes several sweeps of the state
space and updates every state during every sweep by using
the Bellman equation (3) as an assignment operator, the Bell-
man backup operator. Denoting the cost function after the
i-th sweep as Ji, it can be shown that the sequence {Ji}∞i=1
converges to J∗. A complete optimal policy π∗ can be de-
rived from J∗ via Equation 2 .
Heuristic Search for SSP MDPs. Because it stores and
updates the cost function for the entire S, VISSP can be
slow and memory-inefficient even on relatively small SSPs.
However, if the initial state s0 is given we are interested in
computing π∗s0 , an optimal policy from s0 only, which typ-
ically does not visit (and hence does not need to be defined
for) all states. This can be done with a family of algorithms
based on VI called heuristic search. Like VI, these algo-
rithms need to be initialized with a heuristic Ĵ . However,
if Ĵ is admissible, i.e. satisfies Ĵ(s) ≤ J∗(s) for all states,
then heuristic search algorithms can often compute J∗ for
the states relevant to reaching the goal from s0 without up-
dating or even memoizing costs for many of the other states.
At an abstract level, the operation of any heuristic search al-
gorithm is represented by the FIND-AND-REVISE frame-
work (Bonet and Geffner 2003a). As formalized by FIND-
AND-REVISE, any heuristic search algorithm starts with an
admissible Ĵ and explicitly or implicitly maintains the graph
of a policy greedy w.r.t. the current J , updating the costs of
states only in this graph via Bellman backups. Since the ini-
tial Ĵ makes many states look “bad” a-priori, they never end
up in the greedy graph and hence never have to be stored
or updated. This makes heuristic search algorithms, e.g.
LRTDP (Bonet and Geffner 2003b), work more efficiently
than VI and still produce an optimal π∗s0 .
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GSSP and MAXPROB MDPs. Unfortunately, many in-
teresting probabilistic planning scenarios fall outside of
the SSP MDP class. One example is MAXPROB MDPs
(Kolobov et al. 2011), goal-oriented problems where the ob-
jective is to maximize the probability of getting to the goal,
not minimize the cost. Namely, consider the following defi-
nition:

Definition For an MDP with a set of goal states G ⊂ S, the
goal-probability function of a policy π, denoted Pπ , gives
the probability of reaching the goal from any state s. Math-
ematically, letting Sπs

t be a random variable denoting a state
the MDP may end up if policy π is executed starting in state
s for t time steps,

Pπ(s) =

∞∑

t=1

P [Sπs
t = g ∈ G, Sπs

t′ = s /∈ G ∀ 1 ≤ t′ < t] (4)

Each term in the above summation denotes the probability
that, if π is executed starting at s, the MDP ends up in a goal
state at step t and not earlier. Since once the system enters
a goal state it stays in that goal state forever, the sum of all
such terms is the probability of the system ever entering a
goal state under π.

Solving a MAXPROB means finding the optimal
goal-probability function, one that satisfies P ∗(s) =
argmaxπ P

π(s) for all states. Alternatively 1 − P ∗(s) can
be interpreted as the smallest probability of running into a
dead end from s for any policy. Thus, solving a MAX-
PROB derived from a goal-oriented MDP by discarding ac-
tion costs can be viewed as a way to identify dead ends:

Definition For a goal-oriented MDP, a dead-end state (or
dead end, for short) is a state s for which P ∗(s) = 0.

MAXPROBs, SSPs themselves, and many other MDPs
belong to the broader class of Generalized SSP MDPs
(GSSPs) (Kolobov et al. 2011). GSSPs are defined as tuples
〈S,A, T , C,G, s0〉 of the same form as SSPs, but relax both
of the additional conditions in the SSP definition. In partic-
ular, they do not require the existence of a complete proper
policy as SSPs do. Without going further into the GSSP def-
inition specifics, we note that algorithms for solving GSSPs,
discussed below, will help us in designing solvers for the
MDP classes introduced in this paper.
Value Iteration for GSSP MDPs. In the case of SSPs,
VISSP yields a complete optimal policy for these MDPs
independently of the initializing heuristic Ĵ . For a GSSP
MDP, such a policy need not exist, so neither does an analog
of VISSP that works for all problems in this class. However,
for MAXPROB, a subclass of GSSP particularly important
to us in this paper, such an algorithm, called VIMP , can be
designed. Like VISSP , VIMP can be initialized with an ar-
bitrary heuristic function, but instead of the Bellman backup
operator it uses its generalized version that we call Bellman
backup with Escaping Traps (BET) in this paper. BET works
by first updating the initial heuristic function with Bellman
backup, until it arrives at a fixed-point function P×. For
SSPs, Bellman backup has only one fixed point, the optimal
P ∗, so we would stop here. However, for GSSPs (and MAX-
PROB in particular) this is not the case — P ∗ is only one of

Bellman backup’s fixed points, and the current fixed point
P× may not be equal to P ∗. Crucially, to check whether
P× is optimal, BET applies the trap elimination operator to
it, which involves constructing the transition graph that uses
actions of all policies greedy w.r.t. P×. If P× 6= P ∗, trap
elimination generates a new, non-fixed-point P×

′
, on which

BET again acts with Bellman backup, and so on. The fact
that VIMP and FRET, the heuristic search framework for
GSSPs considered below, sometimes need to build a greedy
transition graph w.r.t. a cost function is important for analyz-
ing the performance of algorithms introduced in this paper.

VIMP ’s main property, whose proof is a straightforward
extension of the results in the GSSP paper (Kolobov et al.
2011), is similar to VISSP ’s:
Theorem 1. On MAXPROB MDPs, VIMP converges to the
optimal goal-probability function P ∗ independently of the
initializing heuristic function Ĵ .
Heuristic Search for GSSP MDPs. Although a complete
optimal policy does not necessarily exist for a GSSP, one
rooted at s0 always does and can be found by any heuristic
search algorithm conforming to an FIND-AND-REVISE
analogue for GSSPs, FRET (Kolobov et al. 2011). Like
FIND-AND-REVISE, FRET guarantees convergence to
π∗s0 if the initializing heuristic is admissible.

MDPs with Avoidable Dead Ends
All definitions of the SSP class in the literature (Bertsekas
1995; Bonet and Geffner 2003a; Kolobov et al. 2011) require
that the goal be reachable with 100%-probability from every
state in the state space, even when initial state s0 is known
and the objective is to find an optimal policy rooted only at
that state. We first extend SSPs to the easiest case — when
dead ends exist but can be avoided entirely from s0.

Definition A Stochastic Shortest Path MDP with Avoidable
Dead Ends (SSPADE) is a tuple 〈S,A, T , C,G, s0〉 where
S,A, T , C,G, and s0 are as in the SSP MDP definition, un-
der the following conditions:

• The initial state s0 is known.
• There exists at least one proper policy rooted at s0.
• Every improper policy must incur the cost of ∞ from at

least one state reachable by it from s0.

Solving a SSPADE MDP means finding a policy π∗s0
rooted at s0 that satisfies π∗(s0) = argminπ J

π(s0).

Value Iteration: Even though dead ends may be avoided
with optimal policy from s0, they are still present in the
state space. Thus VISSP , which operates on the entire state
space, still does not converge – the optimal costs for dead
ends are infinite. One might think that we may be able
to adapt VISSP by restricting computation to the subset of
states reachable by s0. However, even this is not true, since
SSPADE requirements do not preclude dead-ends reachable
from s0. Overall, for VI to work we need to detect diver-
gence of state cost sequences – an unsolved problem, to our
knowledge.
Heuristic Search: Although VI does not terminate for SS-
PADE, heuristic search algorithms do. This is because:
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Theorem 2. SSPADE ⊂ GSSP .

Proof sketch. SSPADE directly satisfies all requirements of
the GSSP definition (Kolobov et al. 2011).

In fact, we can also show that heuristic search for SS-
PADE only needs the regular Bellman backup operator
(instead of the BET operator). That is, all FIND-AND-
REVISE framework heuristic search algorithms such as
LRTDP and LAO* work without modifications for this class.

Intuitively, FIND-AND-REVISE starts with admissible
(lower bound to optimal) state costs. As FIND-AND-
REVISE updates them, costs of dead ends grow without
bound, while costs of other states converge to a finite value.
Thus, dead ends become unattractive and drop out of the
greedy policy graph rooted at s0.

MDPs with Unavoidable Dead Ends
In this section, our objective is threefold: (1) to motivate the
semantics of SSP extensions that admit unavoidable dead
ends; (2) to state intuitive policy evaluation criteria and
thereby induce the notion of optimal policy for models in
which the agent pays finite and infinite penalty for visiting
dead ends; (3) to formally define MDP class SSPUDE with
subclasses fSSPUDE and iSSPUDE that model such finite-
and infinite-penalty scenarios.

Consider an improper SSP MDP, one that conforms to the
SSP definition except for the requirement of proper policy
existence. In such an MDP, the objective of finding a policy
that minimizes the expected cost of reaching the goal be-
comes ill-defined. It implicitly assumes that for at least one
policy, the cost incurred by all of the policy’s trajectories is
finite, which is true only for proper policies, whose every
trajectory terminates at the goal. Thus, all policies in an im-
proper SSP may have an infinite expected cost, making the
cost criterion unhelpful for selecting the “best” policy.

We suggest two ways of amending the optimization cri-
terion to account for unavoidable dead ends. The first is to
assign a finite positive penalty D for visiting a dead end.
The semantics of an improper SSP altered this way would
be that the agent pays D when encountering a dead end, and
the process stops. However, this straightforward modifica-
tion to the MDP cannot be directly operationalized, since
the set of dead-ends is not known a-priori and need to be
inferred while planning. Moreover, this definition also has
a caveat – it may cause non-dead-end states that lie on po-
tential paths to a dead end to have higher costs than dead
ends themselves. For instance, imagine a state s whose only
action leads with probability (1 − ε) to a dead end, with
probability ε > 0 to the goal, and costs ε(D + 1). A simple
calculation shows that J∗(s) = D + ε > D, even though
reaching the goal from s is possible. Moreover, notice that
this semantic paradox cannot be resolved just by increasing
the penalty D.

Therefore, we change the semantics of the finite-penalty
model as follows. Whenever the agent reaches any state with
the expected cost of reaching the goal equalingD or greater,
the agent simply pays the penalty D and “gives up”, i.e. the
process stops. Intuitively, this setting describes scenarios
where the agent can put a price on how desirable reaching

the goal is. For instance, in the example from the introduc-
tion involving a concert in another city, paying the penalty
corresponds to deciding not to go to the concert, i.e. fore-
going the pleasure it would have derived from attending the
performance.

The benefit of putting a “cap” on any state’s cost as de-
scribed above is that the cost of a state under any policy
becomes finite, formally defined as

JFπ(s) = min

{
D,E

[ ∞∑

t=0

C(Sπs
t , Aπs

t )

]}
(5)

It can be shown that for an improper SSP, there exists an
optimal policy π∗ 1, one that satisfies

π∗(s) = argmin
π

JFπ(s) ∀ s ∈ S (6)

As we show shortly, we can find such a policy using
the expected-cost analysis similar to that for ordinary SSP
MDPs. The intuitions just described motivate the fSSPUDE
MDP class, defined at the end of this section.

The second way of dealing with dead ends we consider in
this paper is to view them as truly irrecoverable situations
and assignD =∞ for visiting them. As a motivation, recall
the example of planning a climb to the top of Mount Ever-
est. Since dead ends here cannot be avoided with certainty
and the penalty of visiting them is ∞, comparing policies
based on the expected cost of reaching the goal breaks down
— they all have an infinite expected cost. Instead, we would
like to find a policy that maximizes the probability of reach-
ing the goal and whose expected cost over the trajectories
that reach the goal is the smallest.

To describe this policy evaluation criterion more pre-
cisely, let Sπs+

t be a random variable denoting a distribution
over states s′ for which Pπ(s′) > 0 and in which the MDP
may end up if policy π is executed starting from state s for
t steps. Put differently, Sπs+

t is just a restriction of the vari-
able Sπs

t used previously to states from which policy π can
reach the goal. Using the Sπs+

t variables, we can mathemat-
ically evaluate π with two ordered criteria by defining the
cost of a state as an ordered pair

JIπ(s) = (Pπ(s), [Jπ|Pπ](s)) (7)

where [Jπ|Pπ](s) = E

[ ∞∑

t=0

C(Sπs+
t ,Aπs

t )

]
(8)

Specifically, we write π(s) ≺ π′(s), meaning π′ is prefer-
able to π at s, whenever JIπ(s) ≺ JIπ

′
(s), i.e. either

Pπ(s) < Pπ
′
(s) or Pπ(s) = Pπ

′
(s) and [Jπ|Pπ](s) >

[Jπ
′ |Pπ′ ](s). Notice that the second criterion is used condi-

tionally, only if two policies are equal in terms of the prob-
ability of reaching the goal, since maximizing this proba-
bility is the foremost priority. Note also that if Pπ(s) =

1We implicitly assume that one of the optimal policies is deter-
ministic Markovian — a detail we can actually prove but choose to
gloss over in this paper for clarity.
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Pπ
′
(s) = 0 then both [Jπ|Pπ](s) and [Jπ

′ |Pπ′ ](s) are ill-
defined. However, since neither π nor π′ can reach the goal
from s, we define [Jπ|Pπ](s) = [Jπ

′ |Pπ′ ](s) = 0 for such
cases, and hence JIπ(s) = JIπ

′
(s).

As in the finite-penalty case, we can demonstrate that
there exists a policy π∗ that is at least as large as all others at
all states under the ≺-ordering above and hence is optimal,
i.e.

π∗(s) = argmax
≺π

JIπ(s) ∀ s ∈ S (9)

We are now ready to capture the above intuitions in a
definition of the SSPUDE MDP class and its subclasses
fSSPUDE and iSSPUDE:

Definition An SSP with Unavoidable Dead Ends
(SSPUDE) MDP is a tuple 〈S,A, T , C,G, D, s0〉, where
S,A, T , C,G, and s0 are as in the SSP MDP definition,
D ∈ R+ ∪ {∞} is a penalty incurred if a dead end state
is visited, and for which every improper policy incurs an
infinite expected cost, as defined by Equation 1, at all states
from which it cannot reach the goal with probability 1.

If D < ∞, the MDP is called an fSSPUDE MDP,
and its optimal solution is a policy π∗ satisfying π∗(s) =
minπ JFπ(s) for all s ∈ S.

If D = ∞, the MDP is called an iSSPUDE MDP,
and its optimal solution is a policy π∗ satisfying π∗(s) =
max≺π JIπ(s) for all s ∈ S.

Note the clause requiring that in all SSPUDE MDPs every
improper policy must incur an infinite cost if evaluated with
Equation 1. This clause excludes, for instance, MDPs with
zero-cost loops, in which the agent can stay forever without
reaching the goal while accumulating only a finite amount
of penalty.

Our iSSPUDE class is related to multi-objective MDPs,
which model problems with several competing objectives,
e.g., total time, monetary cost, etc. (Chatterjee, Majumdar,
and Henzinger 2006; Wakuta 1995). They jointly optimize
these metrics and return a pareto-set of all non-dominated
policies. Unfortunately, such solutions are impractical due
to their higher computational requirements. Moreover, the
objective function of probability of goal achievement con-
verts the problem into a GSSP and hence cannot be easily
included in those models.

The Case of a Finite Penalty
Equation 5 tell us that for an fSSPUDE instance, the cost
of any policy at any state is finite. Intuitively, this implies
that fSSPUDE should be no harder to solve than SSP. This
intuition is confirmed by this following result:
Theorem 3. fSSPUDE = SSP.
Proof sketch. To show that every fSSPUDE MDP
MfSSPUDE can be converted to an SSP MDP, we augment
the action set A of fSSPUDE with a special action a′ that
causes a transition to a goal state with probability 1 and that
costs D. This MDP is an SSP, since reaching the goal with
certainty is possible from every state. At the same time, the
optimization criteria of fSSPUDE and SSP clearly yield the
same set of optimal policies for it.

To demonstrate that every SSP MDP MSSP is also an
fSSPUDE MDP, for everyMSSP we can construct an equiv-
alent fSSPUDE MDP by settingD = J∗(s). The set of opti-
mal policies of both MDPs will be the same. (Note, however,
that the conversion procedure is impractical since it assumes
that we know J∗(s) before solving the MDP.)

The above conversion from fSSPUDE to SSP immedi-
ately suggests solving fSSPUDE with modified versions of
standard SSP algorithms, as we describe next.
Value Iteration: Theorem 3 implies that JF∗, the optimal
cost function of an fSSPUDE MDP, must satisfy the follow-
ing modified Bellman equation:

J(s) = min

{
D,min

a∈A

[
C(s, a) +

∑

s′∈S
T (s, a, s′)J(s′)

]}
(10)

Moreover, it tell us that π∗ of an fSSPUDE must be
greedy w.r.t to JF∗. Thus, an fSSPUDE can be solved with
arbitrarily initialized VISSP that uses Equation 10 for up-
dates.
Heuristic Search: By the same logic as above, all FIND-
AND-REVISE algorithms and their guarantees apply to
fSSPUDE MDPs if they use Equation 10 in lieu of Bellman
backup. Thus, all heuristic search algorithms for SSP work
for fSSPUDE.

We note that, although this theoretical result is new, some
existing MDP solvers use Equation 10 implicitly to cope
with goal-oriented MDPs that have unavoidable dead ends.
One example is the miniGPT package (Bonet and Geffner
2005); it allows the user to specify a value D and then uses
it to implement Equation 10 in several algorithms including
VISSP and LRTDP.

The Case of an Infinite Penalty
In contrast to fSSPUDE MDPs, no existing algorithm can
solve iSSPUDE problems either implicitly or explicitly, so
all algorithms for tackling these MDPs that we present in
this section are completely novel.

Value Iteration for iSSPUDE MDPs
As for the finite-penalty case, we begin by deriving a Value
Iteration-like algorithm for solving iSSPUDE. Finding a
policy satisfying Equation 9 may seem hard, since we are
effectively dealing with a multicriterion optimization prob-
lem. Note, however, the optimization criteria are, to a certain
degree, independent — we can first find the set of policies
whose probability of reaching the goal from s0 is optimal,
and then select from them the policy minimizing the ex-
pected cost of goal trajectories. This amounts to finding the
optimal goal-probability function P ∗ first, then computing
the optimal cost function [J∗|P ∗] conditional on P ∗, and fi-
nally deriving an optimal policy from [J∗|P ∗]. We consider
these subproblems in order.
Finding P ∗. The task of finding, for every state, the high-
est probability with which the goal can be reached by any
policy in a given goal-oriented MDP has been studied be-
fore — it is a MAXPROB problem mentioned in the Back-
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ground section. Solving a goal-oriented MDP according to
the MAXPROB criterion means finding P ∗ that satisfies

P ∗(s) = 1 ∀s ∈ G (11)

P ∗(s) = max
a∈A

∑

s′∈S
T (s, a, s′)P ∗(s′) ∀s /∈ G

As already discussed, this P ∗ can be found by the VIMP

algorithm with an arbitrary initializing heuristic.
Finding [J∗|P ∗]. We could derive optimality equations for
calculating [J∗|P ∗] from first principles and then develop an
algorithm for solving them. However, instead we present a
more intuitive approach. Essentially, given P ∗, we will build
a modification MP∗ of the original MDP whose solution is
exactly the cost function [J∗|P ∗]. MP∗ will have no dead
ends, have only actions greedy w.r.t. P ∗, and have a transi-
tion function favoring transitions to states with higher prob-
ability of successfully reaching the goal. Crucially, MP∗

will turn out to be an SSP MDP, so we will be able to find
[J∗|P ∗] with familiar machinery.

To construct MP∗ , observe that an optimal policy π∗

for an iSSPUDE MDP, one whose cost function is [J∗|P ∗],
must necessarily use only actions greedy w.r.t. P ∗, i.e. those
maximizing the right-hand side of Equation 11. For each
state s, denote the set of such actions as AP∗s . We focus on
non-dead-end states, because for dead ends [J∗|P ∗](s) = 0,
and they will not be part of MP∗ . By Equations 11, for
each such s, each a∗ ∈ AP∗s satisfies the equality P ∗(s) =∑
s′∈S T (s, a

∗, s′)P ∗(s′). Note that this equation expresses
the following relationship between event probabilities:

P

(
Goal was reached

from s via optimal policy

)

=
∑

s′∈S
P

(
a∗ caused

s→ s′ transition
∧ Goal was reached

from s via optimal policy

)
,

or, in a slightly rewritten form,
∑

s′∈S
P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣
Goal was reached

from s via optimal policy

)
= 1,

where P

(
a∗ caused

s→ s′ transition

∣∣∣∣∣
Goal was reached

from s via optimal policy

)
=

T (s,a∗,s′)P∗(s′)
P∗(s) .

These equations essentially say that if a∗ was executed in
s and, as a result of following an optimal policy π∗ the goal
was reached, then with probability T (s,a∗,s1)P

∗(s1)
P∗(s) action

a∗ must have caused a transition from s to s1, with proba-
bility T (s,a∗,s2)P

∗(s2)
P∗(s) it must have caused a transition to s2,

and so on. This means that if we want to find the vector
[J∗|P ∗] of expected costs of goal-reaching trajectories un-
der π∗, then it is enough to find the optimal cost function
of MDP MP∗ = 〈SP∗ ,AP∗ , T P∗ , CP∗ ,GP∗ , sP∗0 〉, where
GP∗ and sP

∗
0 (if known) are the same as G and s0 for the

iSSPUDE M that we are trying to solve; SP∗ is the same
as S for M but does not include dead ends, i.e. states s
for which P ∗(s) = 0; AP∗ = ∪s∈SAP

∗
s , i.e. the set of ac-

tions consists of all P ∗-greedy actions in each state; for each

a∗ ∈ AP∗s , T P∗(s, a∗, s′) = T (s,a∗,s′)P∗(s′)
P∗(s) , as above, and

a∗ is “applicable” only in s; and CP∗(s, a) is the same as C
for M , except it is defined only for a ∈ AP∗ .

As it turns out, we already know how to solve MDPs such
as MP∗ :
Theorem 4. For an iSSPUDE MDP M with P ∗(s0) > 0,
MDP MP∗ constructed from M as above is an SSP MDP.

Proof sketch. Indeed, MP∗ is “almost” like the original iS-
SPUDE MDP but has at least one proper policy because, by
construction, it has no dead ends.

Now, as we know (Bertsekas 1995), J∗ for the
SSP MP∗ satisfies J∗(s) = mina∈AP∗ CP∗(s, a) +∑
s′∈S T P

∗
(s, a, s′)J∗(s′). Therefore, by plugging in

T (s,a,s′)P∗(s′)
P∗(s) in place of T P∗(s, a, s′) and [J∗|P ∗] in place

of J∗, we can state the following theorem for the original iS-
SPUDE MDP M :
Theorem 5. For an iSSPUDE MDP with the optimal goal-
probability function P ∗, the optimal cost function [J∗|P ∗]
characterizing the minimum expected cost of trajectories
that reach the goal satisfies

[J∗|P ∗](s) = 0 ∀s s.t. P ∗(s) = 0 (12)

[J∗|P ∗](s) = min
a∈AP∗

{
C(s, a) +

∑

s′∈S

T (s, a, s′)P ∗(s′)
P ∗(s)

[J∗|P ∗](s′)
}

Putting It All Together. Our construction not only let us de-
rive the optimality equation for [J∗|P ∗], but also implies that
[J∗|P ∗] can be found via VI, as in the case of SSP MDPs
(Bertsekas 1995), over P ∗-optimal actions and non-dead-
end states. Moreover, since the optimal policy for an SSP
MDP is greedy w.r.t. the optimal cost function and solving
an iSSPUDE MDP ultimately reduces to solving an SSP, the
following important result holds:
Theorem 6. For every iSSPUDE MDP, there exists a
Markovian deterministic policy π∗ that can be derived from
P ∗ and [J∗|P ∗] for non-dead-end states using

π∗(s) = arg min
a∈AP∗

{
C(s, a) +

∑

s′∈S

T (s, a, s′)P ∗(s′)
P ∗(s)

[J∗|P ∗](s′)
}

(13)

Combining optimality equations 11 and 12 for P ∗ and
[J∗|P ∗] respectively with Equation 13, we present a VI-
based algorithm for solving iSSPUDE MDPs, called IVI
(Infinite-penalty Value Iteration) in Algorithm 1.

Heuristic Search for iSSPUDE MDPs
As we established, solving an iSSPUDE MDP with VI
is a two-stage process, whose first stage solves a MAX-
PROB MDP and whose second stage solves an SSP MDP.
In the Background section we mentioned that both of these
kinds of MDPs can be solved with heuristic search; MAX-
PROB — with the FRET framework, and SSP — with the
FIND-AND-REVISE framework. This allows us to con-
struct a heuristic search schema called SHS (Staged Heuris-
tic Search) for iSSPUDE MDPs, presented in Algorithm 2.
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Input: iSSPUDE MDP M
Output: Optimal policy π∗ for non-dead-end states of M

1. Find P ∗ using arbitrarily initialized VIMP .

2. Find [J∗|P ∗] using arbitrarily initialized VISSP over MP∗

with update equations 12

Return π∗ derived from P ∗ and [J∗|P ∗] via Equation 13
Algorithm 1: IVI

Input: iSSPUDE MDP M
Output: Optimal policy π∗s0 for non-dead-end states of M
rooted at s0

1. Find P ∗s0 using FRET initialized with an admissible heuristic
P̂ ≥ P ∗

2. Find [J∗|P ∗]s0 using FIND-AND-REVISE over MP∗ with
optimality equations 12, initialized with an admissible heuristic
Ĵ ≤ [J∗|P ∗].

Return π∗s0 derived from P ∗s0 and [J∗|P ∗]s0 via Equation 13

Algorithm 2: SHS

There are two major differences between Algorithms 1
and 2. The first one is that SHS produces functions P ∗s0 and
[J∗|P ∗]s0 that are guaranteed to be optimal only over the
states visited by some optimal policy π∗s0 starting from the
initial state s0. Accordingly, the SHS-produced policy π∗s0
specifies actions only for these states and does not prescribe
any for other states. Second, SHS requires two admissible
heuristics to find an optimal (partial) policy, one (P̂ ) being
an upper bound on P ∗ and the other (Ĵ) being a lower bound
on [J∗|P ∗].

Equivalences of Opimization Criteria
The presented algorithms for MDPs with unavoidable dead
ends are significantly more complicated than those for
MDPs with unavoidable ones. Nonetheless, intuition tell
us that for a given tuple 〈S,A, T , C,G, D, s0〉, solving it
under the infinite-penalty criterion (i.e., as an iSSPUDE)
should yield the same policy as solving it under the finite-
penalty criterion (i.e., as an fSSPUDE) if in the latter case
the penalty D is very large. Indeed, this can be stated as a
theorem:

Theorem 7. For iSSPUDE and fSSPUDE MDPs over the
same domain, there exists the smallest finite penalty Dthres

s.t. for all D > Dthres the set of optimal policies of
fSSPUDE (with penalty D) is identical to the set of optimal
policies of iSSPUDE.

Proof sketch. Although the full proof is technical, its main
observation is simple — as D increases, it becomes such a
large deterrent against hitting a dead end that any policy with
a probability of reaching the goal lower than the optimal P ∗

starts having a higher expected cost of reaching the goal than
policies optimal according to iSSPUDE’s criterion.

As a corollary, if we choose D > Dthres, we can be sure
that at any given state s, all optimal (JF∗-greedy) policies
of the resulting fSSPUDE will have the same probability of
reaching the goal, and this probability is P ∗(s) according to
the infinite-penalty optimization criterion (and therefore will
also have the same conditional expected cost [J∗|P ∗])

This prompts a question: what can we say about the prob-
ability of reaching the goal of JF∗-greedy policies if we pick
D ≤ Dthres? Unfortunately, in this case different greedy
policies may not only be suboptimal in terms of this proba-
bility, but even for fixed D each may have a different, arbi-
trarily low chance of reaching the goal. For example, con-
sider an MDP with three states, s0 (the initial state), d (a
dead end), and g (a goal). Action ad leads from s0 to d
with probability 0.5 and to g with probability 0.5 and costs
1 unit. Action ag leads from s0 to g also with probability 1,
and costs 3 units. Finally, suppose we solve this MDP as an
fSSPUDE with D = 4. It is easy to see that both policies,
π(s0) = ad and π(s0) = ag , have the same expected cost, 3.
However, the former never reaches the goal with probability
0.5, while the latter always reaches it. The ultimate reason
for this discrepancy is that the policy evaluation criterion of
fSSPUDE is oblivious to policies’s probability of reaching
the goal, and optimizes for this parameter only indirectly,
via policies’ expected cost.

To summarize, we have two ways of finding an optimal
policy in the infinite-penalty case, either by directly solv-
ing the corresponding iSSPUDE instance, or by choosing a
sufficiently large D and solving the finite-penalty fSSPUDE
MDP. We do not know of a principled way to choose it, but
it istypically easy to guess by inspecting the MDP. Thus,
although the latter method gives no a-priori guarantees, it
often yields a correct answer in practice.

Experimental Results
The objective of our experiments was to find out the most
practically efficient way of finding the optimal policy in the
presence of unavoidable dead ends and infinite penalty for
visiting them, by solving an iSSPUDE MDP or an fSSPUDE
MDP with a large D. To make a fair comparison between
these methods, we employ very similar algorithms to handle
them. For both classes, the most efficient optimal solution
methods are heuristic search techniques, so in our experi-
ments we assume knowledge of the initial state and use only
algorithms of this type.

To solve an fSSPUDE we use the implementation of the
LRTDP algorithm, an instance of the FIND-AND-REVISE
heuristic search framework for SSPs, available in the
miniGPT package (Bonet and Geffner 2005). As a source
of admissible heuristic state costs/goal-probability values,
we choose the maximum of atom-min-forward heuristic
(Haslum and Geffner 2000) and SixthSense (Kolobov et al.
2011). The sole purpose of the latter is to soundly identify
many of the dead-end states and assign the value of D to
them. (Identifying a state as a dead end may be nontrivial if
the state has actions leading to other states.)
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Since solving iSSPUDE involves tackling two MDPs, a
MAXPROB and an SSP, to instantiate the SHS schema (Al-
gorithm 2) we use two heuristic search algorithms. For the
MAXPROB component, we use a specially adapted ver-
sion of the same LRTDP implementation (Kolobov et al.
2011) as an example of the FRET framework, equipped
with SixthSense (note that the atom-min-forward heuristic
is cost-based and does not apply to MAXPROB MDPs). For
the SSP component, we use LRTDP from miniGPT, as for
fSSPUDE, with atom-min-forward; SixthSense is unneces-
sary because SSP has no dead ends.

Our benchmarks were problems 1 through 6 of the Ex-
ploding Blocks World domain from IPPC-2008 (Bryce and
Buffet 2008) and problems 1 through 15 of the Drive domain
from IPPC-06 (Buffet and Aberdeen 2006). Most problems
in both domains have unavoidable dead ends. To set the D
penalty for the fSSPUDE model, we examined each prob-
lem and tried to come up with an intuitive, easily justifiable
value for it. For all problems, solving the fSSPUDE with
D = 500 yielded a policy that was optimal under both the
finite-penalty and infinite-penalty criterion.

Solving the fSSPUDE with D = 500 and iSSPUDE
versions of each problem with the above implementations
yielded the same qualitative outcome on all benchmarks. In
terms of speed, solving fSSPUDE was at least an order of
magnitude faster than solving iSSPUDE. The difference in
used memory was occasionally smaller, but only because
both algorithms visited nearly the entire state space reach-
able from s0 on some problems. Moreover, in terms of
memory as well as speed the difference between solving
fSSPUDE and iSSPUDE was the largest (that is, solving
iSSPUDE was comparatively the least efficient) when the
given MDP had P ∗s0(s) = 1, i.e. the MDP had no dead ends
at all or had only avoidable ones.

Although seemingly surprising, these performance pat-
terns have a fundamental reason. Recall that FRET al-
gorithms, used for solving the MAXPROB part of an iS-
SPUDE, use the BET operator. BET, for every encountered
fixed point P× of the Bellman backup operator needs to tra-
verse the transition graph involving all actions greedy w.r.t.
P×, starting from s0. Also, FRET needs to be initialized
with an admissible heuristic, in our experiments – Sixth-
Sense, which assigns the value of 0 to states it believes to
be dead ends and 1 to the rest.

Now, consider how FRET operates on a MAXPROB cor-
responding to an iSSPUDE instance that does not have any
dead ends, i.e. on the kind of iSSPUDE MDPs that, as our
experiments show, is most problematic. For such a MAX-
PROB, there exists only one admissible heuristic function,
P̂ (s) = 1 for all s, because P ∗(s) = 1 for all s and an
admissible P̂ needs to satisfy P̂ (s) ≥ P ∗(s) everywhere.
Thus, the heuristic FRET starts with is actually the optimal
goal-probability function, and as a consequence, is a fixed
point of the Bellman backup operator. Therefore, to con-
clude that P̂ is optimal, FRET needs build its greedy transi-
tion graph. Observe, however, that since P̂ is 1 everywhere,
this transition graph includes every state reachable from s0,
and uses every action in the MDP! Traversing it is very ex-

pensive, and forces FRET to enumerate the entire reachable
state space of the problem.

The same performance bottleneck, although to a lesser
extent, can also be observed on iSSPUDE instances that
do have unavoidable dead ends. Building large transition
graphs significantly slows down FRET (and hence, SHS)
even when P ∗ is far from being 1 everywhere.

The above reasoning may explain why solving iSSPUDE
is slow, but by itself does not explain why solving fSSPUDE
is fast in comparison. For instance, we might expect the per-
formance of FIND-AND-REVISE algorithms on fSSPUDE
to suffer in the following situations. Suppose state s is a dead
end not avoidable from s0 by any policy. This means that
J∗(s) = D under the finite-penalty optimization criterion,
and that s is reachable from s0 by any optimal policy. Thus,
FIND-AND-REVISE will halt no earlier than the cost of s
under the current cost function reaches D. Moreover, sup-
pose that the heuristic Ĵ initializes the cost of s to 0 — this
is one of the possible admissible costs for s. Finally, assume
that all actions in s lead back to s with probability 1 and
cost 1 unit. In such a situation, an FIND-AND-REVISE al-
gorithm will need to update the cost of s D times before
convergence. Clearly, this will make the performance of
FIND-AND-REVISE very bad is the chosen value of D is
very large. This raises the question: was solving fSSPUDE
in the above experiments so much more efficient than solv-
ing iSSPUDE due to our choice of (a rather small) value for
D?

To dispel these concerns, we solved fSSPUDE instances
of the aforementioned benchmarks with D = 5 · 108 instead
of 500. On all of the 21 problems, the increase in speed
compared to the case of fSSPUDE with D = 500 was no
more than a factor of 1.5. The reason for such a small dis-
crepancy is the fact that, at least on our benchmarks, FIND-
AND-REVISE almost never runs into the pathological case
described above thanks to the atom-min-forward and Sixth-
Sense heuristics. They identify majority of dead ends en-
countered by LRTDP and immediately set their costs to
D. Thus, instead of spending many updates on such states,
LRTDP gets their optimal costs in just one step. To test this
explanation, we disabled these heuristics and assigned the
cost of 0 to all states at initialization. As predicted, the solu-
tion time of the fSSPUDE instances skyrocketed by orders
of magnitude.

The presented results appear to imply an unsatisfying fact
— on iSSPUDE MDPs that are SSPs, the presented algo-
rithms for solving iSSPUDE are not nearly as efficient as al-
gorithmic schema for SSPs, such as FIND-AND-REVISE.
The caveat, however, is that the price SSP algorithms pay for
efficiency is assuming the existence of proper solutions. iS-
SPUDE algorithms, on the other hand, implicitly prove the
existence of such a solution, and are therefore theoretically
more robust.

Conclusion
A significant limitation of Stochastic Shortest Path MDPs
is their inability to model dead-end states, consequences of
catastrophic action outcomes that make reaching the goal
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impossible. While attempts to incorporate dead ends into
SSP have been made before, a principled theory of goal-
oriented MDPs with dead-end states has been lacking.

In this paper, we present new general MDP classes that
subsume MDPs and make increasingly weaker assumptions
about the presence of dead ends. SSPADE assumes that dead
ends are present but an agent can avoid them if it acts opti-
mally from the initial state. fSSPUDE admits unavoidable
dead ends but expects that an agent can put a finite price on
running into a dead end. iSSPUDE MDPs model scenarios
in which entering a dead end carries an infinite penalty and
is to be avoided at all costs.

For these MDP classes we present VI-based and heuristic
search algorithms. We also study the conditions under which
they have equivalent solutions. Our empirical results show
that, in practice, solving fSSPUDE is much more efficient
and yields the same optimal policies as iSSPUDE.

In the future we hope to answer the question: are
iSSPUDE MDPs fundamentally harder than fSSPUDE, or
can we invent more efficient heuristic search algorithms for
them?
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Abstract

Tractability analysis in terms of the causal graphs of plan-
ning problems has emerged as an important area of research
in recent years, leading to new methods for the derivation of
domain-independent heuristics (Katz and Domshlak 2010).
Here we continue this work, extending our knowledge of the
frontier between tractable and NP-complete fragments. We
close some gaps left in previous work, and introduce novel
causal graph fragments that we call the hourglass and semi-
fork, for which under certain additional assumptions optimal
planning is in P. We show that relaxing any one of the re-
strictions required for this tractability leads to NP-complete
problems. Our results are of both theoretical and practical in-
terest, as these fragments can be used in existing frameworks
to derive new abstraction heuristics. Before they can be used,
however, a number of practical issues must be addressed. We
discuss these issues and propose some solutions.

Introduction
Quantifying the complexity of classical planning problems
in terms of their structure has long been an important re-
search problem. Recent work in this area has focused on
causal graphs (Domshlak and Dinitz 2001; Brafman and
Domshlak 2003; Chen and Giménez 2008; Katz and Domsh-
lak 2008; 2010; Giménez and Jonsson 2008), directed
graphs whose nodes represent the variables of the problem
and whose edges give information about dependencies be-
tween variables (Knoblock 1994). Combining limitations on
causal graph structure with further restrictions on the sizes
of variable domains and k-dependence, defined as the maxi-
mum number of variables on which an action has precondi-
tions while not changing their values, has led to complexity
results that apply to a wide range of problems (Katz and
Domshlak 2008; Giménez and Jonsson 2009). Such results
are not of purely theoretical interest, as the causal graph is
used in a variety of practical applications from problem de-
composition (Brafman and Domshlak 2006) to the deriva-
tion of non-admissible domain-independent heuristics for
satisficing planning (Helmert 2004).

The work we present here is motivated by a different use
of tractable fragments of the causal graph: the derivation
of admissible domain-independent heuristics. Search with
such heuristics is one of the most successful approaches to
optimal planning, and an important advance in this field over

the last few years has been the introduction of structural pat-
tern heuristics (Katz and Domshlak 2010). The idea behind
these heuristics is to project planning problems onto frag-
ments of causal graphs known to be tractable for optimal
planning, and to use the costs of solutions to these as guid-
ance for the original problem. Structural pattern heuristics
play an important theoretical role in optimal planning, as
they represent one of the handful of existing ideas for deriv-
ing admissible heuristics (Helmert and Domshlak 2009).

The usefulness of structural pattern heuristics increases
directly with the availability of causal graph fragments that
are known to be solvable optimally in polynomial time. Un-
til now, they have made use of two non-trivial structures
known as the fork and the inverted fork. Our principal
aim here is to discover the limits of tractability for these
two structures, removing restrictions and considering wider
classes of causal graphs until the point at which optimal
planning becomes NP-complete is found. This approach al-
lows us to close several gaps in previous work, and results in
the introduction of two new classes that under certain lim-
itations are tractable for optimal planning and can be used
in such heuristics, hourglasses and semiforks. We also show
that the relaxation of any one of the assumptions required
for this tractability leads to an NP-complete problem. While
the use of these classes in structural pattern heuristics could
improve their estimates, a number of practical issues remain
to be solved before they can be adapted to that context. We
briefly discuss these issues, and propose some solutions.

Preliminaries
We consider planning problems in the SAS+ formal-
ism (Bäckström and Nebel 1995), given by a quintuple
Π = 〈V,A, I,G, cost〉 where:

• V is a set of state variables, each v ∈ V associated with
a finite domain D(v). The value assigned to a variable v
by a (possibly partial) assignment p to V is denoted by
p[v]. A complete assignment s to V is called a state, and
the set of all possible complete assignments S is the state
space of Π. I is the initial state. The goal G is a partial
assignment to V ; a state s is a goal state iff G ⊆ s.

• A is a finite set of actions, each action a ∈ A given by
a pair 〈pre(a), eff(a)〉 of partial assignments to V called
preconditions and effects, respectively. By Av ⊆ A, we
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denote the actions changing the value of v. cost : A →
R0+ is a real-valued, non-negative cost function.

An action a is applicable in a state s iff pre(a) ⊆ s. The
state s′ resulting from applying a in s is denoted by sJaK
and differs from s in that s[v] = eff(a)[v] whenever this
is defined. sJ〈a1, . . . , ak〉K denotes the state resulting from
sequential application of the actions a1, . . . , ak in s. Such
an action sequence is an s-plan if G ⊆ sJ〈a1, . . . , ak〉K, and
it is an optimal s-plan if the summed cost

∑k
i=1 cost(ai) is

minimal among all s-plans. The aim of (optimal) planning
is to find an (optimal) I-plan. In what follows, we denote
a plan for state s with π(s) or just π when s is clear from
the context, and use the notation π∗ to specify that a plan is
optimal. h∗ denotes the cost of such an optimal plan.

The causal graph of Π is a digraph CG(Π) = 〈V,E〉
over the set of nodes V that contains an arc (v, v′) iff
v 6= v′ and there exists a ∈ A such that eff(a)[v′] and
either pre(a)[v] or eff(a)[v] is specified. Given a variable
v, we use the shorthands pred(v) = {v′ | (v′, v) ∈ E}
and succ(v) = {v′ | (v, v′) ∈ E}. The domain transi-
tion graph DTG(Π, v) of v ∈ V is an arc-labeled digraph
with nodes D(v) that contains an arc (ϑ, ϑ′) labeled with
pre(a)\pre(a)[v] iff eff(a)[v] = ϑ′ and either pre(a)[v] = ϑ
or pre(a)[v] is unspecified.

In this paper we extend two previously studied causal
graph structures known as the fork and inverted fork. These
structures are digraphs G = (N,E) such that there exists
a node r ∈ N for which (u, v) ∈ E ⇐⇒ u = r, if the
structure is a fork, and (u, v) ∈ E ⇐⇒ v = r, if the
structure is an inverted fork. We refer to planning problems
whose causal graphs are (inverted) forks as (inverted) fork
structured planning problems. Optimal planning has been
shown to be in P for fork structured planning problems if
|D(r)| = 2, and for inverted fork structured planning prob-
lems for any |D(r)| ∈ O(1) (Katz and Domshlak 2010).

Forks
We start by closing the gap left by Katz and Domshlak
(2010) in the complexity of cost-optimal planning for fork-
structured tasks:

Theorem 1 Cost-optimal planning for fork structured prob-
lems with causal graph rooted in a ternary-valued variable
is NP-complete.

Proof: Membership in NP is obvious. The proof of hard-
ness is by reduction from the shortest common superstring
problem (SCS). Let x1, . . . , xn be a set of strings over a bi-
nary alphabet. Given xi, let x′i denote the string over the
alphabet {0, 1, 2} that results from inserting the symbol 2 at
the beginning, end, and between each pair of symbols in xi.
There then exists an SCS of length k for x1, . . . , xn iff there
exists an SCS of length 2k + 1 for x′1, . . . , x

′
n.

Given a planning problem Π = 〈V,A, I,G, cost〉, where:

• V = {r, y1, . . . , yn}, with D(r) = {0, 1, 2} and D(yi) =
{0, . . . , |x′i|} for i = 1, . . . , n,

• A = {aij | i = 1, . . . , n, j = 0, . . . , |x′i| − 1} ∪
{r0→2, r2→0, r1→2, r2→1}, where aij =

0 2 1

Figure 1: DTG for variable r.

0 1r=x′i[0]
. . . |x′i|r=x′i[|x′i| − 1]

Figure 2: DTG for variable yi.

〈{yi=j, r=x′i[j]}, {yi=j + 1}〉, in which x′i[j] denotes
the jth symbol of x′i, rα→β = 〈{r=α}, {r=β}〉,
cost(aij) = 0 for all aij and cost(rα→β) = 1,

• I = {r=2} ∪ {yi=0 | i = 1, . . . , n}, and

• G = {r=2} ∪ {yi=|x′i| | i = 1, . . . n},
finding an optimal plan for Π is equivalent to finding an SCS
for x′1, . . . , x

′
n. The causal graph of Π is a fork with root r

and leaves y1, . . . yn. The DTG for the variable r is a chain
with 3 nodes, with the value 2 at the center doubly connected
to each of the values 0, 1, at the two sides (Figure 1). The
DTG for each of the variables y1, . . . , yn is a chain in which
there is a single path that traverses the values of yi in as-
cending order, and that requires for each transition that the
variable r have the value corresponding to that position in
the string x′i (Figure 2).

Since the variables yi can transition to their next values
only when r has the value of the corresponding position in
the string x′i, the sequence of values taken on by the vari-
able r must correspond to a superstring of the set of strings
{x′0, . . . , x′n}. The only actions with non-zero cost are those
that change the value of r, and there therefore exists a plan
for Π with cost 2k iff there exists a superstring of {x′0, . . . ,
x′n} with length 2k + 1, and a superstring of {x0, . . . , xn}
with length k. As this transformation can be performed in
polynomial time, this shows the desired result.

Unfortunately, this does not shed light on the complexity of
deciding plan existence. Our next result concerns this prob-
lem for fork-structured planning problems where a more
general property holds for the DTG of the root variable:

Theorem 2 Let Π be a planning task with a fork-structured
causal graph rooted at variable r, and let G be the con-
densed graph of DTG(Π, r), with one node for each strongly
connected component (SCC) of DTG(Π, r). Plan existence
for Π can be decided in polynomial time if G has only a
polynomial number of paths.

Proof: Consider a (necessarily cycle-free, as the condensed
graph is directed acyclic) path P1, . . . , Pm in G, where each
node Pi corresponds to a set of values of r that make up an
SCC in DTG(Π, r). For 0 ≤ i ≤ m and for v ∈ succ(r), we
define the sets Civ inductively as follows:

• C0
v = {I[v]}, and
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Figure 3: (a) Semifork and (b) hourglass causal graphs. (c)
Causal graph structure for reduction of Theorem 7.

• for i > 0, Civ is the set of all values in D(v) achievable
from any value in Ci−1v using actions in Av that have pre-
conditions only on values of r that make up the SCC cor-
responding to Pi.

Note that it follows from this definition thatCiv grows mono-
tonically in i, i.e. Ci−1v ⊆ Civ for all i. Given a path
P1, . . . , Pm in G, if for all v ∈ succ(r) we have G[v] ∈ Cmv ,
and G[r] ∈ Pm, then a plan for Π can be constructed from
the above in polynomial time. Π is solvable iff there exists a
(cycle-free) path P1, . . . , Pm in the condensed graph G such
that G[r] ∈ Pm and G[v] ∈ Cmv for all v ∈ succ(r). Since
there are a polynomial number of paths to check, this proves
the result.

We note that when |D(r)| = O(1), the condensed graph of
DTG(Π, r) has only O(1) paths, and Theorem 2 is appli-
cable. This result therefore implies that plan existence for
fork-structured tasks with constant bounded root domains is
in P and closes the gap left by Domshlak and Dinitz (2001).

Semifork Causal Graphs
We now explore a graph structure that we call a semifork:

Definition 1 (Semifork) A digraph G = (N,E) is a semi-
fork if there exists a set of nodes L ⊂ N , L 6= ∅ such that
(i) ∀v ∈ L outdegree(v) = 0, and (ii) there exists a node
r ∈ N \ L such that (u, v) ∈ E and v ∈ L imply u = r.

Informally, one part of a semifork causal graph has fork
structure, and the remaining nodes have edges only among
themselves or to the root of the fork (Figure 3a). We refer to
the node r as the center of the causal graph, the nodes L as
the semifork’s leaves, and the rest of the nodesN \(L∪{r})
as the semifork’s hat. Note that given a graph G, there may
be multiple possibilities for choosing L that result in dif-
ferent interpretations of G as a semifork.1 We now show a
tractability result for semifork structured causal graphs, ex-
tending a previous result by Katz and Domshlak (2010):

1Each subset of the child nodes of a fork induces a different
semifork when used as L, for example.

0 1 . . . i i+1

i+2

Figure 4: DTG for variable ri in Π∗i (lower). Transitions
represented with dashed edges may be present or not de-
pending on the goal value defined for r or lack thereof.

Theorem 3 (Tractable Semiforks) Given a constant k and
a semifork-structured planning task Π = 〈V,A, I,G, cost〉
with center r ∈ V , |D(r)| = 2, and |hat| < k, cost-optimal
planning for Π is polynomial in ‖Π‖k.

Proof: We note that given a sequence of changes to r, the
hat and fork portions of the planning problem can be de-
coupled and solved separately. Let Πh denote the planning
problem that results from removing all leaf variables from
the problem, and π(h)∗i a cost minimal plan among the plans
for Πh in which the value of r is changed at least i times. In
turn, let Πf denote the problem in which all hat variables are
removed and the value of r can be changed with no precon-
ditions and cost 0, and π(f)∗i a cost minimal plan among the
plans that set all the leaf variables to their goal values while
changing the value of r at most i times. Any optimal plan π∗
for Π can be partitioned into two such cost-minimal plans2

by choosing i to be the number of changes to r in π∗. The
optimal plan for Π can therefore be found by considering
cost-minimal plans for Πh and Πf for each possible i:

cost(π∗(Π)) = min
i

[cost(π(h)∗i ) + cost(π(f)∗i )]

and interleaving the actions of the two plans as required.
Note that if (i) given a value of i, both π(h)∗i and π(f)∗i
can be obtained in polynomial time, and (ii) there is an
upper bound b on i that is polynomial in ‖Π‖ such that
both cost(π(h)∗i ) and cost(π(f)∗i ) are non-decreasing for
i > b, the semifork problem can also be solved optimally
in polynomial time. For cost(π(h)∗i ), any bound will do,
as increasing the value of i can only exclude plans making
fewer changes to r. For cost(π(f)∗i ), this bound is given by
b = maxv∈leaves(r) |D(v)| + 1 (Katz and Domshlak 2010).
We now proceed to the formal description of how to obtain
π(h)∗i and π(f)∗i in polynomial time.

We first describe the construction of a planning problem
Πh
i for i ≥ 1, whose optimal plans correspond to optimal

plans π(h)∗i . Assuming wlog that I[r] = 0, we restrict Π
to the variables hat ∪ {r}, while modifying the DTG of r to
consist of i+ 3 values (Figure 4):
• Vi = hat ∪ {ri}, with D(ri) = {0, . . . , i+ 2}
•

Ai =
⋃

v∈hat
Av ∪

i+1⋃

j=0

Aj ∪Ag

2Otherwise, each could be independently replaced with any
cost-minimal plan.
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where Ag = {agi , agi+1} if no goal value is defined for
r, Ag = {agi } if G[r] + i is even, and Ag = {agi+1} if
G[r] + i is odd, where agj = 〈{ri=j}, {ri=i + 2}〉. For
0 ≤ j ≤ i,

Aj =
⋃

a∈Ar




af

∣∣∣∣∣∣∣∣

pre(af )[ri] = j, eff(af )[ri] = j + 1,

pre(a)[r] + j is even, and
pre(af )[v] = pre(a)[v] and
eff(af )[v] = eff(a)[v] ∀v ∈ hat




,

and for j = i+ 1,

Ai+1 =
⋃

a∈Ar




ab

∣∣∣∣∣∣∣∣

pre(ab)[ri] = i+ 1, eff(ab)[ri] = i,

pre(a)[r] + i+ 1 is even, and
pre(ab)[v] = pre(a)[v] and
eff(ab)[v] = eff(a)[v] ∀v ∈ hat




,

and costi(af ) = cost(a), costi(ab) = cost(a),
costi(a

i
g) = costi(a

i+1
g ) = 0,

• Ii[v] = I[v] for v ∈ hat(r) and Ii[ri] = 0, and

• Gi[v] = G[v] for v ∈ hat(r) and Gi[ri] = i+ 2.

Note that due to the requirement that pre(a)[r]+j be even,
actions preconditioned by r=0 appear in Aj only for even j
and those preconditioned by 1 for odd j. In order to reach the
goal value of ri, the plan must apply a sequence of actions
that change r i times, and can then alternate between the
values i and i+ 1 before achieving the goal, preconditioned
on the original goal value of r. Since the task Πh

i has at most
k variables, it is solvable optimally in polynomial time, and
a cost-minimal plan π(h)∗i can be obtained by replacing the
actions in an optimal plan for Πh

i with the corresponding
actions from A, that is, replacing ri-changing actions with
their r-changing originals.

We now consider how to obtain the plans π(f)∗i . Given
a sequence of value changes of the variable r, all children
cj ∈ leaves(r) are independent of each other and of the
hat. Provided a number i of value changes for r, a cost-
minimal plan for each child variable can therefore be ob-
tained in polynomial time, and these plans can be interleaved
to obtain a cost minimal plan.3

In order to obtain an optimal plan for Π, it is there-
fore sufficient to iterate over all values 0 ≤ i ≤ b, where
b = maxv∈leaves(r) |D(v)|+ 1, and store the plans that result
in the cheapest summed cost π(h)∗i + π(f)∗i . These plans
can then be interleaved by adding the actions in π(f)∗i at
the earliest possible point during the execution of π(h)∗i to
obtain an optimal plan.

Relaxing the constant bound on the size of hat makes even
the plan existence problem NP-complete, as arbitrary plan-
ning problems can then be encoded. The same is the case
when the binary bound on the domain size of the center vari-
able is relaxed:

3For further detail see the proof of Theorem 4 by Katz and
Domshlak (2010).

Theorem 4 Plan existence for semifork structured prob-
lems with |hat| = 1 and center variable domain size ≥ 3
is NP-complete.

Proof: The idea behind the proof is similar to that of The-
orem 1. Given a set of strings over a binary alphabet and a
parameter k, we construct a planning problem in the same
way as we did there, except with an additional variable x
on which all actions that change the value of r have a pre-
vail condition. The causal graph of this problem is then a
semifork with a single variable in the hat. The domain tran-
sition graph of x is a chain of length 2k, alternating values
of which allow transitions in r from 0 or 1 to 2 and from 2
to 0 or 1, respectively. This variable enforces that the value
of r can be changed from 2 to either 0 or 1 and then back to
2 at most k times, and as before the problem is then solvable
iff there exists a superstring of the set of strings of length k.

Hourglass Causal Graphs
We now introduce a digraph structure that we call the hour-
glass (Figure 3b):

Definition 2 (Hourglass) A digraph G = (N,E) is an
hourglass if (i) (u, v) ∈ E implies (v, u) 6∈ E, and (ii) there
exists a node r ∈ N , such that for each (u, v) ∈ E, either
u = r or v = r.

We call the node r the center of the graph. We refer to its
predecessor nodes pred(r) = {u ∈ N | (u, r) ∈ E} as par-
ents, and its successor nodes succ(r) = {v ∈ N | (r, v) ∈
E} as children. Intuitively, the hourglass differs from the
semifork in that edges between the parent nodes are not al-
lowed, and the outgoing edges of the center node all lead to
child variables. We begin with the positive result that im-
posing a constant domain bound on the center and the child
variables makes optimal planning tractable:

Theorem 5 (Hourglass with bound on child domain size)
Given a constant d and an hourglass-structured planning
task Π with center variable domain size |D(r)| ≤ d, and
|D(ci)| ≤ d for all child variables ci ∈ succ(r), optimal
planning for Π is polynomial in ‖Π‖k, where k = d(d

2+2).

Proof: First, we note that the bound d on the domain size of
the child variables also constitutes a bound on the length of
the sequence of prevail values required from r for any one
child. Considering also that up to d intermediate values of
r may be required in moving from one value to another, the
total length of the sequence of r values for a single child is
d2. The number of all possible sequences of that length is
dd

2

, and a (loose) upper bound on the length of a sequence
that contains all such sequences as subsequences is given by
k = d2 · dd2 = d(d

2+2). The number of possible r-changing
action sequences that can achieve these values is then a poly-
nomial |A|k. Given such an action sequence, an optimal se-
quence of actions for the parent variables that satisfies all
the required preconditions can be found in linear time. It is
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therefore sufficient to check each possible sequence of ac-
tions up to length k and choose the one that results in the
globally optimal plan.

However, when such a bound is not imposed, even satisfic-
ing planning quickly becomes NP-complete:

Theorem 6 Satisficing planning for hourglasses with center
variable domain size ≥ 3 is NP-complete.

This follows trivially from the proof of Theorem 4, as the
problem in the proof has hourglass structure. Bounding the
domain sizes of the child variables without bounding that of
the center variable does not help either, as it follows from
results for inverted forks by Domshlak and Dinitz (2001)
that satisficing planning in this case is NP-complete.

We now consider the complexity of planning for problems
with hourglass causal graphs with the added parameter of k-
dependence (Katz and Domshlak 2008):

Definition 3 (k-dependent) An action a is k-dependent if
the size of its prevail condition, that is the number of vari-
ables that it has preconditions on but whose values it does
not change, is ≤ k. A planning problem Π is k-dependent if
all its actions are k-dependent.

We first show that for 2-dependent hourglass-structured
problems even satisficing planning is NP-complete:

Theorem 7 (2-dependent hourglass) Plan existence for
the 2-dependent hourglass problem with center variable do-
main size 2 is NP-complete.

Proof: Membership in NP is obvious, we show hardness
by a polynomial reduction from SAT. Let P = (C,U) be
a SAT problem with m clauses C = {C0, . . . , Cm−1} and
n variables U = {u1, . . . , un}. We construct an hourglass
problem Π with a single child variable y and n + 1 parent
variables x1, . . . , xn, z (Figure 3c). The goal of the problem
is defined only for the child variable y, and its purpose is to
force the value of the center variable to change exactly 2m−
1 times. Its DTG is therefore an ascending chain of length
2m with values 0, . . . , 2m − 1, transitions i → i + 1 that
require alternating values of r beginning with r=1, and goal
2m−1. A solution to Π then exists iff the parent nodes of the
problem permit the value of r to be changed 2m − 1 times.
The parent variables x1, . . . , xn correspond to the variables
of the SAT problem, and have DTGs that allow their values
to be set once to either 0 or 1, from an initial “undefined”
value. The variable z has a DTG which consists of a chain
with 2m values, whose even values 2i, in conjunction with
a value for some variable appearing in Ci that satisfies it,
allow r to be set to 1, and whose odd values allow r to be set
to 0. To solve the problem, a plan must set the values of the
xi variables to appropriate values, and advance through the
DTG of Z while setting alternating values for r.

Formally, we define Π = 〈V,A, I,G, cost〉 as follows:

• V = {x1, . . . , xn, z, r, y}
• I = {r=0, x1=⊥, . . . , xn=⊥, z=0, y=0}

• G = {y=2m− 1}
•

A =

n⋃

i=1

Axi∪
2m−1⋃

i=0

{aiy}∪
2m−3⋃

i=0

{aiz}∪Ar→0∪
m−1⋃

i=0

Air→1

where
– Axi = {〈{xi=⊥}, {xi=0}〉, 〈{xi=⊥}, {xi=1}〉},
– aiy = 〈{r=(i mod 2), y=i}, {y=i+ 1}〉,
– aiz = 〈{z=i}, {z=i+ 1}〉,
– Ar→0 =

⋃2m−3
i=1 {〈{r=1, z=i}, {r=0}〉 | i is odd}, and

– Air→1 =
⋃
uj=θ∈Ci

{〈{r=0, z=2i, xj=θ}, {r=1}〉}.
Note that the largest k-dependence in Π is 2. As pointed
out above, a solution for Π exists iff the value of r can be
changed 2m − 1 times, and the value of r can be changed
2m − 1 times iff there exists an assignment that satisfies
clauses C0, . . . , Cm−1. As the initial value of r is 0, 2m− 1
changes of r indicates that r must change from 0 to 1 m
times. Each of these changes must be caused by actions that
are drawn from the sets Air→1 for different values of i, since
each consecutive change to r depends on different values of
z. Due to the construction of the set of actions Air→1, an ac-
tion from this set can be applied iff Ci is satisfied. Therefore
plan existence implies that all Ci are satisfied.

We now consider the 1-dependent case, first proving a
lemma that leads to our tractability result for hourglasses:

Lemma 1 (Optimal plans for 1-dependent Hourglasses)
Given an hourglass-structured 1-dependent planning prob-
lem Π with |D(r)| = 2, there exists an optimal plan for Π
in which the actions changing the value of r have prevail
conditions on at most two variables.

Proof: Let π∗ be an optimal plan for Π, and let π∗r be the
subsequence of π∗ consisting only of actions inAr. For each
θ ∈ D(r), let a∗θ = argmina∈π∗r {cost(a) | eff(a)[r] = θ},
and let x and x′ be the two variables on which the actions
a∗θ for θ ∈ D(r) have prevail conditions. If x 6= x′, then
it is possible to construct from π∗ a new optimal plan π′∗
that uses only these cheapest actions to change the value of
r. The remaining actions that change the values of other
parent variables or those of the child variables can be left
unchanged. Since the actions we replace are no cheaper than
a∗θ , the result is also an optimal plan. Note that this also
holds if one or both of the cheapest actions have no prevail
conditions.

For the more complicated case in which x = x′, let

(a′, θ′) = argmin
a∈π∗r ,θ∈D(r)

{
cost(a)+ eff(a)[r] 6= θ∧
cost(a∗θ) pre(a)[x] is unspecified

}

In words, a′ is an action not prevailed by x that together with
a∗θ′ gives the lowest summed cost for two actions changing
r from one value to another and back, at least one of which
is not prevailed by x. If such an action does not exist, then
π∗r complies with the above property. We now show how to
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obtain an optimal plan for Π in which all of the r-changing
actions are either prevailed by x or are occurrences of a′. Let
a1, a2 denote two consecutive actions in π∗r such that at least
one of a1, a2 is not prevailed by x, and {a1, a2} 6= {a′, a∗θ′}.
If no such pair of consecutive actions exists, then the condi-
tion described above is met. Otherwise, we construct a new
sequence π′∗r by inserting in π∗r immediately after the first
occurence of a∗θ′ the two actions a′, a∗θ′ , and removing the
two actions a1, a2. As noted earlier, the summed cost of a′
and a∗θ′ is minimal among two r-changing actions at least
one of which is not prevailed by x, and π′∗r is therefore no
more expensive than π∗r . Since the value that prevails a′ and
the sequence of distinct values of x that prevail actions in
π′∗r are achieved by π∗r , a new plan can be constructed by
scheduling the actions achieving these values appropriately
with respect to the actions in π′∗r . As above, actions affect-
ing other parent variables and child variables can be left un-
touched. The result is an optimal plan π′∗ that complies with
the above property.

Lemma 1 allows us to concentrate on optimal plans of a
certain structure, and therefore solve this type of hourglass
problem optimally in polynomial time:

Theorem 8 Optimal planning for 1-dependent hourglasses
with center variable domain size |D(r)| = 2 is in P .

Proof: For each subset V ′ of size 2 of the parents pred(r)
we create a planning problem Π′ by removing from Π all
r-changing actions that have preconditions on the variables
in pred(r) \ V ′. From lemma 1 we have that an optimal
plan for one such problem Π′ is also an optimal plan for our
original problem Π. Since Π′ consists of the set of single-
ton variables pred(r) \ V ′, each of which can be solved in
polynomial time, along with the rest of the problem which
is a semifork with a hat of size 2, which can also be solved
in polynomial time (Theorem 3), Π′ can also be solved opti-
mally in polynomial time. Since the number of Π′ problems
that must be considered to find an optimal plan for Π is poly-
nomial, optimal planning for Π is in P .

Finally, note that the planning problem in the proof of The-
orem 6 is 1-dependent, as the indegree of each state variable
is bounded by 1. Even satisficing planning for 1-dependent
hourglasses with |D(r)| ≥ 3 is therefore NP-hard, complet-
ing our complexity map of the hourglass fragment.

Practice
Our tractability results for cost-optimal planning suggest
that implicit abstraction heuristics can be made more in-
formative. A semifork with a single hat variable, for ex-
ample, can naturally represent fuel constraints for a mobile
in transportation domains (Helmert 2008). However, there
are a number of issues which must be attended to before
the semifork and hourglass patterns can be employed in the
framework of structural pattern database heuristics. Given a
planning task Π over the variables V and a variable v ∈ V ,
the first issue is how to select a semifork or hourglass cen-
tered at v. For a constant k bounding the size of the hat and a

|D(r)| 2 3 O(1) Θ(n)

F P/— NPC/— —/P —/NPC
SF P/— —/NPC
H|Ch|=O(1) P/— —/NPC
H(1) P/— —/NPC
H(2) —/NPC

Figure 5: Complexity of cost-optimal/satisficing planning
for Forks, SemiForks with constant bound on hat size, and
Hourglasses, with k-dependence in parentheses. “—” and
empty columns indicate that the complexity is implied by
other results. Results implied by previous work are shaded.

set of variables V ′ ⊆ (V \{v}) of size≤ k, a semifork with
hat V ′ can be constructed by dropping all outgoing edges
from L = V \ (V ′ ∪ {v}) and all edges from V \ {v} to
L, leaving only edges from v to L and among V ′ ∪ {v}.
As the number of such sets V ′ is polynomial in k, all pos-
sible such semiforks could be accounted for. Hourglasses
are more problematic, as when there exists v′ ∈ V such that
edges (v, v′) and (v′, v) are both in CG(Π), there is a choice
of whether to use v′ as a child or a parent. The second issue
is how to abstract the problem to have G as its causal graph,
modifying the set of actions to be consistent with its edges.
For hourglasses, the previously defined acyclic causal-graph
decomposition (Katz and Domshlak 2010) can be used, but
must be adapted to account for possible cycles in semiforks.
The last issue is that the chosen set of abstractions must be
efficiently solvable in the states encountered during search.
For this, most of the calculations can be performed prior
to search and cached. The choice of the values to be pre-
calculated and stored remains a subject of research.

Conclusions
We have extended the analysis of the complexity of plan-
ning problems described in terms of the structure of the
causal graph, k-dependence, and the domain sizes of vari-
ables (Figure 5). We have closed some gaps left open in pre-
vious work, showing that optimal planning for fork causal
graphs with root variable domain size ≥ 3 is NP-complete,
and that satisficing planning is in P for arbitrary constant
sized domains. We have introduced new causal graph frag-
ments, called the semifork and hourglass, that generalize the
previously known fork and inverted fork structures. Op-
timal planning for semiforks with center variable domain
size 2 and a constant bound on the number of variables
in the hat turns out to be in P , as does optimal planning
for hourglasses with binary center variable domain and k-
dependence 1. Relaxing the bound on domain size in either
case results in a problem that is NP-complete even for satis-
ficing planning, and the same is true of relaxing the bound
on k-dependence for hourglasses. A number of questions
must be addressed before these patterns can be used in the
framework of structural pattern database heuristics.
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Chen, H., and Giménez, O. 2008. Causal graphs and
structurally restricted planning. In Proceedings of the
18th International Conference on Automated Planning and
Scheduling (ICAPS), 36–43.
Domshlak, C., and Dinitz, Y. 2001. Multi-agent off-line
coordination: Structure and complexity. In Proceedings of
Sixth European Conference on Planning (ECP), 277–288.
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