22" International Conference
on Automated Planning and Scheduling
June 25-29, 2012, Atibaia — Sao Paulo — Brazil

COPLAS 2012

Proceedings of the Workshop on
Constraint Satisfaction Techniques for
Planning and Scheduling Problems

Edited by
Miguel A. Salido, Roman Bartak

Editors

Miguel A. Salido, Universidad Politécnica de Valencia, Spain
msalido@dsic.upv.es

Miguel A. Salido is supported by the research project TIN2010-20976-C02-01 (Min. de Economia y
Competitividad, Spain) and project PIRSES-GA-2011-294931 (FP7-PEOPLE-2011-IRSES)

Roman Bartak, Charles University, Czech Republic
bartak@ktiml.mff.cuni.cz

Roman Bartak is supported by the Czech Science Foundation under the contract P202/10/1188

Organization

Miguel A. Salido, Universidad Politécnica de Valencia, Spain
contact email: msalido@dsic.upv.es

Roman Bartak, Charles University, Czech Republic
contact email: bartak@ktiml.mff.cuni.cz

Program Committee

Federico Barber, Universidad Politécnica de Valencia, Spain
Roman Bartak, Charles University, The Czech Republic
Amedeo Cesta, ISTC-CNR, Italy

Minh Binh Do, NASA Ames Research Center, USA

Enrico Giunchiglia, Universita di Genova, Italy

Peter Jarvis, NASA Ames Research Center, USA

Eva Onaindia, Universidad Politécnica de Valencia, Spain
Nicola Policella, European Space Agency, Germany
Hana Rudova, Masaryk University, The Czech Republic
Francesca Rossi, University of Padova, Italy

Migual A. Salido, Universidad Politecnica Valencia, Spain
Pascal Van Hentenryck, Brown University, USA

Gérard Verfaillie, ONERA, Centre de Toulouse, France
Vincent Vidal, CRIL-IUT, France

Petr Vilim, ILOG, France

Toby Walsh, UNSW, Sydney and NICTA, Australia

Neil Yorke-Smith, American University of Beirut/SRI International, USA

Foreword

The areas of Al planning and scheduling have seen important advances thanks to the application of
constraint satisfaction models and techniques. Especially solutions to many real-world problems
need to integrate plan synthesis capabilities with resource allocation, which can be efficiently
managed by using constraint satisfaction techniques. The workshop will aim at providing a forum
for researchers in the field of Artificial Intelligence to discuss novel issues on planning, scheduling,
constraint programming/constraint satisfaction problems (CSPs) and many other common areas
that exist among them. On the whole, the workshop will mainly focus on managing complex
problems where planning, scheduling and constraint satisfaction must be combined and/or
interrelated, which entails an enormous potential for practical applications and future research.

Miguel A. Salido, Roman Bartak
COPLAS 2012 Organizers
June 2012

Contents

SMT Spatio-Temporal PIanNingccceeeeeiiiiiiiiiiiinnneeiiiiiiiiiieemmsiesmssssssmsssn. 6
Lamia Belouaer, Frédéric Maris

Constraint-Based Allocation of Cloud Resources to Maximize Mission Effectiveness 16
Mark Boddy
Partially Grounded Planning as Quantified Boolean Formula.........ccceeeeeueeccciiininnennecnnnccenennns 26

Michael Cashmore, Maria Fox

Towards Planning With Very Expressive Languages via Problem Decomposition Into Multiple

Uwe Kockemann, Federico Pecora, Lars Karlsson

A Constraint-based Framework for AEOS Mission Planning and Scheduling............................ 43
Zhenyu Lian, Yuejin Tan, Yingwu Chen, Ju-Fang Li, Lining Xing

Integrated Project Selection and Resource Scheduling of Offshore Oil Well Developments: An
Evaluation of CP Models and Heuristic ASSUMPLIONS......cccceueciiiiieicerieencerreneeeeeeenneseeeennneenens 51
Thiago Serra, Gilberto Nishioka, Fernando Marcellino

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

SMT Spatio-Temporal Planning

Lamia Belouaer
GREYC, Université de Caen Basse Normandie
Boulevard du Maréchal Juin
BP 5186 14032 Caen Cedex, France

Abstract

Solving real planning problems requires to consider
spatial and temporal information. Indeed, to be solved
more efficiently many real world problems need to take
the action duration, the instants of effects occurrences,
the instants of requiring preconditions. .. and the space
in which the mission is accomplished by defining the
different actions zones and know the path between these
zones into account. In this paper we are interested in
planning problems which consider spatial and temporal
dimensions. To our knowledge there is no model ex-
pressing both spatial and temporal dimensions in plan-
ning problems. The main contribution of this paper is to
present an approach allowing the resolution of spatio-
temporal planning problems. For this purpose we define
a new SMT (Sat Modulo Theory) encoding rules for
spatio-temporal planning. This new code can compile
and solve spatio-temporal planning problems for which
all solutions require simultaneous actions in a 2D space.

Introduction

The classical planning framework allows only limited rep-
resentation of real world aspects. We aim to expand this
framework with spatial and temporal aspects while main-
taining good performance. In planning applications in real-
world these two dimensions are useful. Indeed, to be solved
more efficiently many real of these problems need to take the
action durations, the instants of effects occurrences, the in-
stants of requiring preconditions...and the space in which
the mission is accomplished into account by defining the
different actions zones and the path between these zones.
For instance, manipulating objects in a nuclear plant, the
building evacuation in case of fire, the service in a restau-
rant. . .are some examples of such problems. To solve this
kind of problem we aim at developing an approach based on
spatial and temporal reasoning. However, to our knowledge
there is no model expressing planning problem by consider-
ing both spatial and temporal dimensions at the same time
and there is no planner solving such a problem.

The main contribution of this paper is to present an
approach allowing the resolution of spatio-temporal plan-
ning problem. The idea is to allow synchronization of

Supported by ANR Project ANR-10-BLAN-0210.

Frédéric Maris
IRIT, Université Paul Sabatier
118 route de Narbonne
31062 Toulouse Cedex 9, France

non-instantaneous actions in space. To this aim, we con-
sider the encoding rules of TLP-GP-2 (Maris and Régnier
2008a) (Maris and Régnier 2008b) and we integrate new
rules based on SpaceOntology (Belouaer, Bouzid, and
Mouaddib 2010), and which can encode the spatial dimen-
sion of a planning problem.

The temporal planner TLP-GP-2 is based on the use of
a simplified planning graph and a SAT Modulo Theory
(SMT) solver. The problem representation language that
TLP-GP can process allows a much greater flexibility than
PDDL2.1 (Fox and Long 2003) for defining temporal do-
mains and problems. Although its expressive power is iden-
tical to that of PDDL2.1, the extensions implemented in
TLP-GP allow the user to express real-world problems much
more easily (Cooper, Maris, and Regnier 2010a). To provide
a rich temporal representation of actions, time points within
actions can be used, other than start and end, along with sets
of simple linear binary (in)equality constraints between time
points. On the other hand, high-level modalities allow the
user to define complex relationships between a condition or
effect and an interval, including being valid over the whole
interval, at some point in the interval, within a sub-interval
or being subject to a continuous transition over the inter-
val. TLP-GP can also take into account, in a very natural
way, exogenous events as well as temporally extended goals.
It is complete for the temporally expressive sublanguages
of PDDL2.1 using the transformation method of (Cooper,
Maris, and Regnier 2010b) to restore its completeness when
handling temporally-cyclic problems.

SpaceOntology considers different space’s representa-
tions: qualitative (topological relation and fuzzy distance),
quantitative (numeric distance) and hierarchical. Also,
SpaceOntology defines a set of rules to deduce new infor-
mation to complete the description of the environment. This
allows a complex spatial description and an easy manage-
ment of different spatial aspects. In this paper, we consider
four concepts defined in SpaceOntology. Namely (Belouaer,
Bouzid, and Mouaddib 2010): spatial entity, numeric dis-
tance, fuzzy distance, hierarchical representation. This pa-
per presents an extension of the temporal planner TLP-GP-2,
called ST-SMTPLAN, to take into account temporal dimen-
sion with some spatial aspects of SpaceOntology (numeric
distance, fuzzy distance and hierarchical link).

This paper is organized as follows. First, we present vari-

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

ous related works on spatial and/or temporal planning. Then,
the preliminaries part presents a set of required notations and
definitions. Next, we define a study case in order to illustrate
our claim. After, we present some of the spatio-temporal en-
coding rules needed to solve the problem described relative
to our study case. The discussion section shows theoretically
the soundness and the completeness of this two-dimensional
encoding. Finally, the conclusion presents the lines of re-
search opened by this work.

Related Work

To solve real planning problems, one of the major challenges
is to consider spatial and temporal dimensions. However, to
our knowledge there is no model allowing us to represent
a planning problem by considering both spatial and tempo-
ral knowledge at the same time and no planner allowing us
to solve such a problem. This part is a literature review of
various works on temporal planners and spatial planners.

Temporal Planners

Most of temporal planning systems use an additional con-
straints solver for task scheduling. In the past, many plan-
ners have used a hierarchical plan-space (HTN). They
used a temporal logic based on instants and intervals, to-
gether with a Time Map Manager which manages the tem-
poral constraints. This is the case for planners such as
IxTeT (Ghallab and Alaoui 1989), (Laborie and Ghal-
lab 1995) or HSTS (Muscettola 1993). When (Cushing,
Kambhampati, and Mausam 2007) published their impor-
tant work on temporally-expressive planning, the majority
of efficient temporal planners developed between 1994 and
2007 were incapable of solving temporally-expressive prob-
lems, although some planners have since been improved
to solve such problems. Apart from HTN-type planners
which present a relatively poor performance, only few of
them can solve this type of problem. Some of them such
as CRIKEY3 (Coles et al. 2008), VHPOP (Younes and Sim-
mons 2003), LPGP (Long and Fox 2003), TLP-GP-1 (Maris
and Régnier 2008a) (Maris and Régnier 2008b), and the
most recent version of LPG (Gerevini, Saetti, and Serina
2010), perform a search algorithm coupled with a Sim-
ple Temporal Network (STN) solver. Others such as TM-
LPSAT (Shin and Davis 2004) , the planner of (Hu 2007),
TLP-GP-2 (Maris and Régnier 2008a) (Maris and Régnier
2008b), STEP (Huang, Chen, and Zhang 2009), use a simi-
lar method to that used by the family of BLACKBOX (Kautz
and Selman 1999) classical planners. They simultaneously
code a planning graph (Blum and Furst 1995) and temporal
constraints, then call the solver (LP, CSP, SMT or SAT) to
find a solution.

Spatial Planners

Spatial knowledge is essential in planning. For instance,
in the case of building evacuation, to achieve this mis-
sion the agents have to move through the environment be-
tween the different areas. In literature, there are somme
planners exploiting spatial knowledge. For example: ASY-
MOV (Gravot, Cambon, and Alami 2005), one presented

in (Guitton et al. 2008) and SPOON (Belouaer, Bouzid, and
Mouaddib 2011).

The planner ASYMOV computes plans for handling
problems in which the execution of an action has an impor-
tant effect on the spatial representation of the problem. For
example, when an agent has to carry an object, the shape of
the whole agent with the object is different from that of the
agent load. The planner described in (Guitton et al. 2008)
consists of two modules reasoning: a symbolic reasoning
module supported by a planner task and a reasoning mod-
ule supported by a path planner.

These two planners manage only the quantitative spatial
information (numeric distance, coordinates...). This is not
enough. For instance, to move through an environment re-
quires a spatial knowledge for describing it. In this kind of
application, it is also necessary to know the adjacency rela-
tions, the distances between the different regions to compute
a path. Spatial knowledge can be quantitative (numerical),
qualitative (topological or fuzzy) and hierarchical (simpli-
fies the description of the global environment). Also, These
two planners do not express planning problems taking into
account the spatial dimension.

SPOON is an hybrid planner combining two reasoning
modules. Symbolic reasoning module supported by task
planner. Spatial reasoning module supported by path plan-
ner and SpaceOntology. This ontology provides a structured
knowledge of the explored environment in the planning pro-
cess. SPOON uses Space-PDDL as a language to express a
planning problem taking into account the spatial dimension.

Our main contribution is to integrate some concepts of
SpaceOntology in TLP-GP-2 in order to consider both spa-
tial and temporal dimensions in planning problem.

Preliminaries

This section presents all required notations for the definition
of spatio-temporal rules.

A fluent is a positive or negative atomic proposition. We
define a set of spatial predicates leading to spatial fluents
when instantiated. We consider conditions on the value of
fluents and changes of this value may either instantaneous
or be imposed over an interval. An action a is a quadruple
< Cond(a),Eff(a),Constr(a),Mov(a) >, where:

e Cond(a) is a set of fluents which are required to be true
for a to be executed,

e Eff(a) is the set of fluents which are established or de-
stroyed by the execution of a,

e Constr(a) is a set of constraints between the relative times
of events which occur during the execution of a,

e Mov(a) is a set of vectors of real valued functions associ-
ated with each of spatial fluent Move(e) in Ef f(a) corre-
sponding with the movement of spatial entity e produced
by a.

An event corresponds to one of nine possibilities: the in-
stant when, or the beginning or end of an interval over which
a fluent is required or produced or destroyed by an action a.
We use respectively the notation a — f to denote the event
that action a establishes fluent f, a — — f to denote the event

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

that action a destroys fluent f, and f — a to denote the event
that a requires the fluent f. When these events occur over an
interval, we use respectively a |— f, a | —f and f |— a
to denote the beginning of this interval, and respectively
a—| f,a—|—f, f =] ato denote its end. We use the no-
tation T(E) to represent the time in a plan at which an event
E occurs. For a given action a, let Events(a) represents a
different events which constitute its definition. If A is a set
of actions, then Events(A) is the union of the Events(a) (for
alla € A).

For any spatial entity e we define T9(e) as a set of tem-
poral variables corresponding to a spatial event on e in the
actions definition. These temporal variables correspond to a
reading of the spatial state of e for the conditions (numeric
position, numeric distance, fuzzy distance) or an update of
this state for effects (movement, hierarchical link). The set
of all temporal variables corresponding to the spatial events
on all of the entities of SpE is denoted T'8.

Case Study

To illustrate our claim let us consider the following exam-
ple. A waiter is involved in the environment shown in Fig-
ure 1(a). His mission is to serve each customer with the or-
dered drinks : a white coffee, a black coffee and a hot choco-
late (Figure 1(c)).

° ./(.
@ @Y o @

(b) Possible paths

(a) Environment

®

1o e

(c) Waiter’s goal

Figure 1: Environment and mission.

To achieve this mission the waiter considers the spatial
description of the environment in which he operates in order
to find a plan by which he prepares and serves drinks (Fig-
ure 1(b)). Also, the success of this mission requires the sat-
isfaction of the following temporal constraint: when drink
is served it is still warm enough. Let us consider that the
waiter’s goal is to serve the white coffee. In the follow-
ing, we represent the description of its mission in PDDL
extended with spatial fluents (Figure 2, Figure 3). Table 1,
Table 2,Table 4 and Table 5 define some elements which are
useful for understanding this paper and defined in our study
case.

Table 1 defines types of used objects in our problem. Ta-
ble 2 presents used objects. Table 4 presents the different
symbolic or spatial fluents necessary. Table 5 presents the
various actions that the waiter can execute.

(define (domain service)
(:requirements ..)
(:types ..)
(:predicates ..)
(:durative-action Pick
:parameters (?ingredient - ingredient ?area - area)
:duration (= ?duration (pick-time ?ingredient))
:condition (and (at start (on ?ingredient Z2area))
(over [start end[(at ?area))
(at start (FD_Near waiter ?area)))
teffect (and (at end (carry ?ingredient)))

(:durative-action Go
:parameters (shelf table)
:duration (= ?duration (travel-time shelf table))
:condition (and (at start (at shelf))
(at start (Inside waiter kitchen)
:effect (and (at end (at table)
(over [start (+ start (/ (2duration) 3))[
(Move_1 waiter : Delta x[t]=2.0*t : Delta_y[t]=0.0%*t))
)

(at (+ start (/ (?duration) 3)) (not (Inside kitchen)))
(at (+ start (/ (?duration) 3)) (Inside lounge))
(over [(+ start (/ (?duration) 3)) end[

(Move_2 waiter : Delta_x[t]=1.5%t : Delta yl[t]=1.0%*t)
))

(:durative-action Heat ..)
(:durative-action Make W_C ..)
(:durative-action Serve ..))

Figure 2: Domain definition in PDDL.

(:init

Inside waiter kitchen)
Inside table lounge)

= table.center.x 4.0)

(
(
(
(= table.center.y 3.2)

at shelf)

on coffee shelf)

on milk shelf)

= (pick-time coffee) 0.2)
= (pick-time milk) 0.2)

(
(
(
(
(
(= (travel-time shelf table) 3.0)

(at 20 (served table cup))

(at 20 (contains2 cup coffee milk))
(over [20 25] (hot coffee))

(over [20 25] (hot milk))

Figure 3: Mission definition in PDDL.

Definition 1 (Spatio-temporal planning problem) A
spatio-temporal planning problem < 1,A,G > consists of a
set of actions A, an initial state I and a goal state G, where
I and G are sets of fluents.

We introduce three basic constraints that all spatio-
temporal plans must satisfy :

e [nherent constraints on the set of actions A: foralla € A,
a satisfies Constr(a).

e Contradictory-effects constraints on the set of actions A :
for all ¢;,a; € A, for all fluents f such that ~f € Eff(a;)
and f € Eff(aj), t(a; =| ~f) <=(aj |—= f)V(aj|—
) <t(ai =| =f).

e Contradictory-movements constraints on the set of ac-
tions A: for all a;,a; € A, for all e € SpE, for all
spatial fluents Move(e) such that Move(e) € Eff(a;)
and Move(e) € Eff(aj), t(a; —| Move(e)) < t(a; |—
Move(e))Vt(aj|— Move(e)) < t(a; —| Move(e)).

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Types Semantic
spatial _entity any spatial object
object any symbolic object

an area in the environment

an ingredient used to make a drink
ordered or ready drink

an office that may include areas

area- spatial _entity

ingredient - object
drink - ob ject

room -spatial _entity

Table 1: Types

Objects Semantic
shel f- area a storage area
table-area area in which is the table

cooker- area a cooking area

kitchen - room

area that includes shel f and cooker

lounge - room

area that includes shel f and cooker

milk - ingredient milk ingredient

cof fee - ingredient coffee ingredient

cup - spatial _entity container for receiving a drink

waiter - spatial _entity | agent that serves the tables

Table 2: Objects

Spatial fluents Semantic

Fluents Semantic Inside spatial _entity; is included

at(area) waiter’s position (spatial _entity),spatial _entity;) | in spatial _entity,

on(shelf,ingredient) the ingredient is on the shelf Move(spatial _entity) indicates the existence of a

carry(object) the waiter carries a drink displacement

hot(ob ject) the ingredient or the drink is FDygper indicates the fuzzy dis-
hot (spatial _entity),spatial _entity;) | tance between two spatial

Table 3: Symbolic fluents

entities

Table 4: Spatial fluents

Actions

Semantic

Go(spatial _entityy,spatial _entity,)

move from spatial _entity| to spatial entity,

Pick(ingredient,area)

take an ingredient from an area

Heat(ingredient,area)

heat an ingredient in an area

Serve(area,cup)

serve a cup to the customer

Make W _C(ingredient ingredient)

prepare the white coffee

Table 5: Actions

Definition 2 (Spatio-temporal plan) P =< A, > where A
is a set of action-instances {ay,...,a, } and t is a real-valued
function on Events(A), is a spatio-temporal plan for the
problem < I,A',G > if (1) A C A" and (2) P satisfies the
inherent and contradictory-effect constraints on A; when p
is executed (i.e. fluents are established or destroyed at the
times given by t) starting from the initial state I and (3) for
all a; € A, each f € Cond(a;) is true when it is required and
(4) all goal fluents g € G are true at the end of execution of
P.

To encode a planning problem we use a simplified plan-
ning graph GP (Blum and Furst 1995). NodeA denotes the
set of actions nodes of GP. ArcsCond and ArcsE f f respec-
tively denote the set of conditions arcs and the effects arcs
of GP. SpE denotes the set of spatial entities defined in the
planning problem. In the following section we present the
set of rules defining the ST-SMTPLAN.

ST-SMTPLAN: Encoding Rules for
Spatio-Temporal Planning
To encode a spatio-temporal planning problem, we define

three types of rules: (1) rules (R) encode the plan solution
structure of the problem based on a temporally extended

planning graph, (2) rules (T) manage temporal knowledge
and (3) rules (S) manage spatial and temporal knowledge.
Formally, R denotes the set of ST-SMTPLAN rules &
(R = RUTUS). In this paper, we present a subset of &
which are used to solve the problem defined in the study
case. The rules presented here are classified by group. Those
concerning the definition: initial and goal states, the graph
temporally extended, the spatial and temporal dimensions
simultaneously and temporally extended mutexes.

Initial State and Goal

We define two dummy actions /nit and Goal. Init produces
the initial state and Goal produces the goal state. This two
dummy actions are both true.

Init A\ Goal (R1)

This part presents some of S1 rules for encoding the de-
scription of the initial state and goal. From a spatial per-
spective, the initial state considers the description of posi-
tions (rule S1.1) and hierarchical definition (rule S1.2). In-
tuitively, the instant at which the goal state is true is later
than the instant at which the initial state is true. The rule
(T1) encodes this intuition.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

(S1.1): Numeric position of entities in the initial state
In SpaceOntology: a spatial entity e is a localized entity in
a given space. It can be static; any element fixed in space
which position changes only by an action performed by an
agent. Or it can be dynamic; any entity which spatial posi-
tion changes over time in space. A spatial entity is defined
by its center.

(S1.1)

A

ecSpE

((x[r(mit)}(e) = e.center.x))

(y[t(Init)](e) = e.center.y)

Example 1 Let us consider the space defined in Figure 1(c).
We focus on the table which is in the lounge.

v

N G i
® @

Figure 4: Spatial entites positions.

To locate this table, we consider its center and project it
on both axis (Figure 4). This allows us to instantiate the rule
(S1.1) as follows:

x[t(Init))(table) = 4
{)’[T(lnil)](table) =32

Remark 1 We assume that we are in 2D space. x denotes x-
axis and y denotes y-axis. All rules are defined for x-axis and
y-axis. In this paper, we detail only rules for x-axis. Rules
can be extend to 3D.

(S1.2): Inclusion relation of entities in the initial state
SpaceOntology permits the hierarchical representation in or-
der to simplify the description of the global environment. To
represent the hierarchical relation, we define the spatial flu-
ent Inside. This spatial fluent expresses the inclusion link
between two spatial entities. Formally, for each pair of spa-
tial entities (ej,ey) where the relation e; C e is true, then
we add the following rule:

A Inside[t(Init)](ey,e2)

(e1,e2)ESPE? [e)Cey (81.2)

Example 2 The initial state of our problem is depicted
in Figure I(a). t(Init) is the instant of the initial time.
Inside[t(Init)|(waiter, kitchen) expresses that the waiter is
in the kitchen in the initial state. Thus, to express spatial

inclusion in the initial state we instantiate the rule S1.2 as
follow:

Inside[t(Init)](shel f,kitchen)
Inside[t(Init)|(cooker, kitchen)
Inside[t(Init)|(waiter, kitchen)

10

(T1): Lower and upper bounds The initial instant (when
propositions of the initial state are true) precedes every in-
stant of the beginning of the preconditions of the other ac-
tions. The final instant (when the goal propositions are true)
follows all instants of the end of the effects of the other ac-
tions.

(t(Init) < t(Goal)) A A\

t(Init) < Min T 4 —a
acNodeA

N Max {x(a—] 9)} < (Goa))
(T1)

Encoding of Temporally Extended Planning Graph

The rules (R) encode the problem as temporally extended
planning graph. They encode the causal links between con-
ditions (R2) and effects and actions selections (R3).

(R2): Conditions production by causal links If an action
b is active in the plan, then for each of its preconditions p, it
exists at least one causal link (noted Link(a, p,b)) from the
action a (which produces this precondition) to the action b.

b= V Link(a, p,b)
/\ ((a,p)€ArcsEff (R2)
(p,b)€ArcsCond

(R3): Actions activation and partial order If a causal
link exists between an action @ which produces a precondi-
tion p for an action b, then a and b are actives in the plan.
Moreover, the instant when a certainly produces p precedes
or is the same than the instant when b begins to need p.

Link(a, p,b) ,)
al
- (m(a = p) <t(p|— b)))
(R3)

A A (
(a,p)€ArcsEff (p,b)€ArcsCond

Encoding Spatial Knowledge

An action may require the satisfaction of spatial relations
between two spatial entities for execution. An action can
change the spatial definitions between two spatial entities.
Spatial information is integrated into the sets Cond(a) and
E ff(a) when the action a is defined in the planning domain.
A spatial entity may be dynamic or static. The spatial en-
tity e is dynamic, the use of the predicate Move(e) in the
effects of the action a corresponds to the movement of the
spatial entity e by the action a on a given temporal inter-
val [t1,12]. With the fluent Move(e) we associate a moving
function. We define on the interval [f],7,] a linear function
corresponding to the movement of spatial entity e for each
axis. For horizontal axis (ox) the linear function is denoted
by A%[t](e) = v¥(e) x . The global movement of the entity ¢
produced by an action a on the x-axis is denoted by A?(e) (
Al(e) = Al[t(a —| Move(e)) —t(a |— Move(e))](e)) .

|

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Spatial Conditions The rules S2 encode the spatial con-
ditions. Indeed, it is necessary to compute distances (S2.1)
and to know numeric distances or approximative distances
(§2.2) in order to execute actions or not.

(S2.1): Computing numeric distances between entities
For each couple of spatial entities (ej,e2) we denote by
d[t]{e1,e2} a numeric distance between ¢ and e, according
to x-axis.

(e1,62)ESPE? [(e1#e2) t€T(e1)NTS(e2)
<(x[t} (e1) <x[r](e2) = dx[t]{e1,e2} = x[t](e2) —x[t] (e1)
(x[r](e2) <xt](er) = dxlt[{er,e2} = x[t](e1) —

(S2.2): Numeric distance between entities The spatial
fluent Distance(e1,e;) = value where value is a rational
number can be used as a constraint in the definition of
Cond(a). Tt represents a condition of fixed numeric dis-
tance between two spatial entities e; and e;. A constraint
di[t]{e1,e2} = value is then added for each action a of the
graph at t = t(Distance(e;,e2) = value — a). We can gen-
eralize by replacing equality by inequality.

(e1,62)ESPE? /(e1#€2) acNodeA/(Distance(ey,e;)=value)cCond(a)
a = (dy[t(Distance(ey,e2) = value — al{ey,er} = value)

(S2.2)
(S2.3): Fuzzy distance between enti-
ties SpaceOntology defines four concepts

{Near,NearEnough, FarEnough,Far} in order to ex-
press fuzzy distance. The special fluent FDjupei(er,e2)
represents a fuzzy distance between two entities e; and
ey such as label = {Near,NearEnough,Far, FarEnough}.
Each label is associate to an interval [Qaper, Brapei |-

y

CNeurBnongh
1

BN earBnongh

Figure 5: Fuzzy distances zones relatives to a spatial entity.

1"

For example, let us consider the fuzzy distance near
enough, so label = NearEnough and the associated interval

is [(xNearEnougha BNearEnough[(Figure 5)

(e1,e2)ESPE? [(e17e2) aENodeA |FDiapei(e1,e2)€Cond(a)

a=> (Waper < dx[V(FDygper(e1,€2) — a)l{er,e2} < Braper)
($2.3)

Example 3 Let us consider our study case. We define the
following variables:

a = Pick(milk, shel f)

t = ©(F Dear(waiter, shel f) — Pick(milk, shel f))
el = waiter
ey = shel f

The application of the rule (S2.1) computes the distance
between the waiter and the shelf:

(x[t](waiter) < x[t](shelf) =

dy[t]{waiter,shel f} = x[t](shel f) — x[t](waiter)
(x[t](shel f) < x[t](waiter) =

dy[t){waiter,shel f} = x[t](waiter) — x[t](shel f)

Let us consider that the execution of the action Pick re-
quires that the distance between the waiter and the shelf is
0.3. The application of the rule (S2.2) checks the distance
between the waiter and the shelf:

Pick(milk,shel f)
=

(dy[t(Distance(waiter, shel) = 0.3 — Pick(milk,shel f))|{waiter,shel f}

=03)

The application of the rule (S2.3) checks the fuzzy dis-
tance between the waiter and the shelf:

Pick(milk,shel f)
=
ONear <

dy[t(FDyeqar(waiter,shel f) — Pick(milk,shel f))|{waiter,shel f } <

|3N ear

Spatial effects Computing distances between entities re-
quires to know their numerical position. It is therefore nec-
essary to know these positions in the initial state, but also to
recalculate when the effect of an action changes.

(S3): Computing new positions Let us consider the tem-
poral interval [f],1,]. The spatial entity e; position at time #,
is calculated from its position at time #; and from the move-
ments 8[t,1,](ey,a,e;) induced by all entities e, that can
be moved by an action a.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

e1ESPE (11,1)€TS

(x[2](e1) = x[t1](er)+ (S3)
¥ 61nd , .a,
e2,a€SpE xNodeA /A (e2)#0 s nllerae)
Example 4 Let us consider the following action
Go(shelf,table). Note by :
o 11 =T(Go(shel f,table) | — Move|(waiter))
o 1o =1(Go(shel f,table) —| Moves(waiter))
Let us apply rule S3.
x[t1](cup) +
811y, 12)(cup, Go(shel f,cooker), waiter)+

x[t2](cup) = § 81y, 12) (cup, Go(cooker, shel f), waiter)+
]

811y, 12)(cup, Go(shel f ,table), waiter) +

To compute the induced movement of an entity e on other
entities or on entity e, it is necessary to know the hierarchical
relation between e and all other entities at the instant when e
starts or ends its movement. We can now describe the rules
considering hierarchical links.

(S4.1): Production and removal of hierarchical link If
an action a which produces the inclusion of a spatial entity
e; in a spatial entity e, at time t = t(a —| Inside(e;,e3)) is
active in the plan then the predicate Inside(t](e;,ez) corre-
sponding to the inclusion e; C ej at time ¢ is true.

A A
(e1,e2)ESPE? Je1#e, acNodeA [Inside(e,e;)€E f f(a)

(S4.1.1)
(a = Inside[t(a —| Inside(ey,e2))](e1,€2))

If an action a which removes the inclusion e; C e; at time
t = t(a |— —Inside(e;,ey)) is active in the plan then the
predicate Inside[t](e1,e) is false.

A A
(e1,e2)ESPE? Je1#e; acNodeA [—Inside(ey,e2)EE ff(a)

(§4.1.2)
(a = —Inside[t(a |— —Inside(e;,e3))](er,e2))

Example S The waiter’s movement between the shelf and
the table (Go(shelf,table)) has two spatial effects on hier-
archy. The first is the production of the hierarchical link “the
waiter is inside the lounge” (applying the rule (§4.1.1)):

Go(shelf,table) =
Inside[t(Go(shel f,table) —| Inside(waiter,lounge)))(waiter,lounge)
The second is the destruction of the hierarchical link "the
waiter is inside the kitchen” (applying the rule (§4.1.2)):

{ Go(shelf,table) =

—Inside[t(Go(shel f ,table) |— —Inside(waiter,kitchen))|(waiter, kitchen)

12

(S4.2): Propagation of hierarchical links in time If a
hierarchical link e; C e is active in the plan at time
t € T3, when a spatial event occurs, then there exists at
least one positive hierarchical link protection interval (de-
noted LinkInside(ey,ey,a,t)) of an action a, which produces
Inside(ey,ey), up to time ¢.

A A
(e1,62)ESPE? ey #es t€TS
Inside[t](ey,e2)
LinkInside(ey,e2,a,t)

) (S4.2.1)

(= y
aeNodeA /Inside(ey,e2)€Eff(a)

(e1 ,ez)ESQEz/el +e, aGNodeA/Insid/e\(e| e2)EEff(a) t€/>"3
LinkInsidelt](ey,es,a,t)
= aAlnsidelt](e,e2) A (t(a —| Inside(ey,ep)) <t)
($4.2.2)

Similarly, if a hierarchical link e; C e is not active in
the plan at time ¢ € T'd, when a spatial event occurs, then
there exists at least one negative hierarchical link protection
interval (denoted LinkNotInside(ey,e>,a,t)) of an action a,
which produces —Inside(e;,e>), up to time ¢.

Example 6 We assume that t is the instant when the ac-
tion serve (Serve(table,cup)) requires that the waiter has
the cup (t = t(Inside(cup,waiter) |— Serve(table,cup))).
If at the instant t, the waiter has the cup then it ex-
ists a link to propagate this property from the action
Make W _C(milk,cof fee,cup) which produces it.

Inside[t)(cup, waiter)
= LinkInside(cup,waiter, Make W _C(milk,cof fee,cup),r)

If a link propagates the fact that the waiter has the cup
Sfrom the action Make W _C(milk,cof fee,cup), up to the in-
stant t, then this action must be active in the plan and pro-
duces the hierarchical link before the instant t.

LinkInside(cup,waiter,Make W _C(milk,cof fee,cup),t)
= Make W _C(milk,cof fee,cup) A Inside[t|(cup, waiter)
At(Make W _C(milk,cof fee,cup) —| Inside[(cup,waiter) <t

We consider some assumptions. We define them as rules.
In the following, we present some of them. Rule (S5.1.1) re-
quires that an entity can’t enter in another entity when this
later is moving. Similarly, rule (S5.1.2) states that an en-
tity exit from another entity when this later is moving. Rule
(S5.2) states that each entity is included in itself.

(e1,62)ESPE? Je1#e> (a,b)ENodeA? [Inside(e,e2) EEff(a)AAL(e2)#0
alb=
(t(a —| Inside(ey,ez)) < (b |— Move(ey))
V(t(b —| Move(es) < t(a|— Inside(ey,e2))
(S5.1.1)

A A (lnside[t](e,e))

e€SpE t€T§ (85.2)

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Example 7 Let us consider the two actions: prepare the cof-
fee (Make W _C(milk,cof fee,cup)) and move between the
cooker and the shelf (Go(cooker,shelf)). In order to exe-
cute these two actions, we must respect one of this situation
(applying the rule (S5.1.1)) :

o the instant when the action
Make W _C(milk,cof fee,cup) finish to produce that
the waiter has the cup is before the instant when the
action Go(cooker, shel f) begin to move the waiter.

e the instant when the action Go(cooker,shelf) fin-
ish to move the waiter between the cooker and
the shelf is before the instant when the action
Make W _C(milk,cof fee,cup) begins to produce that the
waiter has the cup.

Make W _C(milk,cof fee,cup) A Go(cooker,shel f)
=
©(Make W _C(milk,cof fe,cup) —| Inside(cup,waiter))
{ < t(Go(cooker,shel) |— Move(waiter))
V
1©(Go(cooker, shel f) —| Move(waiter))
{ < t(Make W _C(milk,cof fe,cup) |— Inside(cup,waiter))

We can now calculate the induced movements by one en-
tity over another.

(S6.1): Induced movement with hierarchical link We
assume an action that a which produces a movement of a
spatial entity ex (A%(ep) # 0)is active in the plan. We con-
sider a spatial entity e; such as e; C e;. Also, we consider
the temporal interval I = [t1,1,]. Let [¢,#] the intersection of
I and the interval on which e; movement is produced by a.
If this intersection is not empty then the movement of e; in-
duced by e is 8™ [t),1](e1,a,e2) is equal to ALt —1](ez),
else the induced movement is zero.

1 1 I
Move(es) Move(es) Move(es)
(S6.1.1) (56.1.2) (56.1.3)
I 1 1
— —— —
Move(es) Move(es) Move(es)
(56.1.4) (56.1.5) (56.1.6)

Figure 6: Possible configurations between an interval and
spatial entity’s movement.

The different configurations and the associated rules are
illustrated by Figure 6. Here we detail only the rule (S6.1.1).

|
|

13

A

(e1,e2)ESPE? (11,1r)ETS*acNodeA /A (e2)70
(aAlnside[t(a |— Move(ez))](e1,e2)
Atp < t(a |— Move(ep)) At(a |— Move(ez)) <t
Nty < 1(a —| Move(ey))
= (811 ,15](e1,a,e2) = A%[tr —1(a |— Move(ey))](e2))
(S6.1.1)

Example 8 Let us denote by:

o 1| = t(Go(shelf,table) |— Move(waiter))
o 1y = t(Go(shelf,table) —| Movey(waiter))

We are in the case of rule (S6.1.4). On the global move-
ment interval [ty,t;] over which the waiter moves from the
shelf to the table. If the waiter has the cup, each of the

movement (Move (waiter) and Move,(waiter)) induces the
movement on the cup.

Go(shel f,table)\
Inside[t(Go(shel f,table) |— Move(waiter))|(cup, waiter)\
t1 < t(Go(shelf,table) |— Move(waiter))\
©(Go(shel f,table) —| Move(waiter)) < t, A
= (8! [t1,62)(cup, Go(shel f,table), waiter) =

AGelshel[4able) (1) _ ¢(Go(shel f,table) |— Move(waiter)))(waiter))

(S6.2): Induced movement without hierarchical links If
an action a which moves an entity e, with displacement
A%(ey) is active in the plan and we have a spatial entity e;
distinct from e, (e # e3) and e is not inside e, (e] Z e2)
when a starts to move e, then the displacement of e on the
interval [f],1;] induced by the movement of e, produced by
the action a: 81, 1,](e1,a,e) is zero.

(e1,e2)ESPE? Je1#es (t1,1r)eTacNodeA/A¢(er)#0)
(a N —lInside[t(a |— Move(ep))](e1,e2) (56.2)
= (80[n1,02)(e1,a,e2) = 0)

Example 9 In our study case; the waiter moves from shel f
to table without taking the cup (cup ¢ waiter). The applica-
tion of (86.2) shows that the displacement of the cup induced
by waiter’s movement is zero.

Go(shel f,table)\
—Inside[t(Go(shel f,table) |— Move(waiter))|(cup,waiter)

= (Si"d[ll,tz](cup,Go(shelf,table),waiter) =0

(S6.3): Induced movement by an inactive action If an
action a which produces a movement of a spatial entity ey,
noted A%(ey), is not active in the plan and given a spatial
entity e; (not necessarily distinct from e») then the move-
ment of e,, noted 8/[t1,1](e1,a,e), on the temporal inter-
val [t1,1;] induced by the movement of e, produced by a is
Zero.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

(61 .€2)€SpE2 (Z] ,lz)GTSZUENOdeA/Aff (62)#0

(56.3)
(ﬂ(l = (Sjlrnd[l‘l,tz](el,a.,ez) = 0)

Temporally extended mutexes
Two propositions are mutually exclusive when:
e the propositions are antagonists, for instance p and —p;

e or the propositions represent the movement of the same
spatial entity e (the special predicate Move(e) is used by
two actions).

In these cases, the propositions can not occur on the same
temporal interval.

(R4): Temporally extended mutexes If a causal link pro-
tects a proposition p and an action produces its is active
in the plan, then the temporal interval corresponding to the
causal link and the temporal interval corresponding to acti-
vation of —p by the action are disjunctive.

(a,p)€ArcsEff (p.b)eArcsCond (c,~p)EArcsEff
Link(a,p,b) Ac
= (t(c =[-p) <t(a|=p))V (t(p =] b) <(c|— —p))
(R4.1)

If two actions respectively producing a proposition p and
its negation are active in the plan, then the temporal intervals
corresponding to the activation of p and activation of —p are
disjunctive.

(a,p)€ArcsEff (b,~p)EArcsEff

alb
(:> (t(b—|=p) <tal—=p))V(tla—|p) <t(b|— ﬁp)))
(R4.2)

Mutexes of actions that move the same entity If a causal
link protects the proposition Move(e) which represents a
spatial entity e moving and also an action produces the
proposition Move(e) is active in the plan then the tempo-
ral interval corresponding to the causal link and the tempo-
ral interval corresponding to the activation of Move(e) by
the action are disjunctive. If two actions produce Move(e)
are active in the plan, then the temporal intervals associated
with activation of Move(e) by these actions are disjunctive.
To obtain respectively the rules (S7) corresponding to these
kind of mutual exclusion, it suffices to replace p and —p by
Move(e) in rules (R4.1) and (R4.2).

(S8): Mutexes on hierarchical links protection inter-
val Similarly as causal link protection (R4.1), we add
two rules, respectively (S8.1) and (S8.2), providing a hi-
erarchical link protection for LinkInside(e;,ez,a,t) and
LinkNotInside(e;,en,a,t).

14

A A
(e1,e2)ESPE? Je1 e, acNodeA/Inside(ey,e2)€E ff(a)

t€/>"5 bENodeA/ﬁInxié\e(el e2)EEff(D) (S8.1)
(LinkInside(ey,e2,a,t) Ab) '
= (t(b —| —Inside(e1,ez) < t(a|— Inside(ey,ez))
V(t < (b |— —Inside(ey,e2)))

Discussion

The encoding rules presented in this paper are sound and
complete for all temporally-expressive planning problems
expressed in the representation language of TLP-GP ex-
tended with spatial fluent definition. This result is given, for
the rules encoding the solution-plan structure (R) and the
temporal constraints (T), by the fact that TLP-GP is sound
and complete, using the transformation method of (Cooper,
Maris, and Regnier 2010b) to restore its completeness when
handling temporally-cyclic problems. Soundness is pre-
served when adding the spatio-temporal rules (S). When
a solution is found by constraint solver, inherent and
contradictory-effects constraints are trivially satisfied by
rules defined in TLP-GP. Contradictory-movements con-
straints are also trivially satisfied by rule (S7.2). Moreover,
the propagation, encoded by the rules, of spatial knowledge
on the entities (position and hierarchy) at all of the instants
when this knowledge is used by actions in plan, guarantees
that spatial-fluents are true when required. Hence, by Defi-
nition 2, solution gives a valid spatio-temporal plan. We now
define spatial-relaxed versions of a spatio-temporal plan as
all temporal solution-plans of the temporal planning prob-
lem resulting from the spatio-temporal planning problem,
after deleting all spatial fluents from initial state, actions def-
inition and goal. If a spatio-temporal plan < A, > exists for
a spatio-temporal planning problem < I,A7, G > then all so-
lutions corresponding to spatial-relaxed versions of this plan
can be found using only the rules (R) and (T), resulting from
completeness of TLP-GP. From all these solutions, the ones
corresponding to the initial spatio-temporal planning prob-
lem should satisfy all the spatio-temporal constraints at all
times when a spatial-fluent is required, that is exactly what
is encoded by the whole rules (S). Hence, completeness of
the encoding rules follows from the fact that these latter so-
lutions can always be found by the solver.

For simplicity of presentation, we have considered only
some restricted aspects of SpaceOntology. For example, in
the definition of the fuzzy distance, the values of 0y, and
Biaver are the same for all hierarchical levels. We can eas-
ily extend the encoding rules to take into account different
values for the fuzzy distance depending on the hierarchical
links between entities.

Conclusion

ST-SMTPLAN encoding rules allows us to describe and
solve spatio-temporal planning problems. It combines the
encoding rules described in TLP-GP-2 and the integration of
concepts of SpaceOntology. This ontology allows us to ob-
tain an optimal spatial and simplified representation of the

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

initial state and manipulate fuzzy distances between spatial
entities. Moreover, the principle of TLP-GP allows us to ob-
tain a temporal planning system capable of solving problems
that require concurrency of actions. This system uses a SMT
solver and benefit directly from improvements in this type
of solver in terms of performance.

This paper is a theoretical work. In order to prove the ef-
ficiency of this encoding, we need to define some spatio-
temporal planning benchmarks. To simplify the representa-
tion space we considered any spatial entity as a point (this
point defines the center). This reduces the expressiveness.
In our future work we will focus on the size and shape of
each spatial entity. An avenue for future research is to use
the principle of TLP-GP-1 which performs the backward
search on the planning graph. This will allows us to query
SpaceOntology and code the extracted spatial knowledge at
each action selection. This allows a great spatial expressivity
added to the temporal expressivity.

References

Belouaer, L.; Bouzid, M.; and Mouaddib, A. 2010. Ontology
based spatial planning for human-robot interaction. In
Temporal Representation and Reasoning (TIME), 103—
110. IEEE.

Belouaer, L.; Bouzid, M.; and Mouaddib, A. 2011. Spatial
knowledge in planning language. International Con-
ference on Knowledge Engineering and Ontology De-
velopment.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis.

Coles, A.; Fox, M.; Long, D.; and Smith, A. 2008. Plan-
ning with problems requiring temporal coordination. In
Proceedings of the Twenty-Third AAAI Conference on
Artificial Intelligence (AAAI 08). sn.

Cooper, M.; Maris, F.; and Regnier, P. 2010a. Compilation
of a high-level temporal planning language into pddl
2.1. In Tools with Artificial Intelligence (ICTAI), vol-
ume 2, 181-188. IEEE.

Cooper, M.; Maris, F.; and Regnier, P. 2010b. Solv-
ing temporally-cyclic planning problems. In Zempo-
ral Representation and Reasoning (TIME), 113-120.
IEEE.

Cushing, W.; Kambhampati, S.; and Mausam, W. 2007.
When is temporal planning really temporal. In Pro-
ceedings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI’07), Hyderabad, India.

Fox, M., and Long, D. 2003. PddI2.1: An extension to pddl
for expressing temporal planning domains. J. Artif. In-
tell. Res. (JAIR) 20:61-124.

Gerevini, A.; Saetti, A.; and Serina, 1. 2010. Temporal plan-
ning with problems requiring concurrency through ac-
tion graphs and local search. In Proceedings of the 20th
International Conference on Automated Planning and
Scheduling (ICAPS-10), to appear.

Ghallab, M., and Alaoui, A. 1989. Managing efficiently
temporal relations through indexed spanning trees. In

15

Proceedings of the Eleventh International Joint Confer-
ence on Artificial Intelligence (IJCAI-89), 1297—-1303.

Gravot, F.; Cambon, S.; and Alami, R. 2005. asymov: a
planner that deals with intricate symbolic and geomet-
ric problems. Robotics Research 100-110.

Guitton, J.; Farges, J.; Chatila, R.; Arioui, H.; Merzouki, R.;
and Abbassi, H. 2008. A planning architecture for mo-
bile robotics. In AIP Conference Proceedings, volume
1019, 162.

Y. 2007. Temporally-expressive planning as con-
straint satisfaction problems. In Proceedings of 17th
International Conference on Automated Planning and
Scheduling (ICAPS), 192—199.

Huang, R.; Chen, Y.; and Zhang, W. 2009. An optimal
temporally expressive planner: Initial results and appli-
cation to p2p network optimization. In Proc. of ICAPS.

Kautz, H., and Selman, B. 1999. Unifying sat-based and
graph-based planning. In International Joint Confer-
ence on Artificial Intelligence, volume 16, 318-325.

Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. In International Joint Conference
on Artificial Intelligence, volume 14, 1643—-1651.

Long, D., and Fox, M. 2003. Exploiting a graphplan frame-
work in temporal planning. In Proceedings of ICAPS,
volume 3, 51-62.

Maris, F., and Régnier, P. 2008a. Tlp-gp: New results on
temporally-expressive planning benchmarks. In Tools
with Artificial Intelligence (ICTAI), volume 1, 507-
514. IEEE.

Maris, F., and Régnier, P. 2008b. Tlp-gp: Solving
temporally-expressive planning problems. In Temporal
Representation and Reasoning, 137-144. 1EEE.

Muscettola, N. 1993.
scheduling.

Hsts: Integrating planning and

Shin, J., and Davis, E. 2004. Continuous time in a sat-based
planner. In Proceedings of the National Conference
on Artificial Intelligence, 531-536. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press;
1999.

Younes, H., and Simmons, R. 2003. Vhpop: Versatile heuris-
tic partial order planner. J. Artif. Intell. Res. (JAIR)
20:405-430.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Constraint-Based Allocation of Cloud Resources to
Maximize Mission Effectiveness

Mark Boddy*
Adventium Labs
111 Third Avenue South, Suite 100
Minneapolis, MN 55401 USA
mark.boddy @adventiumlabs.com

Abstract

We are concerned with the problem of optimizing network re-
source allocations to mission tasks. The model includes un-
reliable network assets, multiple mission tasks and phases,
and the possibility of over-provisioning one or more tasks
as a means of increasing the likelihood of task success. In
this paper, we describe an implemented approach to optimiz-
ing network resources so as to optimize the expected util-
ity of the mission. This differs significantly from previous
work on cloud and network management, where the objec-
tive was to optimize some operational measure of the network
itself, rather than the effect of network failures on a specific
task. The work described here is preliminary: we describe the
problem and the approach, define an architecture, and present
the current state of the implementation.

Introduction

We are concerned with the problem of optimizing net-
work resource allocations to mission tasks. The model in-
cludes unreliable network assets, multiple mission tasks and
phases, and the possibility of over-provisioning one or more
tasks as a means of increasing the likelihood of task success.
In this paper, we describe an implemented approach to op-
timizing network resources so as to optimize the expected
utility of the mission. This differs significantly from pre-
vious work on cloud and network management, where the
objective was to optimize some operational measure of the
network itself, rather than the effect of network failures on
a specific task. The work described here is preliminary: we
describe the problem and the approach, define an architec-
ture, and present the current state of the implementation.
Optimizing cloud resource allocations to mission tasks
with unreliable network assets and over-provisioning re-
quires active management of cloud resources, using an ex-
plicit model of the effect of resource failures on the suc-
cess of mission tasks, and of the dependence of the overall

*This work was supported by the United States Air Force and
the Defense Advanced Research Projects Agency (DARPA), under
contract from AFRL, contract # FA8750-11-C-0265. The views ex-
pressed are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
Approved for Public Release, Distribution Unlimited
Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

16

mission on those tasks. The Allocation of Missions Built
on Resource Optimization (AMBORO) system' provides a
flexible, adaptable, and effective means of optimizing the
expected utility of cloud resource allocations to mission
tasks, given estimates of the reliability of those resources.
AMBORO provides a stable, extensible, scalable platform
for modeling and solving cloud management problems in-
volving uncertain information.

Using a uniform, constraint-based representation for
modeling mission tasks, cloud resources and the current set
of assignments of resources to tasks provides several ben-
efits, including easy extension of the model to reflect new
types of missions, tasks, network components, and opera-
tional requirements such as Quality of Service (QoS) guar-
antees, as well as providing access to a very wide variety
of implemented solvers. Other advantages to a constraint-
based approach include the ability to define partial solu-
tions, culprit identification in the case of infeasibilities or
other conflicts, incremental solutions as additional tasks are
added, and the use of local search methods.

In this paper, we describe AMBORO, including its archi-
tecture, previous work on which it builds, the form of the in-
put models, and the optimization problem formulation and
solution process. We then conclude by reviewing the cur-
rent state of the system and some planned, near-term future
work.

Related Work

In some sense, there is little or no current work in the area
being addressed here, because the problem as defined in-
volves modeling and optimization of brand new capabili-
ties. For example, trading off the costs versus the benefits
of various forms of Moving Target Defense (MTD) would
requires the existence of models (and the experience to pop-
ulate those models), describing their costs and effectiveness
against specific forms of network attack. This is very much
an emerging area of research. Mapping from specific mea-
sures of system and network performance such as latency
or throughput to their effect on overall mission success is
another area in which there is not much work to compare to.

However, there is a extensive body of current and recent
work on mapping tasks onto the resources available in a

' Amboro is a cloud forest in Bolivia.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

distributed system, whether it is called a cloud, a grid, or
just a network. Some of this work employs control-theoretic
approaches to adaptive load-balancing for virtual machines
across physical servers, in the presence of other resource
constraints (Hyser et al. 2007; Wood et al. 2007), or opti-
mizing the use of resources such as power, again under con-
straints derived from the tasks being supported (Wang and
Wang 2010; Padal et al. 2007). Other research makes use of
game theory and other methods for decision-making under
uncertainty to allocate unreliable network assets to compu-
tational tasks (Sarmenta 2002; Sonnek, Chandra, and Weiss-
man 2007), for example using statistics on past behavior to
balance task throughput and reliability. Singh, Korupolu
and Mohapatra (Singh, Korupolu, and Mohapatra 2008)
describe a sophisticated online algorithm for hierarchical,
multi-dimensional load-balancing across a distributed sys-
tem, based on an algorithm for the multi-dimensional knap-
sack problem. In their conclusion, they discuss extending
this work based on statistical information similar to that in
the work cited just above.

What distinguishes our work is the need to represent and
reason about expectations, trade offs involving risk and re-
source cost for deploying monitoring and active defenses,
and the effect of network asset compromises on measures of
mission effectiveness.

Finally, there are simulation-based tools that can be used
to configure network resources, such as Opnet’s IT Guru
Network Planner 2. Simulation and sampling approaches
can be used to evaluate alternative network configurations,
including the behavior of those configurations under adverse
conditions such as network outages. These tools also pro-
vide or support static analysis tools, such as Opnet’s “Sur-
vivability Report,” and evaluation against regulatory policies
and vendor “best practices.” What they do not do is provide
a means to find a good configuration in the first place, or to
modify the current configuration as the situation changes.

CARINAE

The departure point for AMBORO is a system called Cyber
Architecture Reasoner Inferring Network and Application
Environments™ (CARINAE), described in (Michalowski,
Boddy, and Carpenter 2010). As shown in Figure 1,
CARINAE is a model-based, trust-driven tool for config-
uring defensive cyber operations. Given a network model
and information regarding current and planned network op-
erations in support of both missions and network defense,
CARINAE provides network operators with the means to
detect and resolve resource conflicts in network cyber-
defense operations.

With CARINAE, network architects and operators can
predict and resolve multiple scalability issues, including
physical and logical network topologies, defended appli-
cation resource loads, and defensive application architec-
ture and resource requirements. Focused on large, service-
oriented net-centric enterprise systems, CARINAE lever-
ages constraint-based reasoning and open source, industry
standard tools to create a robust analytical architecture that

“http://www.opnet.com/solutions/network_performance/index.html

17

Computer

Operatio

Components ||

CARINAE Toolset
1 = *la o
L 1 |

|__Farmal Constraint Model

Network

Domain-specific
Solution Heuristics

COTS Constraint Solvers

Evaluation of
large-scale
network

Network Capabilities

Figure 1: Cyber Architecture Reasoner Inferring Network
and Application Environments™ (CARINAE)

can analyze the interactions between network configura-
tions and mission requirements for large-scale defensive cy-
ber applications (Michalowski, Boddy, and Carpenter 2010),
(Haigh, Harp, and Payne 2010). CARINAE provides band-
width, memory, and computational performance guarantees
for large networks supporting diverse operational missions
and defensive applications. Based on a collection of inno-
vative modeling and algorithmic optimizations, CARINAE
has been employed to analyze networks consisting of up to
1,000,000 nodes, with solution times typically well under a
minute.

CARINAE’s constraint-based model supports easy exten-
sion to a wide diversity of network topologies, node config-
urations, and mission requirements. The model supports the
representation of hierarchies of processing nodes and hier-
archical resource usage, supporting server-based virtualiza-
tion and a hierarchy of network services, as well as network
links tagged with various attributes, supporting requirements
such as encrypted links. However, CARINAE does not sup-
port an explicit mapping from tasks to resource demands:
the demands are provided directly. Nor does CARINAE’s
model or solution engines support reasoning about uncer-
tainties such as the trustworthiness of a given node, or the
likelihood of task or mission success.

In CARINAE, we employed the Coin-OR Linear Pro-
gramming solver, as well as the Minizinc CSP solver. For
AMBORO, we are currently using either the Minizinc de-
fault solver or the ECLiPse CSP solver. The AMBORO ar-
chitecture is deliberately structured to make it easy to swap
different solvers in and out as the computational and expres-
sive needs of the system change.

AMBORO Architecture and Implementation

The process supported by AMBORO starts with the provi-
sion of a problem instance defined in the network and mis-
sion models. The mission model describes the tasks in-
volved in the mission, including subtasks and any order-
ing or other temporal constraints, as well as computational

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Mission model
(ANML)

External ——
Data Network
Sources

model (OWL)

Mission object
model

Generator

—
Temporal

CSP generator

|

CSP AST

Figure 2: AMBORO Architecture

and communication requirements, which we will refer to as
demands. The network model describes the computational
and communication assets available, including their capac-
ity limits and current configuration. Both models have tex-
tual representations in AMBORO, the mission model in the
Action Notation Modeling Language (ANML), the network
model in the Web Ontology Language (OWL). Both models
are then parsed into internal Java data-structures, which are
the primary representations operated on within AMBORO.
The mission model is then analyzed by a separate module
which extracts information about the temporal relationships
between different activities, which is used to construct the
multi-period schedule representing the progression of mis-
sion phases and activities.

The processing module labeled “CSP generator” then uses
information from the network model, the mission model,
and the temporal model to define an abstract syntax tree rep-
resented the desired configuration problem as a constrained
optimization problem. This problem is then translated into
the appropriate input language for one or more solving en-
gines. At the current time, the solver output is being in-
terpreted by hand. Integration with other Mission-oriented
Resilient Clouds (MRC) capabilities will require that the so-
lution format of whatever solver(s) are being employed be
mapped back into the entities described in the configuration
problem, as represented in the network and mission models.

At this point, we have a fully-functional, end-to-end im-
plementation of AMBORO. Starting from a mission model
and a network model, the system will extract the necessary
constraints and formulate a multi-period CSP model cover-
ing multiple mission phases. This model is then automat-
ically translated into minizinc and submitted to the solver,
resulting in a feasible assignment or a notification of infea-
sibility.

The mission model includes assignable resources, multi-
ple resources required for a given activity, and inter-activity
resource constraints (e.g., you must use the same asset for

18

two different activities). The mission model also supports
the assignment of subsets of network assets, for example
only allowing certain services to run on network nodes
with a specified set of capabilities. The network model
supports explicit representation of asset reliability, which
is carried through the constraint model, all the way to an
automatically-generated solution. Over-provisioning (the
assignment of redundant resources to increase reliability) is
currently modeled, but not yet part of the optimization prob-
lem.

AMBORO’s optimization model has several additional
capabilities, including optimizing for minimum distance
from a previous assignment to processors (supporting in-
cremental solutions), and a choice of network communi-
cation models, encompassing ignoring network liinks, re-
quiring simple connectivity, or feasibility within specified
throughput limits on links. Additionally, we are contemplat-
ing adding a term to the objective function that would en-
courage distributing processing demands across processors,
as opposed to the natural aggregation that occurs if there is a
finite probability of asset failure (because the probability of
mission failure rises with the number of unreliable network
assets being used).

Network Model

The AMBORO network model is very simple. Shown in
Figure 3, the model includes a hierarchical network of pro-
cessing elements, as well as a set of links among them. These
are the elements that can be allocated as resources, which is
all that is required.

There are certainly other aspects to the allocation prob-
lem involving the network, such as what demands are al-
lowed on certain links or what services can be allocated to
which processing elements. That information is kept in the
mission model, which is where the demands are represented.
There are additional constraints that represent the “physics”

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

AmboroOntology
-objectModel: AmboroObjectModel

AmboroObjectModel

-onto: AmboroOntology
~links: Map<String, Link>

-

-processingElements: Map<String, ProcessingElement> 1

? 1
AmboroObject

#id: String
#objectModel: AmboroObjectModel

7

AmboroNetworkObject
#probabilityOfFailure: Double

i
* * |

Link él_ ProcessingElement
Y inks: List<Link>

-throughputCapacity: Double
-source: ProcessingElement 2 -subElements: List<ProcessingElement>
-memCapacity: Double
-cpuCapacity: Double
-throughputCapacity: Double
1

-destination: ProcessingElement 1
Figure 3: AMBORO Network model

of the network, for example how data flows from one node
to another over the available links, or how computational
resources used in a sub-element are aggregated into the con-
taining element hierarchy (providing support for virtualiza-
tion). These constraints are presented in the full constraint
model, which space precludes including here.

As previously described, network model instances are
stored and exchanged in OWL, which is inter-translated with
the in-memory java object model for which Figure 3 pro-
vides the class model. The “Generator” function shown
in Figure 2 can be used to automatically generate network
model instances, which can then be used in the solution pro-
cess, or back-translated into OWL for export to other tools,
or for manual browsing.

Mission Model

Our mission models are represented in the Action Notation
Modeling Language (ANML) (Smith, Frank, and Cushing
2008). As a domain modeling language for planning and
scheduling applications, ANML provides support for build-
ing parameterized task models incorporating temporal con-
straints such as execution windows and minimum or max-
imum durations, resource requirements such as necessary
tools or equipment, or capacity such as memory usage or
network bandwidth. ANML provides a uniform semantics
for both precondition/effect models of planning and task de-
composition. A further advantage to ANML is that it is
specifically designed to facilitate translation into constraint
models, indeed has a semantics that is defined in terms of
relationships represented as constraints. In this section, we
present both the ANML representation of mission plans, and
the ontology in which mission plans are represented inter-
nally.

19

Tactical Recovery of Aircraft and
Personnel (TRAP) Planning Model

Figure 4 shows a simple TRAP mission task model, con-
sisting of two main phases, corresponding to mission plan-
ning and execution. Arrows indicate precedence relation-
ships on time points, showing, for example, that three differ-
ent organizations must be involved in mission planning, all
within the mission planning phase. Not shown graphically,
but modeled in the ANML mission model presented below,
is the requirement that all three of these planning activities
happen at the same time. In the second phase, the relation-
ships are different. Air support (AWACS and longer-range
air cover provided by fighters) must be in place before close
air support (provided by Apaches or other helicopters) can
deploy, which must in turn be in place before any ground op-
erations commence. Similarly for the mission return: each
level of support must be withdrawn in order.

Additionally, these tasks all come with resource require-
ments. As shown in Figure 5, the planning phase requires
local computing, storage, and network capabilities for each
organization involved in the planning process, as well as a
router that supports communication among them and back to
the Global Information Grid (GIG) or other backend, large-
scale data storage and processing resource. If any of these
resources fail, then the planning phase cannot be completed,
at least not until new resources are allocated. In Figure 5,
the network has been configured such that there are redun-
dant network paths among all the nodes. At least one of
the routers must remain functional in order to maintain the
required network connectivity.

Ground ops cmd

Local
computing

Close air support cmd

Local
computing

Air support cmd

Local
computing

Figure 5: Network resources required for the planning
phase.

Figure 6 shows a similar picture of network resources re-
quired for the operational phase of the mission. In this pic-
ture, all operational communication is routed through the
Airborne Warning and Control System (AWACS) aircraft.
Those communications include back to the various organi-
zational commands, as well as to the various support aircraft
involved. There is no communication link to the retrieval
team, the assumption being that they are under some kind of
communications restriction. One resource directly related to

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

TRAP Mission
f
\ Plan) > Execute f
\ Plan ground ops \ Execute air support f
Plan air support \ Execute close air support (suppression) f
Plan close air support \ Execute ground ops ’

<

Insert

Exit

Pickup

Figure 4: A simple TRAP mission plan

the retrieval team is their on-board computing resources. In
particular, they will have pre-loaded map information and
probably other data, in preference to have it sent during op-
erational phase. Again, all of these resources must be func-
tional, in order for the mission to succeed. This model can
be complicated by adding the possibility of redundancy, by
modeling decreased effectiveness rather than outright failure
(e.g., do the mission anyway, but with potentially out-of-date
imagery), and by modeling Byzantine failures.

Ground ops cmd

Local
computing

Close air support cmd

Local
computing

Air support cmd

Local
computing

Retrieval Team

Local
computing

Local

computing .

Apachel ' ‘ Apache2 ' ‘ Aircraftl }

Figure 6: Network resources required for the operational
phase.

Aircraft2

ANML is a very expressive domain modeling language
and could be used to represent a much more complex
planning model, including for example alternative task de-
compositions, more complex constraints on resource as-
signments, or more general task parameters. The current
AMBORO implementation supports more general resource

20

assignments, but does not support alternative task break-
downs.

ANML Mission Planning Model

Here we present an ANML version of the planning model
shown in Figure 4. First is the definition of the top-level
action:

define action TRAP_mission ()

{

[duration]

// 6-hour time limit
contains ordered (TRAP_plan(),
TRAP_execute ()) ;

duration <= 360;
[all]

This defines the top-level action as taking at most 6
hours, and requiring two subactions, TRAP plan and
TRAP_execute.

Next we define the planning action:

define action TRAP_plan()
{

[duration]

[all] contains {pl: TRAP_plan_ground();
p2: TRAP_plan_air();
p3: TRAP_plan_close();};
start (pl) == start (p2) == start (p3);
end (pl) == end(p2) == end(p3);
[all] (status (Routerl) == OK) |
(status (Router2) == OK);

The planning action has three subactions, which are all
constrained to start and end at the same times. In addition,
it must be the case that either Routerl or Router? is
operational over the entire duration of TRAP _plan.

Here is one of the planning subactions:

define action TRAP_plan_ground ()

{

[all] status (ground_cmd_computing) == OK;

}

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

This very simple action contains a single condition, which
is that the computing environment local to ground command
is operational. We could also specify starting and ending
times or a duration, but need not at this point: this model
defines a sufficient set of constraints for a mission plan to
be correct, rather than all of the constraints. The other three
planning subactions are similar.

Next we define the execution subaction and one of its sub-
actions:

define action TRAP_execute () [duration]

{
[all] contains {el:
e2:

e3:

TRAP_execute_ground() ;
TRAP_execute_air ();
TRAP_execute_close(); };

start (el)
end(el) >= end(e2)

<= start (e2) <= start (e3);
>= end(e3);

[all] status (AWACS_comms) OK;

}

define action TRAP_execute_ground ()

{

[all] status (ground_cmd_computing) == OK;

}

The example presented here is simplified for clarity and
brevity. AMBORO is capable of accepting models that in-
clude explicit resource assignments, for example making the
decision to use Routerl, Router?2, or both an explicit
part of the optimization.

Abstract Constraint Model

As described above, the CSP Generator builds an Ab-
stract Syntax Tree (AST) constraint model from informa-
tion contained in the network and mission models. To
the extent practical, this model is abstracted away from
the use of specific solver technologies (e.g., Constraint
Logic Programming (CLP) versus Mixed-Integer Linear
Programming (MILP)) and specific formulations (e.g., lin-
ear versus bilinear versus quadratic versus hybrid dis-
crete/math models).

In this section, we present the current state of the abstract
constraint model, including recent extensions to represent
resource assignment to demands, and probability estimates
for the failure of individual network assets. This is a formal
specification of the model constructed by the “CSP genera-
tor” as shown in Figure 2. We start by defining an instance
of a our CSP problem C as a tuple

¢ =(E,L,D)
comprising
e aset E of processing elements,
e aset L of links, and
e aset D of demands.

In this section, we define each of these elements. Subsequent
sections will discuss their interaction, and the constraints we

21

add as a result. Constraints to be added to the model are
defined in numbered equations.

All constraints in this model are expressed in time-free
terms. AMBORO constructs a multi-period model by repli-
cating the static model across periods, with inter-period links
as needed for things like allocations to activities that span
multiple periods. CPU demand is expressed as a rate re-
quirement (e.g. MIPS). Communications demand is ex-
pressed as a requirement for a specified data rate. Memory
demand is expressed as an amount of memory that must be
allocated, out of a finite store.

Processing Elements

A processing element e € E has the following attributes:
e acpu capacity’: cpu(e) — R*

e a memory capacity: mem(e) — R

e aset of sub-elements*: sub(e) — 2F

Memory and CPU (and disk, if needed) are all sufficiently
similar as currently modeled that, while we define the re-
quired attributes for all of these capacity resources, we only
present the constraints for CPU. For now, all other capac-
ity constraints local to processing elements look exactly the
same as CPU.

A processing element also functions as a node in a net-
work, defined by links, as described below. In addition to
the throughput capacities defined on links, we also define
a node throughput capacity associated with the processing
element e:

rate(e) — R

Finally, a processing element is susceptible to failure. We
define the probability that the processing element e will
function correctly (i.e., provide the required cpu, memory,
and networking capabilities):

prob(e) — [0.0,1.0]
Links

Communication connectivity between processing elements
is provided by links. Links are directional, with the follow-
ing attributes for a link [€ L:

e a source processing element: src(l) — E
e adestination processing element: dest(/) — E
e throughput capacity: rate(l) — RT

Demands

In this section, we address cpu and communication de-
mands. The model and constraints for memory demands
looks just like that for cpu demands. To differentiate be-
tween the different types of demands, we define subsets

SR* denotes the set of non-negative real numbers. Any at-
tribute denoting a value in R* must be explicitly constrained to
be > 0, unless it’s a constant.

“The symbol 2F denotes the power set of E: the set of all sub-
sets of E, including E and the empty set ().

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

of D: Dy, and D¢omm, €ach comprising all of the CPU
and communication demands, respectively. CPU demands
d € Dy, have the following attributes:

e ademand level: demand(d) — R*

e a set of processing elements to which the demand may be
assigned: allowedg(d) € 2B

e avariable > orig(d), which will be assigned a value drawn
from allowed g (d)

A communication demand d € D, has
e ademand level: demand(d) — R*

e a set of processing elements to which the source may be
assigned: allowedg(d) € 2B

e a set of processing elements to which the source may be
assigned: allowedp(d) € 2F

e aset of allowed links®: allowedy,(d) — 2

e a variable src(d), which will be assigned a value drawn
from allowedg (d)

e a variable dest(d), which will be assigned a value drawn
from allowedp (d)

Processing Element Constraints

Processing elements are defined in a part/whole hierarchy of
elements and sub-elements. For processing elements ¢;, ¢,
where i # j:

e; € SUb(ej) = €; € SUb(ek),Vk 75]

and if we define < as the transitive closure of the sub-
element relation, then

€i<6j:>6j7461‘

These “constraints” are much more likely to be enforced
as a property of the network model than to appear explicitly
in the CSP to be solved.

There are two possible views of the processing element
hierarchy. In the aggregate model, processing elements at
any level in the hierarchy impose constraints correspond-
ing to usage attributes, interpreted as resource limits to be
compared to their aggregate-utilization attributes. For pro-
cessing elements having no sub-elements, the aggregate-
utilization attributes are set or solved for directly (see
Subsection). For processing elements with sub-elements
the aggregate-utilization attributes are computed from the
aggregate-utilization attributes of their sub-elements. We
define a variable:

e aggregate CPU utilization: aggcpu(e) — RT

3 Arguably, variables should be defined in subsequent sections
that define the optimization problem. We leave some of them as at-
tributes of the different network entities because, depending on the
model, a given attribute may move back and forth between being a
variable and being a constant.

The symbol 2% denotes the power set of L: the set of all sub-
sets of L, including L and the empty set ().

22

and add constraints:

Ve € E, aggcpu(e) < cpu(e) (1)
Ve € E : sub(e) #), aggcpu(e) = Z aggcepu(e)
e’ESUb(e)
(2)

This is a good model for aggregated global resources such
as power or comm. bandwidth, where at any level of the
hierarchy the sum of the budgets for the next level down may
be more than the capacity limit imposed (it is assumed that
not everyone will draw their maximum budget at the same
time).

In the budget model, processing element capacities im-
pose constraints both down the hierarchy (resource limits)
and up the hierarchy (resource demands). In this case, we
replace the constraint 2 above with

>

Ve € E:sub(e) # 0, aggcpu(e) = cpu(e’)
e’esub(e)

3)
This is more appropriate for something like weight, or power
budgets for sub-assemblies that don’t get switched on and
off. There is no requirement that either the aggregate or
budget models be uniformly applied in a given processing
element hierarchy; both may be needed, in different places.

CPU Demand Constraints

CPU and memory demands are imposed by constraining the
corresponding aggregate utilization. For CPU”:

Ve € E, aggcpu(e) = Y [orig(d) = ¢] demand(d)
d€Dcpu
“4)
Note that sub(orig(d)) must equal @ (i.e., the process-
ing element to which d is applied may not have any sub-
elements). This can be implicitly enforced via the member-
ship of allowedg(d).

Communication Demand Constraints

We can view the set of processing elements E and any set
of links L C L in a given CSP model as a directed graph
G = (E, L), with vertices E and edges L, where each edge
I € L is labeled with rate(l). Then G fits the definition of
a specialized form of directed graph called a flow network.®
Because different communication demands are represented
as different flows, with distinct sources and sinks, we need
to represent this as a multi-commodity flow problem, with
each demand d € D, corresponding to a different com-
modity. We define the following with respect to a given set
of links L C L, withl € L,d € D_.ypm and e € E:

The source and destination of a communication demand
must be distinct:

Vd e Dcomm7

New variables:

sre(d) # dest(d) (5)

"The notation used here is the Iversen bracket which is defined

0 if S is false
by [S] = { 1 if Sis true

Shttp://en.wikipedia.org/wiki/Flow_network

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

e demand flow on a link: flowy,(/,d) — R

e demand inflow at a processing element: inflowy, (e, d) —
Rt

e demand outflow at a
outflowy (e, d) — RT

Demand inflow and outflow at a processing element is de-
fined by the flow on the connected links:

processing element:

Vee E, Vd € D.omm,
inflow, (e, d) = >, [dest(l) = e] flow (I, d)
(6)

Vee E, Vd € D.omm,
outflowy, (e, d) =, [src(l) = e]flow (I, d)
(N

Demand can only flow on allowed links:

Vi € L,Yd € Deomm : 1 ¢ allowedr(d), flowr(l,d) =0
(®)

The following constraint enforces conservation of flow at
each node in the network (each processing element) for each
demand:

Vee E, Vd € D.omm
inflow, (e, d) + [src(d) = e]demand(d) =
outflowy, (e, d) + [dest(d) = e¢] demand(d)
©))
Note that according to this definition, there is no requirement
that a given communication flow use a single path from one
processing element to another. The throughput required may
be spread over any or all of the possible paths between the
two processing elements.

Note as well that representing dataflow as a material flow
is a potentially-misleading simplification: data may be en-
crypted, filtered, decoded/expanded, or in other ways made
larger or smaller at a given processing element, thus vio-
lating the conservation defined in this section and the next
one. As long as the change in data size can be mapped to
a change in required throughput, this can be added to the
current model fairly easily.

Link and Node Rate Constraints

For convenience we define total flow on each link and pro-
cessing element with respect to a given set of links L C L,
with! € Land e € E:

e total flow on a link: flow(L)l — R
e total inflow at a processing element: inflowy (e) — R
e total outflow at a processing element: outflowy,(e) — R™

The following constraints total up the flows across all de-
mands for each link and processing element:

VieL, flow(L)l= > flow(L).d (10)
dEDCOWLm

Ve € E, inflowy(e) = Z inflow,(e,d) (11)
deDcOerL

Ve ¢ E, outflow,(e)= > outflowy(e,d) (12)
deDCUNlTn

23

Now we can specifiy the capacity constraints on links and
processing elements:

Vie L, flow(L)! < rate(l) (13)
Ve € E, inflowy(e) < rate(e) (14)
Ve € E, outflowy(e) < rate(e) (15)

For now we are assuming that flow for a processing element
is constrained independently for in and out flow. But there
is an alternative constraint that we could apply if we need
to model a device that cannot send and recieve at the same
time:

Ve € E, inflowy(e) + outflowy(e) < rate(e) (16)

Translating the Abstract Constraint Model

The final step before actually invoking a solver is to translate
the problem instance into the appropriate input language.
This process is accomplished by walking the Constraint Sat-
isfaction Problem (CSP) AST, emitting the appropriate for-
mulation. In the current implementation, the CSP AST is
translated into MiniZinc, which can be used as input for ei-
ther the default MiniZinc solver, or as input to Eclipse. As
a way of showing the kinds of mappings that are required,
Flgures 7 and 8 provide examples of the current translation
from the formal model into MiniZinc.

There are quite a few more constraints in this model,
including those defining how computational resources are
aggregated within the element/sub-element hierarchy (i.e.,
how virtualization is modeled), and the constraints defining
communication flows over the network, but this will provide
a sense of the kinds of translation required.

This translation needs to be implemented in the inverse di-
rection as well. Output format from many solvers, including
MiniZinc, can be heavily tailored, but the variable assign-
ments and costs must be mapped back into the entities in
the mission and network models. This requires effectively
inverting the two-step translation first from the network and
mission models into the CSP AST, and then from there into
the solver-specific code shown in this section.

Conclusion and Future Work

AMBORQ’s uniform, constraint-based representation for
modeling mission tasks, cloud resources and the current set
of assignments of resources to tasks provides several ben-
efits, including easy extension of the model to reflect new
types of missions, tasks, network components, and opera-
tional requirements such as QoS guarantees, as well as the
presence of a wide variety of implemented solvers. Other
advantages to a constraint-based approach include the ability
to define partial solutions, culprit identification in the case of
infeasibilities or other conflicts, incremental solutions as ad-
ditional tasks are added, and the use of local search methods.

The work reported here is from the first six months of
a planned four-year project. At this point, we have imple-
mented and validated an end-to-end AMBORO system. To
date, the network and mission models on which the sys-
tem has been tested are small, and the probabilities from
the which the likelihood of mission success is computed

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

% Processing Elements

% FORMAL: function cpu(E) —-> R+
array [Elements] of float: cpu;

constraint assert (forall (e in Elements) (cpule] >= 0.0), "cpu must be >= 0.0");

% FORMAL: function sub(E) —-> 27E
array [Elements] of set of int: sub;

% FORMAL: function aggcpu(E) —-> R+
array [Elements] of var float: aggcpu;
constraint forall (e in Elements) (aggcpule] >= 0.0);

% FORMAL: function rate(E) -> R+
array [Elements] of float: elementRate;
constraint assert (forall (e in Elements) (elementRatel[e] >=

0.

0),

"rate must be >= 0.0");

Figure 7: Adding constraints on processing elements and network links

% FORMAL: set D_cpu of CPU demands
int: nCpuDemands;
set of int: CpuDemands = 1..nCpuDemands;

% FORMAL: set D_comm of communication demands
int: nCommDemands;
set of int: CommDemands = 1..nCommDemands;

% FORMAL: function demand(D_cpu) -> R+
array [CpuDemands] of float: cpuDemand;

constraint assert (forall (d in CpuDemands) (cpuDemand[d] >= 0.0), "cpuDemand must be >= 0.0");
% FORMAL: function allowed_E (D_cpu) -> 2°E
array [CpuDemands] of set of int: cpuAllowedElements;
% FORMAL: function orig(D_cpu d) -> allowed_E (d)
% Implemented as an array of zero/one variables.
array [CpuDemands,Elements] of var {0,1}: cpuOrig;
constraint
forall (d in CpuDemands) (
% Only one element can be 1 for each demand. This is the chosen
% element to fill this demand.
1 = sum(e in Elements) (cpuOrig(d,e])
)i
constraint

forall (d in CpuDemands) (
forall (e in (Elements diff cpuAllowedElements[d])) (

% Exclude elements that are not allowed to be used for this demand

cpuOrigld,e] = 0
)
)

constraint
forall (d in CpuDemands) (
forall (e in (Elements diff commAllowedSrcs[d])) (

% Exclude elements that are not allowed to be src for this demand

commSrc([d,e] = 0

)i

Figure 8: Adding demand constraints

24

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

are largely independent. We are currently in the process of
adding complexity and scale in all three areas: larger net-
works, more complex mission models, and more complex
probability computations. Further along in the project, we
will also be extending from the simple failure probabilities
described here to a more complex (but not yet defined) no-
tion of “compromised” assets, where different kinds of com-
promise have different, possibly stochastic effects on mis-
sion effectiveness.

All of these extensions pose potential computational chal-
lenges. The question of network scale we have already ad-
dressed: our previous work on CARINAE demonstrated an
ability to scale to networks of up to a million nodes, with
only limited optimizations in our formulation. Added com-
plexity in the mission model may affect solving time in any
of several ways. Adding additional mission phases or addi-
tional levels of sub-tasks to the current multi-period model
increases the size of the problem linearly. Given the rel-
atively weak coupling of adjacent periods, this should not
have a great effect on computational effort. Additional inter-
task constraints, unordered subtasks, or permitting alterna-
tive task decompositions are the extensions most likely to
add difficulty to scaling up.

Moving to a more general and more complex stochastic
model has the potential to add significant difficulties. The
overall MRC program is currently in an early stage, thus we
do not know exactly what additional complexities will be re-
quired. Depending on specific details for these extensions,
our approach may range from off-line model simplification
and exploitation of what independencies exist, using an ex-
isting probabilisitic modeling language such as Figaro (Pfef-
fer 2009), to numeric approximations exploiting the fact that
prior failure probabilities tend to be very close to zero, to
hybrid optimization methods involving partitioning a large,
non-convex solution space, as for example in (Lamba et al.
2003).

References

Haigh, J.; Harp, S. A.; and Payne, C. N. 2010. Aimfirst:
Planning for mission assurance. In Proceedings of 5th In-
ternational Conference on Information Warfare and Secu-
rity.

Hyser, C.; McKee, B.; Gardner, R.; and B.J.Watson.

2007. Autonomic virtual machine placement in the
data center. Technical Report HPL-2007-189, HP
Labs. http://www.hpl.hp.com/techreports/

2007/HPL-2007-189.pdf.

Lamba, N.; Dietz, M.; Johnson, D. P.; and Boddy, M.
2003. A method for global optimization of large systems
of quadratic constraints. In 2nd International Workshop on
Global Constrained Optimization and Constraint Satisfac-
tion.

Michalowski, M.; Boddy, M.; and Carpenter, T. 2010. Co-
ordinated management of large-scale networks using con-
straint satisfaction. In Working Notes of the 2010 AAAI
Workshop on Intelligent Security (SecArt).

Padal, P.; Shin, K. G.; Zhu, X.; Uysal, M.; Wang, Z.; Sing-
hal, S.; Merchant, A.; and Salem, K. 2007. Adaptive con-

25

trol of virtualized resources in utility computing environ-
ments. In EuroSys.

Pfeffer, A. 2009. Figaro: An object-oriented probabilistic
programming language. Technical report, Charles River
Analytics.

Sarmenta, L. 2002. Sabotage-tolerance mechanisms for
volunteer computing systems. In CCGrid.

Singh, A.; Korupolu, M.; and Mohapatra, D. 2008. Server-
storage virtualization: Integration and load balancing in
data centers. In Proceedings of the ACM/IEEE Conference
on Supercomputing.

Smith, D.; Frank, J.; and Cushing, W. 2008. The anml
language. In International Conference on Automated Plan-
ning and Scheduling.

Sonnek, J.; Chandra, A.; and Weissman, J. 2007. Adap-
tive reputation-based scheduling on unreliable distributed
infrastructures. In TPDS.

Wang, Y., and Wang, X. 2010. Power optimization with
performance assurance for multi-tier applications in virtu-
alized data centers. In IEEE Online Conference on Green
Computing.

Wood, T.; Shenoy, P.; Venkataramani, A.; and Yousif, M.
2007. Black-box and gray-box strategies for virtual ma-
chine migration. In In Proceedings of NSDI.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Partially Grounded Planning as Quantified Boolean Formula

Michael Cashmore
University of Strathclyde
Glasgow, G1 1XH, UK
michael.cashmore @strath.ac.uk

Abstract

This paper introduces a new technique for translating
bounded propositional reachability problems into Quantified
Boolean Formulae (QBF) in a partially grounded manner.
The approach uses the idea of domain-level lifting as an im-
provement to SAT without lifting. The technique is applica-
ble to most SAT or QBF approaches as an additional improve-
ment, potentially reducing the size of the resulting formula
by an exponential amount. We present experimental results
showing that the approach applied to a simple SAT translation
greatly improves the time taken to encode and solve problems
in which there are many objects of a single type, solving some
problems that cannot be reasonably encoded as SAT.

1. Introduction

Planning as Satisfiability is one of the most well-known and
effective techniques for classical planning: SATPLAN (Kautz
and Selman 1992) was an award-winning system in the de-
terministic track for optimal planners in the first Interna-
tional Planning Competition (IPC) in 1998, the 4th IPC in
2004, and the 5th IPC in 2006. The basic idea is to en-
code the existence of a plan with n + 1 (or fewer) steps
as a propositional (SAT) formula obtained by unfolding, n
times, the symbolic transition relation of the automaton de-
scribed by the planning problem. In recent work (Rintanen
2010) the basic SAT approach has been improved by equip-
ping the solver with planning-specific variable and value-
ordering heuristics that are similar to the helpful actions fil-
ter of FF (Hoffmann and Nebel 2001). This is very effective
for solving planning problems in the SAT framework. In
general, SAT-based planning, though quite successful, suf-
fers from the problem that it is easy to come up with prob-
lems in which the number of steps required is large, mak-
ing it impossible to even encode the original problem as a
propositional formula. The same problem arises in bounded
model checking (Biere et al. 1999). The use of compact en-
coding as Quantified Boolean Formulae (QBFs) combined
with the use of QBF solvers has been proposed (Jussila
and Biere 2007; Mangassarian, Veneris, and Benedetti 2010;
Cashmore and Fox 2010; Dershowitz, Hanna, and Katz
2005) as a way to overcome this problem. In particular,
Rintanen (2001), Jussila and Biere (2007) and Cashmore
and Fox (2010) present encodings that are logarithmic in

26

Maria Fox
King’s College London
London WC2R 2LS
maria.fox@kcl.ac.uk

n, resembling the proof of the PSPACE-hardness of solving
QBFs (Savitch 1970; Stockmeyer and Meyer 1973).

Here we introduce a technique for translating bounded
propositional planning problems into Quantified Boolean
Formulae (QBF). The technique differs from the previous
in that it uses the idea of domain-level lifting of objects into
equivalence classes. This enables the construction of par-
tially grounded boolean formulae.

In many planning domains there exist multiple objects
of the same type. For example in the driverlog domain
there might be many trucks and drivers. In order to en-
code these problems into a SAT formula the planning in-
stance is first grounded, to create all possible propositions
using different truck and driver combinations. This in-
volves uniquely describing each object, and the relation-
ships between them - i.e. in driverlog this means that the
board(driver, truck) action is copied for each driver/truck
combination. Our approach describes only a single object,
eg: “truck”, which represents the equivalence class of trucks.
The idea supports least-commitment planning (Tate 1976;
Carbonell et al. 1990; Penberthy and Weld 1992), in which
no variables are instantiated until there remains no choice
about how they can be bound.

There is growing interest in the planning commu-
nity (Nguyen and Kambhampati 2001; Ridder and Fox
2011) in the question of how to avoid grounding, and the
work described here shows how grounding can be avoided in
SAT. It is clear that there is the potential for lifted encodings
to be exponentially smaller than grounded ones. Of course,
an instance will usually require to be partially grounded in
order to ensure that relationships between objects are prop-
erly preserved, so it is not always possible to achieve expo-
nential improvement.

Our technique exploits the PSPACE complexity of the
QBF problem to create encodings which are partially
grounded. The resulting formula can require exponentially
fewer variables (and clauses) than a corresponding SAT en-
coding to describe the state (and transition relation). The
potentially exponential reduction is a function of the objects
in the domain and is greatest in domains in which there are
many objects of a single type. In order to determine the ef-
fectiveness of the encoding we run experiments on selected
domains showing that the QBF encoding scales better as the
number of objects, and size of the instance, increases. In

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

addition we show that there exist problems which can be
solved by the QBF translation that remain unsolved by SAT.

We briefly describe the QBF and Planning problems in
Section 2. We describe the QBF encoding in detail in Sec-
tion 3. and provide an example in Section 4. Section 5. will
detail the experiments run on the encoding and discuss the
results. Finally we discuss some related work and conclude
in Sections 6. and 7.

2. Preliminaries
Quantified Boolean Formula

Formally, the language of QBFs extends propositional logic
by allowing for universal (V) and existential (J) quantifica-
tion over variables (in our case, fluents and actions). Seman-
tically, V. (resp. Jx.) can be interpreted as (¢, A p—z)
(resp. (¢z V ¢-z)), where @, (resp. ¢—;) is the formula
obtained from ¢ by replacing x with T (resp. _L).! The
process of substituting V. (resp. Jx.¢) with (@, A ©-z)
(resp. (¢x V p-g)) is called expansion. By expanding all
quantifiers, each QBF can be reduced to (possibly an expo-
nentially larger) propositional formula. When every variable
is expanded (in which case we say the QBF is closed), such
an expansion reduces to a Boolean combination of T and L
and is thus equivalent to either T or L. The QBF formula ex-
pands recursively into a tree-structured representation where
all the propositional variables are at the leaves. Expansion
therefore produces the conjunctive binary tree that accords
to the semantics of the QBF. Note that SAT is a subprob-
lem of QBF in which every variables is implicitly quantified
existentially (3).

The Planning Problem

Although the idea of partially grounding with QBF can be
applied to any representation, Planning problems here are
specified using the standard STRIPS formulation (Fikes and
Nilsson 1971). The world is described with F', a set of flu-
ents. An assignment of true or false to these fluents describes
a state. These fluents are generated from the propositions of
the domain and the objects in the problem instance through
the process of grounding. Grounding is described in detail
below. An n-ary proposition is represented as shown by fig-
ure 1.

I denotes the initial state of the world. The goal state is
described by G, a formula over F'.

The world is changed through the use of operators. An
n-ary operator will be represented as shown by figure 2.
Grounding these operators generates the set A of action flu-
ents.

Traditionally, in order to translate the planning problem
into boolean encodings we must first ground the instance.
Grounding means generating fluents and action fluents from
the operators and propositions of the domain. Briefly, the set
of fluents are found by making every possible valid binding
of objects to propositions. Action fluents are similarly cre-
ated from the operators. For example, the operator defined
by figure 2 would be grounded into (|P||H|) action fluents,

'T and L are the logical symbols we use for truth and falsity.

27

where | P| is the number of objects of type pigeon and |H | is
the number of objects of type pigeonhole. Each of these ac-
tion fluents represents a different pigeon/pigeonhole pair-
ing.

The encoding described in Section 3. is only partially
grounded. This means that some operators will not be
grounded at all, or only some parameters will be bound, cre-
ating a set of partially grounded operators. These operators
will be represented by variables in the QBF encoding.

Planning as SAT

Consider a planning problem II = (F, A, I,G). As stan-
dard in planning as satisfiability, the existence of a parallel
plan with makespan n is proved by building a propositional
formula with n copies of the sets F" and A. In the following,

e by X, we denote one such copy of the set of variables;

e by I(X,) (resp. G(X,)) we denote the formula obtained
from I (resp.) by substituting each x € X with the
corresponding variable z, € X,;

e by o(X,) we denote the formula obtained from o by sub-
stituting each variable x € X with the corresponding vari-
able x, € Xg,;

e by 7(X,, X3) we denote the formula obtained from 7 by
substituting each variable € X with the corresponding
variable x, € X, and similarly each 2’ € X’ with the
corresponding x5 € Xg.

The state constraint o (X) is defined as:

e cach action fluent in X implies a conjunction of fluents
(in X) corresponding to its preconditions;

e cach pair of action fluents in X that are mutually exclusive
form a binary disjunction of their negations.

The transition relation 7(X, X’) is defined as:
e cach action fluent in X implies its effects in X";

e cach fluent in X’ implies a disjunction of supporting ac-
tions and itself in X, (explanatory frame axioms).

For n > 1, the planning problem II with makespan n is
the Boolean formula I1,, defined as

I(X1) ANy o (Xa) ANZy (X6, X)) A G(Xnga)
(1

and a plan for 11,, is an interpretation satisfying (1).

However, since the plan existence problem (assuming, as
we do, a deterministic transition relation and a single ini-
tial state) is a PSPACE-complete problem (Bylander 1994)
the size of (1) can be exponential in the number of fluents -
making it impossible to even build (1). QBFs are a promis-
ing alternative representation language given that:

1. there exist encodings of the planning problem with
makespan n as QBFs which are polynomial in the number
of fluents, and

2. there is a growing interest in developing efficient solvers
for QBFs; see, for example, the report from the 2010 QBF
competition (Peschiera et al. 2010).

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

IN (?p — pigeon, ?h — pigeonhole)

Figure 1: Proposition representation for the proposition in in the pigeonhole domain.

PLACE (?p — pigeon, Th — pigeonhole)
PRE : ~PLACED(p),

EFF : PLACED(p),

EMPTY (h)
~EMPTY (h),

IN(p, h)

Figure 2: Operator representation for the operator place in the pigeonhole domain.

3. Partially Grounded QBF Encoding

For n > 1, the planning problem II with makespan n is the
Quantified Boolean formula ®,, defined as

3X{ .. X0, Var .. an3XP.. X0,
/\?:}L Tqbf(Xig uXxy, Xf+1 U qu+1)
ANiZy Ognp (X7 UXF)
AN(XTUXY)ANGXT L UX)

2

and a plan for ®,, is an interpretation satisfying (2).

X7 U X} represents the state of the Planning problem at
timestep i. X denotes the grounded portion of the state,
while X' the ungrounded portion. o and 74,5 are anal-
ogous to o and 7, and are similar in construction. o4y and
Tqby contain additional constraints to ensure consistency.
These constraints are described later.

The introduction and then expansion of the universal vari-
ables, aj ...a,,, creates 2 subformulae, which are con-
junctively combined. The grounded portion of the prob-
lem is existentially quantified before the universals. The un-
grounded variables are quantified (existentially) after these
universals. Intuitively, each subformula represents a single
object of the ungrounded type and the conjunction of these
formulae represents an equivalent grounded plan. This is
illustrated in figure 3.

Separating the State

Kautz and Selman (1996) introduced the idea of simple op-
erator splitting, which replaces each n-ary operator with
n unary operators throughout the encoding. For example,
recall the operator in figure 2. In an ordinary SAT rep-
resentation that uses action fluents this operator would be
grounded. This would produce (|P||H]|) action fluent vari-
ables per state in the resulting formula. This operator, which
contains two parameters, will be replaced by two unary split
operators, namely; PLACFE; (?p) and PLAC E5(?h). This
reduces the number of grounded actions from (|P||H]|) to
(|P| + |H|) per state. The partially grounded problem uses
this idea to separate both operators and propositions before
encoding as QBF.

X9 and X" represent the grounded and ungrounded por-
tions of the state respectively. All split operators, or split
propositions that involve an object to remain ungrounded
are represented by a variable added to X™“. All other propo-
sitions and operators are grounded, as described in Section
2. and added to X9. n-ary operators which contain only

28

ungrounded parameters are split into n + 1 parts. The ex-
tra split operator variable represents whether the operator is
performed, and is added to X9.

Ordinarily an action fluent PLACFE;(?p) would be in-
cluded in the formula for each pigeon object. In this case
only a single variable is introduced and represents this op-
erator for all pigeons. This reduces the number of variables
representing this operator from (|P| + |H]|) to (1 + |H]),
in the case where only pigeon objects are not grounded,
and three in the case where pigeonhole objects are also not
grounded.

It might seem surprising that the (|P||H|) grounded ac-
tion fluents for PLACE can be described using only three
variables. However, the number of assignments made to
these variables depends upon the number of universal vari-
ables quantified before these. For example, a; . . . a,, are ex-
panded to create 2" subformulae. The conjuction of these
contains 2™ copies of PLACFE;(?p), each of which per-
tains to a different pigeon object. In addition a further
(log(|P||H]|)) existential variables will be added to ensure
consistency. This is explained in more detail below.

Ensuring Consistency Between Leaves

Additional existential variables and constraints must be
added to the problem in order to ensure plan validity. These
constraints ensure that only a single object is bound to each
parameter of an operator and that two actions that are mu-
tually exclusive, but described in different leaves of the ex-
panded QBF tree, cannot be performed in the same state.
They also ensure split propositions that form one whole
proposition, but are described in different leaves of the QBF
tree, are bound to one another. That is:

1. if a split operator variable is made true, exactly one vari-
able representing the other parameters of the operator
must also be made true. This means that, if the parameter
is grounded, one action fluent for this parameter must be
made true in X 9. If ungrounded, the split operator vari-
able for this parameter must be made true in exactly one
universal branch of the QBF;

2. if one split operator variable is made true in X*“, the vari-

able must be made false in every other branch of the QBF;

3. if one split operator variable is made true in X", all of its

preconditions and effects that reside in other branches of
the QBF must also be made true; and

4. if one split proposition variable is made true in X’*, and is

not supported by an action in the previous state, X*“, then

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

g g
XY oo B

]

* n+1

3/\’ IL -

w
"XF+1

3.

Figure 3: ®,, for m = 1. The expansion of a; creates two subformulae, ®,, ,, and ®,, ,, , which are conjunctively combined.

XY

Variables X{ ... X7 |

appear in both subformulae. Each branch of the expansion, X7 ...

X4, and X{*... X" |, appears in

a different subformula. Each subformula will correspond to the plan for a unique object.

it describes part of the same fluent as the corresponding
split proposition variable in X™.

These constraints are described more formally alongside an
example below. The new variables will be referred to as a
mutex lock and are constrained to be equal to the universal
variables that define which branch (and so which unique ob-
ject) is bound to the parameter.

For each split operator o,, € X™“ a mutex lock is added
to X9 of the form lockg" .. .lockS:. For each ungrounded
split proposition p* € X™ a mutex lock is added for each
other ungrounded parameter of the whole proposition. The
lock is of the form lockE™ ... lockE:.

The example we use is the pigeonhole domain in which
both pigeon and pigeonhole objects are ungrounded. In
addition to the proposition in and operator place the domain
includes the propositions placed and empty, described in fig-
ure 4.

In the pigeonhole domain:

PLACE, € XY

and

PLACE,, PLACE,
INy,IN,, EMPTY,PLACED € X*

In addition locks are required for both split operators
PLACE; and PLAC F, and for the split propositions I Ny
and I No:

lockPEACEL | JockPEACE:
lock] #ACE> | lockPEACE: ¢ X9
and
lockI™ .. lockINt,
lockI™2 . lockIN> ¢ X

where m = log(maxz(|P||H|)). Thus |X| = 7 + 4m. In-
creasing the number of pigeons and pigeonholes increases
m and | X | logarithmically.

An operator O is split into O¢ and O" —grounded split
operator variables and ungrounded, respectively. The con-
straints (1) and (2) extend oqp (X) for each o4 € 09 to
contain:

o \/llozgl‘ w A Nie, (a; 5 lock(™) — oy, Yo, € O*

and for each o, € O":

29

e 0, = Nty (a; <> lock]™)

® 0, — \/‘ZO:ql‘ wi?, Yo, € O9
where |og4| is the number of action fluents generated by
grounding split operator o, and wfg is the i*" such action
fluent. In the pigeonhole domain this looks like:

PLACE;

e PLACEy AN/~ (a; <+ lock;) = PLACE,
forj=1,2
o PLACE; — NI, (a; < lock, “*%), for j = 1,2

.‘PLACU%”%mPLACU%,ﬁWj::LQ

For each o, € O%, ggs(X) is extended as described by
constraint (3) to ensure correct preconditions:

e 0, — (lockP" < lock2") for each split proposition p,, in
the preconditions of o,, with multiple ungrounded param-
eters and each ungrounded split proposition p,, associated

with py,.

where 0,, refers to the split operator that must bind to the
same object as the split proposition p,,. To ensure correct
effects 7457 (X, X') is extended to contain:

e 0, — (lock?* < lock?“) for j = 1...m for each
split proposition p,, in the effects of o,, with multiple un-
grounded parameters and each ungrounded split proposi-
tion p,, associated with p,,.

where 0, refers to the split operator that binds to
the same object as the split proposition p,. Here
ou, lock(" lock* € X and lock™* € X'.In the pigeon-
hole domain this takes the form?:

o PLACE; — (lock!™ ¢ lock!"4C"2)
forj=1...m

o PLACE; — (lock/™* ¢ lock!*4“P)
fory=1...m

This ensures that the lock associated with I No(?h) is bound
to the same pigeon as the split operator PLACE1(7p).

Constraint (4) extends 7457 (X, X’) in the following way
for each p, € X™:

“note that the operator PLACE does not contain any split
propositions in its preconditions and so only requires one of the
constraints described by (3).

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

EMPTY (?h — pigeonhole)
PLACED (?p — pigeon)

Figure 4: Propositions placed and empty in the pigeonhole domain.

o py = Nt (lock?" < lock;p“) V supp(pu)
for each mutex lock of p,,.

where supp(p,,) refers to a disjunction of supporting actions
for p,,. In the pigeonhole domain this looks like:

o IN/ = N, (lock]™ < lock;™") v PLACE;
forj=1,2

Additional constraints that do not include mutex locks en-

force preconditions and effects in the same way as the cor-

responding SAT encoding. These are described fully in Sec-

tion 4.

If it is possible to use multiple copies of O in a single
timestep, identical operators are included —with accompa-
nying locks. The number of copied operators required is
min(lo]), o € O9 U O". For example, in the pigeonhole
domain this generates 3min(|P|,|H|) + 2log(|P||H|) vari-
ables, rather than the (| P||H|) actions that would be gener-
ated from grounding.

4. Example

Here we describe the partially grounded QBF representa-
tion ®,, of the pigeonhole domain in which both pigeon and
pigeonhole objects are ungrounded. ®,,, X9 and X" are
as described in Section 3. The goal is to have all pigeons
placed.

ogbf(X) is the formula over X that includes the con-
straints:

e PLACFE, - -~PLACED
e PLACE;, - EMPTY

o PLACE; — (a; + lock
7=12

o PLACE; — PLACEy, forj=1,2

o PLACEGANT, (a; ¢ lock] """
j=1,2

and 74;¢ (X, X') is the formula over X U X' that includes

the constraints:

e EMPTY' — EMPTY

e ~EMPTY' — -EMPTY V PLACE,

e PLACED" — PLACED YV PLACE,

e ~PLACED' - -PLACED

e [N/ — —=IN;, forj=1,2

e IN; — IN;V PLACE}, forj =1,2

o IN! — A (locki™ & lock;™") v PLACE;, for
j=1,2

to support facts (explanatory frame axioms) and:

PLACE;

i

) fori=1...m, and

) = PLACE};, for

30

e PLACE, - PLACED'
e PLACFEy - ~EMPTY’
e PLACE, — (ZOCIC;INI ~ lockaACEz), for j =

1...m
e PLACEy; — (lock;-IN2 > lock‘fLACEl), for j =
1...m

where PLACED', EMPTY',IN},lock;’ € X', to en-
force operator effects. (
I1(X) is defined by:

—-PLACED NEMPTY N—=INy A —=INy

and G(X) by:
PLACED

In the case where |P| # |H| it is possible to constrain
some operators to remain false, effectively excluding those
objects from the plan. For example suppose |P| = 2| H|, the
constraint

al - -PLACE,

is added to o5 (X).

5. Results

Experiments were run on several domains to determine the
effectiveness of the encoding. We hypothesised that:

e as the size of the problem increased, the partially
grounded QBF approach would scale better than the SAT
approach in both encoding time and solving time;

e as the size of the problem increased, partially grounded
QBF would find solutions faster than the SAT approach;

e we would find problems that were too large to encode in
SAT within the time limit allowed, but that could be en-
coded and solved using partially grounded QBF.

The domains selected for experimentation were the pi-
geonhole, gripper and blocksworld domains. These domains
were chosen as they work well with ungrounded approaches.
In other domains in which there is very little or no benefit
from lifting the partially grounded QBF encoding resembles
the SAT encoding.

For each domain a number of problems were generated,
gradually increasing the size of the domain. These prob-
lems were then translated into SAT and partially grounded
QBF (PG-QBF) encodings. The time taken for this trans-
lation was recorded. We used the SAT encoding used by
SATPLAN’06 (2006) as it used the same STRIPS-based
fluent/action representation as the PG-QBF encoding. Other
SAT encodings, and additional constraints can also be used
as a basis for partially grounded QBF encodings.

The encodings were then solved using the SAT solver
picosat-535 and the QBF solver quantor-3.0. Descriptions

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

of these solvers can be found in Biere (2004) and (2008)
respectively.

The times are recorded in Table 1. Times are presented in
seconds, a hyphen indicating that the process was terminated
after the time limit of 2 hours was reached. A star indicates
that the process ran out of memory before the time limit was
reached. The experiments were all run on a machine with
8GB of RAM and no artificial bound on the amount of mem-
ory used.

As can be observed, PG-QBF was able to encode and
solve all of the pigeonhole instances considered, within the
2 hour limit, while SAT could not encode pigeonhole64, and
was unable to solve pigeonhole32 and pigeonhole64 in the
time available. PG-QBF was able to encode all of the in-
stances across all domains in under one third of a second,
while the time required by SAT to encode large pigeonhole
instances grew exponentially. Both approaches exhibit ex-
ponentially growing solution time, although the PG-QBF
curve increases more slowly than the SAT curve. Neither
approach was able to solve gripper32. These results support
our first and second hypotheses, that PG-QBF scales better
than SAT in both encoding and solution time, and that PG-
QBF solves problems faster than SAT. Our third hypothe-
sis is supported by pigeonhole64 and blocksworld32, which
demonstrates that there are indeed instances that cannot be
encoded by SAT, but can be encoded by PG-QBF, within a
fixed time limit.

6. Related Work

The partially grounded QBF encoding builds on the ideas
of least-commitment planning and has similarities with
symmetry-breaking, however, there are important differ-
ences between these techniques.

Planning with ungrounded operators in least-commitment
planning (Tate 1976; Carbonell et al. 1990; Penberthy and
Weld 1992) avoids explicit construction of the whole search
space of the problem, but does not prune away unneces-
sary portions of the search space. Performing an operator
in least-commitment planning makes true the disjunction of
all the ground action fluents of that operator, implying that at
least one must have been performed. However, this is not the
case in partially grounded QBF. Any assignment to variables
that represent an ungrounded operator in the QBF encoding
will either make true or false that a ground, or set of ground
action fluents have been performed. That is, a conjunction
of action fluents is made either true or false. It is not possi-
ble to make an assignment that creates a disjunction. We are
hoping to prune more of the search space away with each de-
cision, rather than less, and so benefit from the lightweight
encoding.

Fox and Long (1999) explain how symmetries can be dis-
covered and exploited in planning problems in order to re-
duce search times. They use the gripper domain as an ex-
ample where symmetry based techniques have a powerful
effect, and indeed this is one of the domains used in our ex-
perimentation. Their planner STAN is a Graphplan-based
planner that uses the analysis and exploitation of symme-
try. It does this by avoiding considering symmetric alter-
natives after backtracking. For example, if all pigeonholes

31

were found to be symmetric and no plan could be found by
graph layer n after placing pigeong into pigeonholey, then
no plan will be found after placing pigeon into any other
pigeonhole;.

Although PG-QBF achieves a similar effect of avoiding
search over equivalent ground instances of a problem, we
do not spend any time in identifying symmetric relation-
ships and we describe two objects of the same type using the
same operators and propositions even if their initial states,
goal states and entire plan trajectories differ. The advan-
tage that we gain is that the lifting, and all the machinery re-
quired to ensure consistent handling of objects of the same
type, is done entirely in the encoding of the problem and
the approach is completely solver-independent. By contrast,
STAN implements specialised techniques for backtracking
when symmetry is present, and their detection of symmetry
cannot be autimatically exploited by other planners.

Our approach is similar to the idea described by Rinta-
nen (2003) which introduces new constraints into a prob-
lem encoding that disallows symmetric choices. In particu-
lar Rintanen’s work shows how to avoid repeating symmet-
ric mistakes made over more than one transition, and the
mechanisms required to achieve this are part of the encod-
ing rather than the solver. Our approach differs in that we do
not encode symmetry-breaking constraints which can have
the effect of greatly increasing the sizes of problem encod-
ings. Also, our approach is applicable to domains in which
there are no exploitable symmetries (eg: blocksworld), and
can provide massive benefits as demonstrated by our results.

7. Conclusions

In this paper we have introduced a method for lifting SAT
encodings of planning problems into Quantified Boolean
formulae. Lifting is a very powerful idea, being explored
in different ways by a number of researchers in planning. It
is well-known that grounding of planning domains is infea-
sible for very large problems and that techniques for lifting
planning instances can help with the solution of very large
instances containing very large numbers of objects of the
same type.

Our approach shows how to construct QBF encodings that
both lift sets of similar objects into representative variables,
and ensure consistent reasoning when the specific objects in-
volved in transitions are not yet committed to. The approach
is inspired by earlier work in least-commitment planning.

We have shown that our approach can lead to exponen-
tially smaller encodings and allow larger problem instances
to be solved than is possible using SAT.

References
Biere, A.; Cimatti, A.; Clarke, E.; and Zhu, Y. 1999. Sym-
bolic model checking without BDDs. In Proceedings of
the Fifth International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS "99),
193-207.

Biere, A. 2004. Resolve and expand. In Proc. SAT, 59-70.

Biere, A. 2008. Picosat essentials. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT).

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

SAT PG-QBF
problem | encoding solving size encoding solving size
pigeonhole2 | 0.04 0.00 0.89 0.04 0.00 1.04
pigeonhole4 | 0.09 0.00 12.60 0.04 0.00 2.65
pigeonhole8| 0.33 0.12 292.82 0.06 0.00 7.13
pigeonholel6| 5.53 5.06 8574.06 0.1 0.09 18.28
pigeonhole32 | 155.71 * 279783.22| 0.13 0.58 43.67
pigeonhole64 - - - 0.16 228 111.82
gripper2 | 0.06 0.00 6.44 0.07 0.00 2.61
gripper4 | 0.13 0.03 36.06 0.1 0.01 7.52
gripper8 | 0.28 6.61 215.63 0.12 0.35 20.54
gripperl6| 1.22 1171.49 1492.95 0.16 180.19 49.92
gripper32| 7.03 - 11137.96 0.3 - 123.68
blocksworld2 | 0.05 0.00 2.51 0.04 0.00 4.01
blocksworld4| 0.11 0.01 44.50 0.09 0.02 17.36
blocksworld8 | 0.93 0.56 1118.58 0.13 0.16 52.36
blocksworld16| 13.43 20.47 35277.29 0.18 1.16 152.26
blocksworld32 - - - 0.32 5834.88 399.88
blocksworld64 - - - 0.68 - 986.62

Table 1: Time taken to encode and solve problems, and problem sizes, using partially grounded QBF encodings and SAT based

encodings. All times are in seconds, sizes in KB.

Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artif. Intell. 69(1-2):165—
204.

Carbonell, J.; Etzioni, O.; Gil, A.; Joseph, R.; Knoblock,
C.; Minton, S.; and Veloso, M. 1990. Prodigy: An in-
tegrated architecture for planning and learning. Technical
report, School of Computer Science, Carnegie Mellon Uni-
versity.

Cashmore, M., and Fox, M. 2010. Planning as qbf. Interna-
tional Conference on Automated Planning and Scheduling
Doctoral Consortium (ICAPS 2010).

Dershowitz, N.; Hanna, Z.; and Katz, J. 2005. Bounded
model checking with QBF. In SAT, 408—414.

Fikes, R., and Nilsson, N. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2(3—4):189-208.

Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. In Proc. IJCAI-99,
956-961.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: fast plan generation through heuristic search. J. Artif.
Int. Res. 14:253-302.

Jussila, T., and Biere, A. 2007. Compressing BMC en-
codings with QBF. Electr. Notes Theor. Comput. Sci.
174(3):45-56.

Kautz, H., and Selman, B. 1992. Planning as Satisfiability.
In Proc. ECAI, 359-363.

Kautz, H.; McAllester, D.; and Selman, B. 1996. Encoding
plans in propositional logic. In Proc. KR-96, 374-384.

Kautz, H. A.; Selman, B.; and Hoffmann, J. 2006. SatPlan:
Planning as satisfiability. In Abstracts of the 5th Interna-
tional Planning Competition.

32

Mangassarian, H.; Veneris, A. G.; and Benedetti, M. 2010.
Robust QBF encodings for sequential circuits with appli-
cations to verification, debug, and test. IEEE Trans. Com-
puters 59(7):981-994.

Nguyen, X., and Kambhampati, S. 2001. Reviving partial
order planning.

Penberthy, J. S., and Weld, D. S. 1992. Ucpop: A sound,
complete, partial order planner for adl. 103—114. Morgan
Kaufmann.

Peschiera, C.; Pulina, L.; Tacchella, A.; Bubeck, U.; Kull-
mann, O.; and Lynce, I. 2010. The seventh QBF solvers
evaluation (QBFEVAL’10). In Proc. SAT.

Ridder, B., and Fox, M. 2011. Performing a lifted reach-
ability analysis as a first step towards lifted partial ordered
planning. In In Proceedings of UK PLANSIG11 Workshop.

Rintanen, J. 2001. Partial implicit unfolding in the Davis-
Putnam procedure for Quantified Boolean Formulae. In
Proc. LPAR, volume 2250 of LNCS, 362-376.

Rintanen, J. 2003. Symmetry reduction for sat representa-
tions of transition systems. In Proc. AAAL

Rintanen, J. 2010. Heuristics for planning with SAT.
In Proceedings of the 16th international conference on
Principles and practice of constraint programming, CP’ 10,
414-428. Berlin, Heidelberg: Springer-Verlag.

Savitch, W. J. 1970. Relationships between nondetermin-
istic and deterministic tape complexities. J. Comput. Syst.
Sci. 4(2):177-192.

Stockmeyer, L. J., and Meyer, A. R. 1973. Word problems
requiring exponential time: Preliminary report. In STOC,
1-9.

Tate, A. 1976. Project planning using a hierarchic non-
linear planner. Technical report, Department of Artificial
Intelligence, University of Edinburgh.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Towards Planning With Very Expressive Languages via Problem Decomposition
Into Multiple CSPs

Uwe Kockemann and Federico Pecora and Lars Karlsson
Center for Applied Autonomous Sensor Systems (AASS)
Cognitive Robotic Systems Lab
Orebro University
{uwe.kockemann, federico.pecora, lars.karlsson} @oru.se

Abstract

The main contribution of this paper is a planning lan-
guage that can handle temporal constraints, resources
and background knowledge. We provide a solver for
this language based on problem decomposition that uses
constraint satisfaction problems (CSPs) as a common
ground. We argue that the usage of more expressive lan-
guages not only allows a more direct modeling of plan-
ning domains, but can speed up the planning process as
well. We also present an experiment in support of that
argument.

Introduction

In this paper we present a novel way to model planning
problems in a very expressive language that supports tempo-
ral constraints, reusable resources and explicit background
knowledge. The language allows to model very fine-grained
features of the domain. Its high expressiveness increases our
ability to partition the various dimensions of the problem
into sub-problems that can be solved by dedicated, state-
of-the-art algorihtms. As an example, modeling the limited
space of a location is easily done with resources, while it is
cumbersome and inefficient using first-order literals; quanti-
fied temporal constraints can be used to easily compute the
temporal placement of predicates in partial plans, including
goal release times and potentially complex networks of pred-
icates defining what happens during the execution of oper-
ators; and explicit background knowledge allows us to con-
sider features like room connectivity separately from causal
knowledge, thus reducing the burden of causal reasoning.
Problem solving in the proposed language is handled by
decomposing problems into different types of Constraint
Satisfaction Problems (CSPs) (Dechter 2003) that exchange
information by pruning search spaces, adding constraints or
reducing domains of one another. Each of the involved CSPs
has a very specific reasoning purpose such as causal, opera-
tor applicability, temporal, resources or logic programming
(LP). This leads to a decomposition where the individual
solvers only see those parts of the problem that fit their pur-
pose. Also, partitioning directly entails the ability to spread
the computational load of the overall problem onto different
sub-problem solvers, depending which metaphor is used to
model particular domain features — e.g., modeling the occu-
pancy of a block with a predicate (e.g., —free(A)) delegates

33

the resolution of conflicts on block usage to a propositional
planning solver, whereas modeling occupancy as resource
usage allows to delegate this sub-problem to a scheduler.

We claim that our approach has two advantages, namely
expressiveness in domain and problem modeling, and flex-
ibility wrt how sub-problems are dedicated to different
solvers. Regarding the latter advantage, we show specifi-
cally how modeling as resources elements of domains that
are typically modeled as predicates in classical planning can
actually provide a computational advantage. There are two
reasons for this: first, an “implicit” resource model requires
more predicates to model what happens during operator ex-
ecution and second, it produces more conflicts over which
a classical planning algorithm has to backtrack. In practice,
we find that the time it takes for a scheduler to solve these
conflicts is much smaller than coping with larger and more
constrained planning problems.

Our approach does not make specific assumptions on the
type of sub-problem solvers. In fact, any STRIPS planner
could be used to solve the causal sub-problem of the overall
planning problem. We argue, however, that constraint-based
planners are particularly well suited because of the afore-
mentioned possibility to exchange information by adding
constraints or changing the domains of variables.

To show the advantages and a possible application of our
system we provide an illustrative example of a domain and
problem definition, and a solution. the next section discusses
related research. We then introduce the domain and prob-
lem description language. The different CSP solvers used in
our approach are introduced in the following sections, and
their interactions are detailed. Finally, we will present some
first results in the domain of the illustrative example which
show the distribution of work between the different CSPs.
We also present preliminary results on the comparison of
two approaches to model the same domain, where one uses
resources and the other one state-variables.

Related Research

The problem and domain description that is introduced here
is in many respects similar to the Planning Domain Defini-
tion Language (PDDL) (Fox and Long 2003). The language
described in this paper has higher expressivity and provides
a straightforward way to model reusable resource usage
and complex temporal constraints. Also, compared to tra-

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Applicability

state

actions

Causal

constraints

background
knowledge

Logic
Programming

Temporal

propagated
intervals

Reusable
Resource

Figure 1: Interaction between different CSPs.

ditional planning languages, the proposed language allows a
to model the “inside workings” of an operator. The language
we propose is similar to the one described in (Ghallab, Nau,
and Traverso 2004, Ch. 14), and is strictly more expressive
as it supports resources and has explicit background knowl-
edge. Furthermore, we allow a more convenient temporal
modeling with quantified Allen’s intervals (Allen 1984). The
domain definition language is also similar to (Fratini, Pec-
ora, and Cesta 2008), but extended with a notion of causality.
In our approach we have chosen to employ a Graph Plan-like
algorithm for causal reasoning.

Other approaches have explored its use for temporal plan-
ning, e.g., (Smith 1999; Long and Fox 2003) use the plan-
ning graph and durative actions. These languages are, how-
ever, less expressive than the one presented here, as our ap-
proach can model not only durative actions but also con-
straints between preconditions and effects. Furthermore, we
allow the use of background knowledge to influence not
only operator applicability, but temporal constraints and re-
source constraints as well. The approach in (Tsamardinos,
Vidal, and Pollack 2003) extends Simple Temporal Prob-
lems (STP) (Dechter 2003) to Conditional Temporal Prob-
lems to cope with uncertainty. While the underlying tempo-
ral reasoning is similar, their approach goes into a different
direction of conditional plans. The temporal POCL-based
(partial order causal link) planner CPT (Vidal and Geffner
2004; 2006) uses constraints for optimal makespans. Our ap-
proach, on the other hand, is not concerned with optimality
but rather with expressiveness. In that regard, it is similar
to IxTeT (Laborie and Ghallab 1995), which is POCL-based
instead of leveraging a planning graph and does not sup-
port explicit background knowledge as our language does.
A recent approach combining Graph Plan with temporal
reasoning is presented as TLP-GP by (Maris and Regnier
2008), which omit Graph Plan’s mutual exclusion relations
and let conflicts be sorted out by solving a disjunctive tem-
poral problem. While being of similar temporal expressive-
ness, their approach lacks support of resources and back-
ground knowledge. Research on Graph Plan and resource

34

scheduling was presented in (Srivastava and Kambhampati
1999). Their approach, however, does not cover temporal
constraints and background knowledge and does not form
a loop between the causal and the resource solver.

What distinguishes our approach from all previous simi-
lar approaches is the fact that we are not committing to any
specific way of solving the different sub-problems. Neither
do we commit to any way of combining their solutions. For
these reasons our approach is open to be extended with fur-
ther types of reasoning.

Domain and Problem Description Language

The proposed planning language uses a notion of precon-
ditions and effects that does not entail any temporal infor-
mation. Temporal information is added explicitly by means
of temporal constraints in the form of quantified Allen’s in-
terval relations® that are linked to statements in temporal
databases. Furthermore, we allow the use of reusable re-
sources in addition to state-variables. A third notable fact
is the use of background knowledge, that is not subject to
temporal constraints. The notation is kept close to the one
used in (Ghallab, Nau, and Traverso 2004, Ch. 14).
A temporal database

&= (F,T)

consists of a set of statements F and a set of temporal con-
straints 7~ that establish a temporal context for these state-
ments.

The basic building blocks of our language are Statements

§ = (k:7:177v)7

where k is a unique key term identifying a temporal inter-
val during which the statement holds. x is a first-order literal
identifying either a state-variable or a reusable resource and
v is the assigned value term. As an example take the follow-
ing state-variable and resource assignments

s1 = (poso,location(roby),locy)

sa = (spaceg, space(locy),2)

stating that the interval pos(assigns value loc; to variable
location(roby) and interval spaceq assigns a resource usage
of 2 to variable space(locy).

The key k identifies a single temporal interval during
which this statement holds. This interval is influenced by the
temporal constraints 7 in &. If an interval becomes empty
due to temporal constraints, we say that & is temporally in-
consistent. A simple example of this kind of inconsistency
with two statements and two constraints would be: a before
b before a.

Each reusable resource has a maximum capacity. A re-
source conflict in a temporal database occurs when a re-
source is possibly used above its capacity during any pe-
riod of time. Resource conflicts can be resolved by adding
temporal constraints to ¢ that enforce a usage smaller or

YFor convenience, we added disjunctions of conceptually neigh-
boring constraints such as “during-or-equals”, as discussed in
(Freksa 1992).

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

equal to the resources capacity. We say that & is resource
inconsistent, if there is no temporally consistent database
that resolves all resource conflicts. Reusable resources be-
come available again after the interval of a statement that
assigned a usage ends. Examples of this kind of resource
include room, space or machine usage. A similar schedul-
ing problem can be defined for values of state-variables.
Here a conflict would arise if a state-variable can have more
than one value in a given interval of time. If there are state-
variable conflicts that can not be resolved we say there is a
state-variable inconsistency.

A statement is ground when &, x and v are ground. A sub-
stitution o = {x1/v1,...,2,/v,} On a statement s substi-
tutes every part of the statement o(s) = (o (k), o(x), o (v)).
It is important to substitute keys as well as variables and
values, since there may be more than one statement with the
same variable and value, but for different intervals.

Two statements s; and so are equal iff &y = ko, 1 = 22
and v; = vy and they are unifiable iff there is a substitution
o such that o(s1) = o(s2). A statement s is supported by a
temporal database @ iff 3o s.t. o(s) € Fg. Similarly, a set
of statements P is supported by & iff Jo s.t. o(P) C Fg.
Finally, let 6(P/Fg) = {oilo:(P) C Fg} be the set of all
substitutions that match P to a subset of Fe.

A temporal context for/between statements is established
by unary/binary temporal constraints that could impose,
for example, flexible durations, release times or precedence
constraints. A binary temporal constraint is defined as

c= (klaR7 kQaI)
and a unary temporal constraint as
c= (klv Ra I)

where k; and ky, are keys of statements and R €
{before,after,release, duration, ...} is the type of rela-
tion. Z is a sequence of flexible intervals that quantify the
constraint. The following temporal constraints

(cook, be fore, dinner, [0, 20])
(cook, duration, [30, 40])

state that the interval cook has to be between 0 and 20 time
units before the interval dinner, and that the interval cook
has a flexible duration between 30 and 40 time units.

A temporal database ¢; supports a second database -
if Vo, € 0(Fs,/Fa,) their combination &' = (Fg,, To, U
o:(Ts,)) is temporal, resource and state-variable consistent,
meaning that all ways to support @5 in @, are consistent with
the temporal and resource constraints in ¢, without causing
state-variable inconsistencies.

The background knowledge B consists of a set of first-
order logic clauses modeling relations between objects that
do not change over time. We use the notion B |= R to state
that background knowledge B entails a set of first-order lit-
erals R.

An operator

c1 =

Cy =

o= (name,P,E,T,R)

consists of a name statement, two sets of statements P and
& for preconditions and effects, a set of temporal constraints

35

T and a set of relational constraints R. As an example see
the Move operator in the next section, which presents an op-
erator Move(A, L1, L2) that uses state-variable at and re-
source space to model an agent moving from one location
to another temporarily occupying a corridor with a space re-
quirement that depends on the agent’s size. Note that all keys
of statements are variables, so that unifying preconditions
with a temporal database will identify which statements of
& are considered preconditions for o.

An operator o is applicable to a temporal database @ iff
0(P,/Fg) # 0 and its application &' = (Fg Ui (E,), To U
0i(7T,)) for some o; € 6(P,/Fs) is temporally, resource
and state-variable consistent and 5 = 0;(R,).

Preconditions are not added to Fg since, by defini-
tion of 6(P,/Fs) they are a subset of Fy already. An
operator is considered ground when P, £, 7 and R
are ground. Ground operators are also called actions.
Let 0(o/Fs|B) = {oiloi € 0(P,/Fs) N B [
R(oi(0)) A oi(o) isground A Vecp,oi(e) ¢ Fo} be
the set of all ground substitutions of operator o that are sup-
ported by & with respect to background knowledge B. This
set yields all ground substitutions for which an operator is
applicable. The last part of the conditions states that the
ground effect statements o;(F,) are not yet in & (assuring
new unique keys for effects). Again, it is important to note
that 0(o/Fs|B) will substitute precondition keys as well,
creating one action for every combination of statements in
Fo that unify with P,,. The notion of applicability can be ex-
tended to sets of actions, which might be necessary for cases
in which no single action can be applied by itself, but a set
of multiple actions becomes applicable. A planning problem

P = (¢;,0,9¢,B)

is described using an initial temporal database &;, a set of
operators O, a goal database ¢ and the background knowl-
edge base B.

A plan

m=(AT)

is represented by a set of actions and temporal constraints
that hold between them. These temporal constraints are es-
tablished between the keys of the operator names. An appli-
cation of 7 to a temporal database @ yields a new temporal
database

¥ =7 =(FoU |J & TaUTruU | To)
aEAL a€Ar

A plan 7 is supported by a temporal database & iff Va; €
A Po, © FUU;y, Ea, and @' = (P, m) is temporally,
resource and state-variable consistent. Note that the lack of
order in which effects are added to the temporal database
is intentional, since order is only imposed by temporal con-
straints (modeled in the operators or deduced to resolve re-
source contention.) For the same reason, the definition of
support allows situations where two actions require each
other’s effects as preconditions. If for both actions there is
a constraint stating that a precondition occurs before an ef-
fect, there will be a temporal inconsistency.

A plan 7 is a solution to the planning problem P iff
@y supports 7 and ¢ = ~ (P,) supports P and B =

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Uaca Ra- An example of a plan is presented in the next
section. The representation is the same as for temporal
databases, except for the assumption that statements in plans
have to unify with names of operators.

It is obvious from these definitions that a direct approach
to plan search is prohibitive, since only generating the set
of applicable actions needs to find all possibilities to support
an action’s preconditions and each of these combinations has
to be checked for temporal and resource consistency. This is
why we propose an approach based on problem decomposi-
tion.

Before we describe the problem decomposition approach,
we will provide an illustrative example that will also help as
a running example in following sections and is used for the
experiments later on.

An lllustrative Example

In this Section we will present an extended example of how
a domain and a problem are defined in the language de-
tailed in the previous section. The aim of this example is
to show the capabilities of the suggested language and prob-
lem solving approach. Among these capabilities we demon-
strate the possibility to use concurrency and to include re-
source contention to constrain the possible output sched-
ules. We also show how background knowledge is used to
model agents with different speeds and sizes. To keep the
example short and to the point, we omit type and vari-
able definitions. They are essentially the same as in PDDL
(Fox and Long 2003). The only fact that should be men-
tioned is the capacity of the space resources, which is 1 for
locations space(locl), space(loc2) and 2 for the corridor
space(corl). By convention, constant terms are lower-case
and variables are upper-case. All statements s = (k,z,v)
are defined similarly to how P1 is defined in Move (see be-
low):

k:<xz,v>
where k := P1, z := at(A) and v := L1.

Domain

In our domain we have sets of agents who should transport
objects between different locations. Locations are connected
by corridors. Both locations and corridors are of limited ca-
pacity, allowing only a certain number of agents depending
on their sizes. We use three operators: Move, Pick and Put.
The Move operator moves an agent A from location L1 to
L2.

OPERATOR Move (A,L1,L2)

PRECONDITIONS:
Pl: < at(pA), L1 >
EFFECTS:
El: < at(A),C >
E2: < at(p), L2 >
E3: < space(C), S >
E4: < space(L2), S >

TEMPORAL CONSTRAINTS:
THIS DURATION [0, inf]
E1 DURING THIS [0,inf]
P1 OVERLAPS THIS [0,10]

[0,inf]

36

THIS OVERLAPS E2 [0,10]

E1 DURATION [Tmin, Tmax]

P1 MEETS E1

E1 MEETS E2

E1 EQUALS E3

E2 EQUALS E4

E2 DURATION [30,inf]
RELATIONAL CONSTRAINTS:

distance (L1l,L2,D)

speed (A, V)

div(D,V, Tmin)

add (Tmin, 50, Tmax)

size (A, S)

corridor (L1,L2,C)

The Move operator has only one precondition prescribing
that the agent A be at its starting location L1. As an effect
of this operator, the agent changes its location and uses the
resources space(L2) and space(C') with amount S. Next,
the temporal constraints relate preconditions and effects in
time. The special key THISrelates to the operator itself. We
state that both P1 overlaps with the operator and that £'3
is overlapped by the operator. £2 is during operator execu-
tion. Finally, the two meets constraints establish an order be-
tween preconditions and effects. Now, relational constraints
are used to assure adjacency of the locations and to query
the minimum and maximum (7T'min and T'max) amount of
time the agent will occupy the corridor. Observe that the
background knowledge also encodes knowledge about the
time it takes each agent to execute an action. The amount of
the space resource S is determined to be equal to the size of
agent A.

The Pick and Put operators (below) require the agent to
be at the same location as the object that is to be picked
up/put down. In case of pick, we need to have the object at
the right location (P2) and the agent should not hold any
object (P3). After execution, the location of the object will
be the agent’s hand (F'1, E'2). For Put it is the opposite case,
where the agent holds the object (P2, P3) as a precondition
and as effects the object will be at the target location and the
agents hand will be empty (E1, £'2). For both operators the
speed(A,V) predicate is used to calculate the execution inter-
val for the action. Note that in case of Pick and Put we made
use of group keys, which allow us to shorthand multiple tem-
poral constraints. In this case P2 and P3 belong to group P
and E2 and E3 belong to group E. Any temporal constraint
using a group key will result in a corresponding temporal
constraint for each group member. We omitted group keys
in the formal model, since they do not add expressiveness
and would have made the definitions in the previous section
somewhat cumbersome.

OPERATOR Pick(A,0,L)

PRECONDITIONS:
P1l: < at(A), L >
P2/P: < location(T), L >
P3/P: < holds(aA), nothing >
EFFECTS:
E1l/E: < location(0), hand(a) >
E2/E: < holds(nA), O >

TEMPORAL CONSTRAINTS:
THIS DURATION [Tmin, Tmax]

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

P OVERLAPS THIS

THIS OVERLAPS E

THIS DURING P1

P2 MEETS E1

P3 MEETS E2
RELATIONAL CONSTRAINTS:

movable (0)

speed (A,V)

div(5,V, Tmin)

add (50, Tmin, Tmax)

OPERATOR Put (A,0,L)

[10,inf]
[10,inf]
[0,inf] [0, inf]

PRECONDITIONS:
Pl: < at(A), L >
P2/P: < location(0O), hand(a) >
P3/P: < hand(A), O >
EFFECTS:
E1l/E: < location(0O), L >
E2/E: < hand(A), nothing >

TEMPORAL CONSTRAINTS:
THIS DURATION [Tmin, Tmax]
P OVERLAPS THIS [10,inf]
THIS OVERLAPS E [10,inf]
THIS DURING P1 [0,inf] [0,inf]
P2 MEETS E1
P3 MEETS E2

RELATIONAL CONSTRAINTS:
movable (O)
speed (A, V)
div (5,V,Tmin)
add (50, Tmin, Tmax)

Problem

Below we show an example problem. Type definitions are
omitted. The background knowledge is formulated in Prolog
and states that loc1 and loc2 are connected via corridor corl
and have a distance of 4. Agents robl and rob2 have a size
of 1 and a speed of 1 and 2 which influences the time it takes
to execute movements. Furthermore, the movable predicate
is used to state that objects a and b can be moved. Prolog was
chosen because it is well suited for the relational knowledge
that we would like to express in the background knowledge.

The last two lines connect the predicates add and div to
the corresponding Prolog code. This is necessary because
the relational constraints in the operators do not support Pro-
log syntax. Note that background knowledge can be pro-
vided both as part of the domain or of the problem. add and
div would be part of the domain definition and the test (e.g.
corridor) would belong to the problem.

As initial state we provide some statements about the
whereabouts of agents and objects. Note that in the key /s0
we omitted the unique key, since we only care about the
group key s0. A unique key is still generated for internal use.
Statements s2 and s4 claim resources for the time (equals
constraint) that the agents spend at their initial locations. s5
provides knowledge about a resource usage for space(corl)
blocking the corridor for a certain time by assigning its ca-
pacity 2. Any plan that is to solve our problem has to respect
this resource usage.

Finally, a simple goal is defined stating that objects a and
b should be at loc2 and loc1 respectively. There is also a tem-
poral constraints enforcing that the intervals of both these

37

goals must be contain the interval g1 that starts between 200
and 210 and will last at least 20 time units. The statement
g1 is used to synchronize all statements in group ¢g0. Note
that the given goal would not be solvable if the resource us-
age had been modeled with state-variables or relations, since
this would have eliminated the possibility to execute the two
location switching move operators in parallel because their
preconditions would never have been satisfied.

BACKGROUND KNOWLEDGE :
corridor (locl,loc2,corl) .
corridor (loc2,locl,corl) .
distance(locl,loc2,4).
distance (loc2,locl,4) .
size(robl,1).
size (robl,2).
speed (robl,1).
speed (rob2,2) .
movable (a) .
movable (b) .
add(a,B,C) :- C
div(a,B,C) :- C

INITIAL STATE:
STATEMENTS :

/s0: <
/s0:
/s0:
/s0:
s1/s0:
s3/s0:
s2:

is A + B.
is A / B.

, locl >
, loc2 >
, nothing >
, nothing >

location (a
location (b
holds (robl
holds (rob2
at (robl), locl
at (rob2), loc2
space (locl), 1
s4: space(loc2), 1
s5: < space(corl), 2
TEMPORAL CONSTRAINTS:
s0 RELEASE [0,0]
s0 DURATION [0,inf]
sl EQUALS s2
s3 EQUALS s4
s5 RELEASE [50,50]
s5 DURATION [50,50]
GOAL:
STATEMENTS :
gl: < release() >
/g0: < location(a),
/g0: < location(b),
TEMPORAL CONSTRAINTS:
g0 CONTAINS gl [0,inf]
gl RELEASE [200,210]
gl DURATION [20,inf]

\

AN NN NN NN

vV V. V V

loc2 >
locl >

[0,inf]

Solution

Below we present a plan that solves the problem presented
in the previous section. It contains six actions and four tem-
poral constraints that impose an order on these actions. Fig-
ure 2 shows a Gantt chart of the scheduled actions in the
solution plan. The time-lines in this chart were created us-
ing the earliest possible start-times and the earliest possible
end-times of all intervals in the temporal database to which
we applied the plan. Note that both Move actions start after
the pre-scheduled space resource usage (see problem defini-
tion).

PLAN:

ACTIONS:

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

al: < Pick(robl,a,locl) >
a2: < Pick(rob2,b,loc2) >
a3: < Move(robl,locl,loc2) >
a4: < Move(rob2,loc2,locl) >
a5: < Put(robl,a,loc2) >
a6: < Put(rob2,b,locl) >
TEMPORAL CONSTRAINTS:
al BEFORE a3
a3 BEFORE ab
a2 BEFORE a4
a4 BEFORE a6
20 40 60 80 100 120 140 160 180 200 220 240 260 280
Pick(robl,a,locl) [_execute
Pick(rob2.b,loc2) execute
Move(rob1,locl.loc2) execute
Move(rob2.loc2.locl) execute
Put(robl,a.loc2) execute
Put(rob2,b.locl) execute
location(a) Tocl | storage(robl) [Toc2 |
location(b) Toc2 | storage(rob2) | locl |
at(robl) locl corl | loc2]
at(rob2) loc2 corl [locl]
space(locl) 1]
space(loc2) ||
holds(robl) [nothing a [nothing |
holds(rob2) [nothing b | nothing |
space(corl) 2 | 1]

release()

Figure 2: Gantt chart of the scheduled actions.

Problem Decomposition

We decompose the overall planning problem in the follow-
ing way (see Figure 1). First, we solve the logic LP sub-
problem which provides constraints for creating the set of
applicable actions. Then the causal sub-problem is gener-
ated and solved for a (partial) plan. For each (partial) plan
that is created based on this step we have the possibility to
check if there are temporal or resource conflicts that can not
be resolved. In case of such conflicts the according nodes
and their successors are removed from the solution search.
We will now discuss each part of this procedure in turn.

Causal CSP

The causal CSP is a CSP implementation of Graph Plan
(Blum and Furst 1995) which ignores all temporal and re-
sources constraints. The base of Graph Plan is the planning
graph, which is created by generating the set of actions that
can be applied in the initial state (first layer) and from that
the set of propositions that can be reached from these ac-
tions. Based on this new set of reachable propositions the
process is repeated for the second layer. During creation a set
of mutual exclusion relations between actions and proposi-
tions is maintained, that contains actions that can not be ex-
ecuted in parallel and propositions that can only be reached
by mutually exclusive actions. The creation of the planning
graph is stopped when the set of propositions that was gen-
erated last contains all goal propositions and none of them
are mutually exclusive (mutex) with each other. It also stops
as soon as the latest created layer in the planning graph is
equal to its predecessor. In this case, the planning graph has
reached a fixed point. If a fixed point is reached, but the set

38

of goals remains mutex or does not appear at all, the plan-
ning procedure returns failure without any search.

Once the planning graph is generated and given that no
failure occurred during this step, we want to try and ex-
tract a solution from it. This solution extraction is done in
a goal-directed manner from the last layer to the first. There
are multiple ways to formulate solution search in the plan-
ning graph as CSPs (Kautz and Selman 1999; Kambhampati
2000; Lopez and Bacchus 2003). The one employed here is
to solve the planning graph on a layer-by-layer basis. Start-
ing with the last layer, we formulate a CSP where open goals
are variables. Actions that achieve these goals are their do-
mains, and mutual exclusion relations are constraints. In this
way, a CSP solver will try to find an action for each open
goal so that none of the mutual exclusion relations is vio-
lated.

Based on the solution to a layer n, a new CSP for layer
n—1is created, by using the preconditions of actions chosen
in layer n as open goals for CSP n — 1. In this way the
following CSP attempts to enable the execution of actions
on the next layer. The causal problem is solved if we reach
the first layer and the remaining open goals are part of the
initial state. If an inconsistent CSP is encountered we need
to backtrack and choose a different solution to the previous
layer’s CSP. To allow backtracking, we maintain a search
queue of CSP solutions to each layer. Every search step in
solution extraction greedily chooses the search node that is
closest to the initial state and generates new nodes for all
solutions to the next CSP. This search queue is also the point
where pruning can be performed, as will be described later.
This way of extracting solutions from the planning graph is
described in (Ghallab, Nau, and Traverso 2004)[p.128]. We
will now describe how we extract a propositional planning
problem from our overall problem for resolution with the
procedure described above.

Extracting Graph Plan Operators

To extract a Graph Plan operators we convert all precondi-
tions and effects to first-order literals (as detailed in (Ghal-
lab, Nau, and Traverso 2004, Ch. 2)), while ignoring all tem-
poral constraints and resource usages. In case of the Move
operator, for instance, we would only use the two literals in
statements P1 and E1 and ignore the resource assignments
E2 and E3.

To get the initial state, we query our temporal constraint
solver for a certain time ¢ at which we wish to start exe-
cuting the plan. For the goal, we just convert the according
statements as was done for preconditions and effects of the
operators. The background knowledge can be safely ignored
at this stage, as is explained in the following section.

Background Knowledge & Applicability CSP

To be able to reason about background knowledge without
burdening the causal CSP we decouple background knowl-
edge from causal knowledge. This decoupling is realized
by formulating the problem of finding the set of applica-
ble operator instances as a CSP that uses constraints from
the causal CSP (i.e., the state for which applicable actions

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

are searched) and from the background knowledge. Vari-
ables in this CSP are the open variables of the operator. Con-
straints are posed by preconditions combined with states and
relational constraints combined with their valid ground in-
stances (provided by LP). In CSP terminology, solutions to
the applicability CSP define the domains of the variables of
the causal CSP, which are sets of actions that achieve a cer-
tain open goal (i.e., a variable in the causal CSP).

Background knowledge is formulated in Prolog and we
create and solve a Prolog query for each operator to gener-
ate the ground literals that can be used to apply the operator.
This part is also a CSP where we solve for an operator’s
open variables given constraints posed in the background
knowledge. If, for instance, in our Move operator we have
Move(robl,locl,loc2) and a constraint size(robl, S) the
only assignment of .S consistent with the background knowl-
edge in the example is 1.

Pruning Based on Temporal and Resource
Conflicts

There are two different ways of pruning when facing incon-
sistent plans. The first one is to remove every plan created
based on the inconsistent plan from the solution extraction
search queue. The second one is to add constraints to the
planning graph to avoid that the same inconsistency occurs
again. To accomplish this, it is possible to check pairwise ac-
tions on the same layer for conflicts or check if two consecu-
tive actions cause a conflict. This could lead to the discovery
of constraints such as the mutex

Move(robl,locl,loc2) <+ Move(rob2,locl,loc2)

if there were no way for these two Move actions to be exe-
cuted in parallel without causing temporal or resource in-
consistency. After adding new constraints in this way, all
plans violating the new constraints can be pruned from the
search queue. Another advantage is that the same inconsis-
tency will not occur again, since the causal CSP was altered
with knowledge from the temporal and resource CSPs.

Temporal CSP

The causal CSP can provide either a partial or a complete
plan. Any plan that does not solve all layers of the planning
graph is considered a partial plan. With respect to our lan-
guage, the plans that are output by the causal CSP are not
ground, as they do not instantiate the keys of statements in
operator preconditions. There is, however, enough informa-
tion in the order of actions (sorted by layers in the planning
graph) to allow a unique mapping of precondition keys to
either keys on the initial temporal database or effects that
occurred on previous layers.

We start by querying the initial temporal database for all
statements that hold at time ¢ which gives us a subset C' of
the statements of &;, that was also used as initial state for
the causal CSP. If there are two statements s’ and s” with
xy = x4 (i.€., assigning the same state-variable x) the one
with the latest possible end-time is chosen. This way, the set
C only contains one statement per state-variable.

Now we go through each layer of our plan (starting at the
first one) and for each action create S = 6(P,/C) where

39

by definition |S| = 1, since there is only one statement
per state-variable and the only thing that remmains to be
substituted is the key. This gives us a unique substitution
o € S. Then we substitute the remaining keys of the ef-
fects in £, with a new unique key and add them to o as in
0 UUpep, 0i stoi(e) isground A oi(e) ¢ Fgp,. Now
C'is updated as (C' — Cyq) U E, where Cpiq = {s|3e €
E, s.t. x5 = x.}, so that for the next action | S| = 1 will still
hold, but it will refer to the effects of the actions that were
added before. The resulting ground operator is then applied
to the temporal database.

The causal order between actions that is provided by the
planning graph is thus translated to temporal constraints be-
tween preconditions and effects as specified is the opera-
tor definitions. By starting from a fixed initial state, we thus
avoid the problem of deciding to which statement an oper-
ator’s preconditions should be mapped. As an example of
this, take the Pick operator which changes the location(O)
state-variable from P2 to E2. If our initial state (as in the
example presented earlier) is sO : (location(a),locl) and
we add action Pick(robl,a,locl) the key of precondition
P2 is substituted with s0. The next operator that refers to
location(a) will in turn choose E2 as reference (more pre-
cisely, it will chose the new unique key that will be created
to ground £72).

Finally, we add a goal action which has the goal con-
ditions as preconditions and uses the temporal constraints
of the goal. This allows to check the goal’s temporal con-
straints in the same way the action’s temporal constraints
are checked. All temporal constraints can be translated to
simple distance constraints between the start and end times
of the involved statements. The result of this is a STP which
can be solved in polynomial time by Floyd-Warshall’s all-
pairs-shortest-path algorithm (Dechter 2003)[Chapter 12].

Reusable Resource CSP

The reusable resource CSP is a precedence-constraint post-
ing algorithm based on the Earliest Start Time Approach
(ESTA) (Cesta, Oddi, and Smith 2002). The resource
scheduling problem is cast, once again, as a specialized CSP
in which variables represent sets of statements that over-
consume resources, and their values represent temporal con-
straints which tease apart concurrent over-consuming state-
ments so as to impose resource feasibility. More specifically,
for a temporal database &

 Variables are sets of resource usage statements S, C Fg
such that (1) all (k;,r,v;) € S overlap in time accord-
ing to their earliest start-times, (2) they over-consume a
resource r, i.e., > . . ,)es Vi > ¢ Where ¢, is the ca-
pacity of resource r, and (3) all subsets of \S,. do not over-
consume the resource r-.

e Values are temporal precendence constraints, (i.e.,
be fore[0, 00)) to be imposed between a pair of statements
in S, so as to resolve the conflict arising from the concur-
rent execution of the statements in S,..

Variables in the reusable resource CSP are called Minimal
Critical Sets (MCS), as it is sufficient to impose a before

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

constraint between any pair of statements in .S, to regain re-
source feasibility. As in any typical CSP solver, the reusable
resource scheduler performs a backtracking search over the
variables which identify resource usage conflicts, choosing
as values the possible alternative “resolvers” (precedence
constraints) of these conflicts.

The reusable resource CSP avails itself of variable and
value ordering heuristics for performance. While the details
are outside the scope of this paper, it is worth mentioning
that both these heuristics employ the notion of temporal
flexibility (Cesta, Oddi, and Smith 2002), whereby variables
which are most temporally constrained are chosen first, and
resolving constraints (values) which least impact the tem-
poral slack in the schedule are attempted first. It is also
worth mentioning that in this work we employ a variant of
the ESTA approach which performs a complete CSP search,
thus guaranteeing the resolution of all conflicts.

The ESTA algorithm as briefly described above is em-
ployed both for resource conflict resolution and for enforc-
ing state-variable consistency. This is achieved by simply
changing the criteria used to identify a scheduling conflict
(point (2) above), from sum of resource usage to different
symbols.

Resulting Algorithm

Figure 3 shows the flow of the algorithms that combines
all the parts described in the previous sections. Background
knowledge and applicability are solved in the init step. After
each step of planning, it can be decided if temporal and re-
source consistency should be checked for the current partial
plan. If the current plan is a solution to the causal problem,
we have to check temporal and resource constraints. Two
possibilities we allow here are checking always and check-
ing only for Graph Plan solutions. Ideally we would like to
check only in case there is an inconsistency, since this is the
only time we can prune the search space of solution extrac-
tion.

The proposed algorithm is sound but not complete wrt the
language introduced in this paper. We argue that it is sound
since the way a Graph Plan solution is used to map operators
to statements together with the following temporal and re-
source constraints check fulfills the support criteria between
& and 7. Furthermore, the usage of the goal-action fulfills
the support criteria between &’ = ~(®;, 7) and &. Finally,
B = U,e 4 Ra holds, since we used B to create constraints
such that the applicability CSP only produces solutions that
fulfill this requirement. In summary, we argue that the de-
composition based algorithm is sound because:

1. a Graph Plan solution guarantees that the statements in all
preconditions of the actions in the plan as well as the goal
can be supported by some effect of some other action or
the initial temporal database,

2. the procedure for putting the plan into the temporal CPS
establishes a support for each precondition statement (in-
cluding those of the goal action),

3. the temporal and resource CSPs then verifies that the re-
sulting plan is temporal, resource and state-variable con-
sistent.

40

Planning
(Search Step)

Check for
conflicts?
Yes

Check (partial) plan
for temporal &
resource conflicts

Figure 3: Flow chart of the decomposition-based algorithm.

Non-completeness can easily be shown by creating an
example that requires concurrency that is not based on re-
sources. We could for instance have a simplified Move op-
erator that does not model corridors and, as a precondition,
requires the target location to be free, which will be mod-
elled with a boolean state-variable, rather than a resource.
In this case, the Move operator would never be applicable
in a problem with two locations, two agents and the goal to
switch the agent’s positions. Since a valid plan exists that
uses two concurrent Move actions, but it cannot be found
with our method, it is not complete.

It should be clear, however, that this is not the intended
way to use the introduced language, since it was designed
to model things “as they are” (i.e. not to use state-variables
to model resources). Using resources to model resources
makes the same problem solvable allows non-binary re-
sources without any overhead and even finds solutions faster,
as will be shown in the next section.

Experiments

In this section we present some preliminary results on prob-
lems from the domain that was described earlier in this pa-
per. We randomly created planning problems for varying
numbers of agents, locations and objects. For each config-
uration we created 20 problems and measured the mean
time spent on the main parts of our decomposed problem:
Graph Plan Expansion (GP-E), Graph Plan Solution Ex-
traction (GP-S), Temporal CSP (T-CSP), Resource CSP (R-
CSP) applicability CSP (APP-CSP) and LP. Note that APP-
CSP is really part of GP-E, but we decided to measure them
separately, to see how GP-E scales relative to APP-CSP.

In a first set of experiments, we check the runtime on a
number of randomly generated problems for varying num-
bers of objects, agents, locations. We also investigate how
much time is spent on each of the different solvers in the
process. In a second experiment we compare two approaches
to the same domain, where one approach uses resources to

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

model a bottleneck and the other one uses predicates.

When running our planner, we can choose to only run
the temporal and resource CSPs after the causal CSP has
found a solution or check these constraints for every single
node in the Graph Plan search space. The second possibil-
ity becomes prohibitive for large planning graphs, but can
lead to early termination in case of impossible goals. One
example of such a goal would be a corridor that is smaller
than the agent, but cannot be avoided in any solution plan.
In the experiments presented here we only check consis-
tency for causal solutions and leave a closer invesitigation
of when/how often to check consistency as future work.

Analysis of Results

Most of the harder examples are dominated by Graph Plan
solution extraction (GP-S), but the hardest set suffers from
large temporal CSP (T-CSP) times, which is due to two par-
ticularly hard problems which contain a large number of
valid Graph Plan solutions that are not resource consistent.
These problems where of such a kind that even our pruning
measures did not produces better results, since conflicts only
appeared for solutions to the causal CSP.

The resource CSP (R-CSP) times are only large in the 3-
3-3 set, where resource inconsistency also caused significant
computation for the T-CSP. This is because a large number
of resource-inconsistent plans where found before a feasible
one. Here, it should be pointed out again that the R-CSP uses
information from the T-CSP (temporal propagation to vali-
date resolving temporal constraints), as was also indicated in
Figure 1. On sets with no resource conflicts (with only one
agent) the R-CSP time was almost zero, so it did not provide
an overhead in cases where it was not needed.

The time it takes to query the background knowledge with
LP is almost constant. This makes sense, since even for
larger problems there is not too much addition to the back-
ground knowledge. Furthermore it does not contain clauses,
except the ones for addition and multiplication, so there is
very little inference at this stage. The time spent on the ap-
plicability CSP also grows moderately.

Resources vs. No-resources

As a second experiment, we compared the behavior of our
planner solving the same domain modeled in different ways.
More precisely, we would like to substantiate the claim that
in some cases it is better to model resources as what they
really are rather than to use state-variables or literals to sim-
ulate them. For this purpose, we used a domain derived from
the one used in the previous experiment, but instead of ran-
domly sized corridors and locations, all corridors are bot-
tlenecks with unit capacity and all locations have unlimited
space. Problems were again randomly created, but we made
sure that they were the same for each of the three ways of
modeling the domain, to avoid situations were one set suf-
fers from a hard problem.

The first issue that came up when modeling without re-
sources is that we had to split the Move operator into two
operators, one moving into the corridor and one moving out
of it. To capture the difference this makes we created the
third experiment in which we use resources, but still split

41

1-5-2 1 mm P

B R-CSP
T-CSP

EGP-S

B GP-E

s

Figure 4: Results for random problems in the domain de-
scribed earlier. The names of the experimentsread « —y — z
for 2 agents, y locations and z objects.

the Move operator into two. In principle our language could
model the problem with only one operator and no resources,
but doing so yields a model that cannot be solved by the
proposed method.

We compared the three models on two simple configura-
tions (2 agents, 2/3 locations, 2 objects) and again over 20
random instances of this problem. For larger examples, the
versions with two operators did not finish in a reasonable
time. The reason for this is the fact that using two opera-
tors for Move leads to a deeper planning graph (more layers)
and for solution extraction, we backtrack over solutions to
each layer. In the version without resources, no two move
actions were allowed on the same layer if they used the same
corridor. So just for moving two agents we may need up to
four planning graph layers. The two-operator version with
resources was slightly less restricted, but essentially suffered
from the same problem.

Figure 5 shows the results for the two configurations and
three domain models. It can be seen that the approach using
resources outperforms the others, which is mainly due to the
smaller planning graphs. This example shows that resource
scheduling can take away a huge burden from the causal
problem by bearing the brunt of solving resource conflicts
(for which it has powerful heuristics) that would otherwise
over-constrain the planning graph.

Conclusion

The paper proposes a highly expressive planning language
that can be used to model complex domains supporting
background knowledge, temporal constraints and reusable
resources. We showed how planning in this language can be
done by decomposing problems into different types of CSPs.
In so doing, we decouple background knowledge from
causal knowledge and causal knowledge, in turn, from tem-

W APP-CSP

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

w22
LP
w22 I
® R-CSP
rs 22) [
rez22 |

B GP-E
0 05 1 15 2 25 3 35

rs 232 i

rR@32 ||

s

Figure 5: Comparison of the same domain modeled with
three different approaches.

poral and resource knowledge. The individual sub-problem
solvers communicate by exchanging constraints or provid-
ing part of each other’s definition (e.g., domains of vari-
ables). We believe that a further exploration and generaliza-
tion of the ideas applied here could be very useful. As evi-
dence we provided a first set of experiments, demonstrating
that it can be advantageous to choose a more expressive ap-
proach to domain modeling. Specifically, empirical evidence
points to the fact that delegating the resolution of resource
conflicts to a scheduler achieves much better run-times than
encoding them as causal conflicts. We also provided a set
of experiments to evaluate our method on varying problem
sizes and investigated how much time was spent on each of
the sub-problems.

In future work we would like to investigate the following
directions:

 Further generalization of solving problems with differ-
ent CSPs to allow adding other types of knowledge to be
added in the same way.

» Adding goals to force the causal CSP to free resources.
On the CSP level this would mean adding new variables.

» Experimental evaluation of the pruning / constraint check-
ing trade-off. In this direction also more intelligent ways
of deciding when to check temporal and resource con-
straints will be investigated.

» A SAT-based approach to search in the causal CSP would
allow for better ways to control this part of the overall
planning procedure. Arbitrary constraints can be added,
as for example constraints spreading multiple layers.

Acknowledgement

This work was supported by the Swedish Research Council
project "Human-aware task planning for mobile robots”.

References
Allen, J. F. 1984. Towards a general theory of action and
time. Artificial Intelligence 23:123-154.

Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis. Artificial Intelligence 90(1):1636-
1642,

Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8:109-136.

42

Dechter, R. 2003. Constraint processing. Elsevier Morgan
Kaufmann.

Fox, M., and Long, D. 2003. PddI2.1: An extension to pddl
for expressing temporal planning domains. Journal of Arti-
ficial Intelligence Research 20:2003.

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying Plan-
ning and Scheduling as Timelines in a Component-Based
Perspective. Archives of Control Sciences 18(2):231-271.

Freksa, C. 1992. Temporal reasoning based on semi-
intervals. Artificial Intelligence 54:199-227.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.

Kambhampati, S. 2000. Planning graph as a (dynamic) csp:
exploiting ebl, ddb and other csp search techniques in graph-
plan. Journal of Artificial Intelligence Research 12:1-34.

Kautz, H. A., and Selman, B. 1999. Unifying sat-based
and graph-based planning. In Proceedings of the 16th Inter-
national Joint Conference on Artificial Intelligence, 1JCAI
’99, 318-325. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Laborie, P., and Ghallab, M. 1995. Planning with sharable
resource constraints. In Proceedings of the 14th interna-
tional joint conference on Artificial intelligence - Volume 2,
1643-1649. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Long, D., and Fox, M. 2003. Exploiting a graphplan frame-
work in temporal planning. In ICAPS 03, 52-61.

Lopez, A., and Bacchus, F. 2003. Generalizing graphplan
by formulating planning as a csp. In In Proceedings of
the 18th International Joint Conference on Artificial Intelli-
gence (1JCAI-2003), 954960, 954-960. Morgan Kaufmann
Publishers.

Maris, F., and Regnier, P. 2008. Tlp-gp: New results on
temporally-expressive planning benchmarks. In Tools with
Artificial Intelligence, 2008. |CTAI ’08. 20th |EEE Interna-
tional Conference on, volume 1, 507 -514.

Smith, D. E. 1999. Temporal planning with mutual exclu-
sion reasoning. In In Proceedings of 1JCAI-99, 326-337.

Srivastava, B., and Kambhampati, S. 1999. Scaling up plan-
ning by teasing out resource scheduling. In Proceedings of
the 5th European Conference on Planning: Recent Advances
in Al Planning, 172-186. London, UK: Springer-Verlag.

Tsamardinos, I.; Vidal, T.; and Pollack, M. E. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4):365-388.

Vidal, V., and Geffner, H. 2004. Cpt: An optimal tempo-
ral pocl planner based on constraint programming. In IPC
(ICAPS) 2004.

Vidal, V., and Geffner, H. 2006. Branching and pruning: An
optimal temporal pocl planner based on constraint program-
ming. Artif. Intell. 170(3):298-335.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

A Constraint-based Framework for AEOS Mission Planning and Scheduling

Zhenyu Lian, Yuejin Tan, Yingwu Chen, Feng Yao, Jufang Li
College of Information System and Management
National University of Defense Technology
Changsha, Hunan Province, 410073, P. R. China

Abstract

Most mission planning problems in space are integra-
tion of planning and scheduling problems, as is also the
case for the mission planning problem of Agile Earth
Observation Satellites (AEOS). An AEOS problem is
a partial satisfaction planning problem, or an oversub-
scribed scheduling problem, with temporal dependence
characteristic, logical constraints, resource constraints
and domain specific constraints. Current planning algo-
rithms and frameworks, such as CNT, CAIP and OMP,
could not handle all the features of our problem, espe-
cially the temporal dependence characteristic. In this
paper, a constraint-based framework CPSSA is intro-
duced which addresses three aspects, i.e. concepts for
problem description, a new constraint model translating
the problem description into a constraint representation
and a solution technique integrating heuristic search
and constraint reasoning processes. In the problem de-
scription, we incorporate concepts of HTN planning
and RCPSP scheduling into our framework to represent
the mission planning problem of AEOS. In constraint
model, we introduce a new activity graph, of which the
variables and constraints bridge the gap of problem de-
scription and constraint representation for a more flexi-
ble solution technique. The activity graph of constraint
model is also a link between heuristic search and con-
straint reasoning, which interleave with each other in
the solving process. As an implementation of CPSSA, a
Space Mission Planning and Scheduling engine (SMPS)
suitable for the AEOS domain is developed.

Introduction

An important function issue for a space agency like the
China Center for Resource Satellite Data and Applications
(CRESDA) is the management of its earth observing satel-
lites (EOS) (Wang and Reinelt 2010). Following the devel-
opment of satellite techniques, a newer agile earth observing
satellite (AEOS) (Lian et al. 2011) brings more imaging op-
portunities and higher resolution available to users, which
will be applied to future environmental and disaster moni-
toring and prediction. However, current scheduling systems
(Wang et al. 2011), just for EOS, cannot support this new

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

43

type of satellite. Therefore, a new mission planning frame-
work for AEOS, which is also compatible with EOS, is
introduced in this paper.

Equipped with optical or radar instruments, with gyro-
scopic actuators with which the satellites are able to move
freely around their inertial center along the three axes (yaw,
pitch and roll angle) (Beaumet and Verfaillie 2007), AEOSs
are placed on sun-synchronous, low altitude, circular orbits
around the earth (Beaumet, Verfaillie, and Charmeau 2007).
There are attitude control model, memory model, battery
model and other models in each satellite.

The mission planning system of AEOS first receives
user’s requirements, and then builds regularly an activity
plan for satellites and ground stations, which satisfies all
the physical constraints and meets as many requirements as
possible. Generally, users submit image requests of several
targets, and then operators decompose the targets to strip
areas as required, each of which can be imaged by satel-
lites within one pass. Each strip is usually defined as a task
with two activities, i.e. imaging and downloading. In real-
ity, there would be tasks including more than two activities.
For example, to get stereo images of a certain target there
must be two or three imaging activities and a download-
ing activity. These tasks will not be involved in this paper.
There are many opportunities for each strip to be imaged or
downloaded in satellite’s planning horizon. In each oppor-
tunity, there are three attributes, i.e. time window, resource
requirements and preconditions. In AEOS domain, an imag-
ing/downloading activity can be done by many satellites, and
for each satellite there are many time windows since its pe-
riodic movement. The preconditions of activity execution,
about state of resource or environment, would be different
among time windows. If a task/strip is inserted into a plan,
there must be an opportunity being selected for each activity
of the task. Besides, there are also assistant activities, i.e.
slewing, sun-pointing, earth-pointing, camera-on, camera-
off and file-erasing activities. The assistant activities are not
directly related with any task, but necessary for some activi-
ties of tasks and satellites’ working. There are strict mutually
exclusive and concurrency constraints in satellites and sta-
tions, e.g. slewing, imaging, sun-pointing and earth-pointing
are mutually exclusive, imaging and downloading could be
concurrent in real-time transferring mode and mutually ex-
clusive in routine mode.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

AEOS is different from EOS as follows. For AEOS,
agility means significant flexibility in assigning start time
of imaging/downloading within time windows (Lian et al.
2011), while start time is determinate for EOS. This is il-
lustrated in Figure 1, which shows the observable scopes of
non-agile and agile satellite at a time. For a non-agile satel-
lite (see Figure 1 (a)), the observable scope is just a line
along the roll axis, which means observation is only possi-
ble when the satellite flies over the target ground area. So
the realization window of an observation is fixed. For an ag-
ile satellite (see Figure 1 (b)), the observable scope is an
area along the roll and pitch axes, which means observation
is possible before, during, or after AEOS flying over the tar-
get ground area. Thus, after selecting an opportunity for a
activity, the domain of its start time variable in EOS has one
value, while the domain in AEOS is an interval. More free-
dom in terms of observation is the main advantage of agility.

_—
—TRoll -
Imaging with rollafigle
ying X direction "
directior/ /
4 it ssp.”
p SOT Wi P
ssp ensor wi
///
(2) (b)

Figure 1: Observable scopes of non-agile and agile satellite

However, more challenges in terms of operation schedul-
ing are also the main “disadvantage” of agility. The charac-
teristics of an AEOS problem are listed as follows.

1. Partial satisfaction. The AEOS mission planning and
scheduling problem is inherently an oversubscribed con-
straint optimization problem. Too much image requests need
to be considered relative to the ability of satellites and
ground stations. Thus, mission planning system should sat-
isfy as many requests as possible.

2. Temporal dependence (Lian et al. 2011). There are two
types of decision variables for a task in AEOS, i.e. an al-
ternative variable (whether to schedule or not) and a time
variable (when to start). Within the time window of an op-
portunity, there are potentially infinite numbers of solutions
for AEOS to fulfill a given task, since time is continuous.
Pointing attitude of imaging is a function of its start time.
And there must be a slewing activity for different pointing
attitudes of adjacent activities. The slewing time and power
consumption depend on the attitude difference (Lian and
Xing 2011). This complex dependence relation, defined as
temporal dependence, could not be directly described by in-
ternal constraints, as in Figure 4. So we would define custom
constraints, as in constraint model section later.

3. Logical constraint (Grasset-Bourdel 2010). There are
some assistant activities added by preconditions of activity
execution, which are not directly related with task. For ex-
ample, a slewing, or a power production (sun-pointing (Lian
and Xing 2011)), is inserted, if there is an attitude require-

44

ment, or a power requirement.

4. Special constraint (Wang and Reinelt 2010). There are
some special constraints on the satellites of China. For ex-
ample, cumulative imaging time within one circle cannot
exceed 30 minutes, cumulative working time within one cir-
cle cannot exceed 40 minutes, the count of slewing cannot
exceed 5 times, etc.

Integration of planning and scheduling in AEOS domain,
is significantly necessary for its potential gain as in Figure
2. If there is no planning ability, we can find an ‘optimal’ so-
lution for a simple EOS problem, but there would be losses
of tasks for a complex AEOS problem with much more as-
sistant activities. In Figure 2, the ‘optimal’ schedule just
includes imaging1 and imaging2. If we could insert a power
production activity, i.e. a sun-pointing activity, imaging3
could be executed. Therefore, we could accomplish much
more tasks by integrating planning into scheduling.

Scheduled activity
Planned activity

Profile after scheduling
Profile after planning

Power profile

Imaging2

Imagingl tﬁé

Figure 2: Potential gain of integrating planning into schedul-
ing

In short, an EOS problem is just a combination optimiza-
tion problem, while an AEOS problem is a problem hybrid
of combination optimization, continues temporal reasoning
and logical reasoning.

The early planning algorithms for AEOS (Lematre et al.
2002) problems plan imaging activities and downloading
activities sequentially, and then check energy and mem-
ory constraints. They did not consider logical and special
constraints of the AEOS problem. In case of constraint vi-
olation, some tasks are removed until constraint satisfac-
tion, leading potentially to a sub-optimal solution (Grasset-
Bourdel, Verfaillie, and Flipo 2011). Then, a chronological
forward search algorithm (Grasset-Bourdel, Verfaillie, and
Flipo 2011) with dedicated decision heuristics and constraint
checking was developed, and it could produce a good solu-
tion in limited time. However, the algorithms are limited in
optimization for its local search feature (limited look ahead
and backtrack) and hard to extend to more general prob-
lems, especially our AEOS problem with temporal, logical
and special constraints.

The early general frameworks for AEOS, e.g. CNT (Pralet
and Verfaillie 2008), could only describe a simple AEOS
problem as ground constraints and variables. So it is hard
for CNT to handle real problems with much more physi-
cal constraints and tasks. CAIP (Frank and Jonsson 2003),

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

a more general framework used in practical scenarios, is
built around temporal intervals and attributes with NDDL
language. Another framework, OMP (Fratini, Pecora, and
Cesta 2008) is based on state variables and resources with
DDL.2 language. These architectures have always empha-
sized the use of a rich representation planning language to
capture complex characteristics of domains (Fratini, Pec-
ora, and Cesta 2008). The NDDL and DDL.2 derived from
DDL (from HSTS (Muscettola 1994)) have been very fruit-
ful, but it is painful to complex physical constraints (Frank
et al. 2011). And CAIP’s goal is to find a complete solu-
tion with an incomplete initial state, which is in nature a
constraint satisfaction problem, not suitable for partial sat-
isfaction problem. But our AEOS usually cannot satisfy all
the task requirements. Besides, you must define complicated
configuration rules or patterns to represent state variable’s
transition in CAIP or OMP. But state variable’s transition is
complicated and hard to describe our real problem. For ex-
ample, sun-pointing activities, not related to any task, could
supply power for satellites to execute more activities. So a
sun-pointing activity will be inserted and adjusted to guar-
antee urgency tasks in sunniness periods of satellites, when
power is not sufficient. Configuration rules or patterns can-
not handle this conditional precondition with time and re-
source’s state.

The scheduling engine OptTime (OptTime 2011) embed-
ded in the STK Scheduler, is built around fixed tasks without
planning ability. The OPL, in ILOG (ILog 2003) is built with
ground constraint representation. Although it is very flex-
ible for many domains, we must describe all the problem
details. For our partial satisfaction problem, it is very time-
consuming because it will try all tasks before providing a
rational result.

However, the temporal dependence characteristic in the
AEOS problem causes the interlacing of physical constraints
and internal constraints, and cannot be resolved in the above
algorithms and frameworks.

We continue the trend set with these earlier efforts. In
this paper, Componential Planning and Scheduling for Space
Architecture (CPSSA), a constraint-based framework that
explicitly supports all the characteristics of our AEOS prob-
lem, is introduced. This framework unifies planning and
scheduling problems with basic concepts, i.e. tasks, activi-
ties, opportunities, resources, preconditions, etc. In the prob-
lem description, unrelated tasks to be scheduled or not de-
scribes partial satisfaction of problems. Activities describe
key operations for tasks’ fulfillment. Opportunities identify
logical requirement and temporal constraints of activities.
And resources handle logical constraints and special con-
straints with custom defined constraints. The problems de-
scribed with above concepts are translated into constraint
representation, and solved by interleaving heuristic search
and constraint reasoning. CPSSA is built as a reference
for the development of planning and scheduling system for
AEOS.

The paper is organized as follows. We first introduce prob-
lem description and a new constraint model of CPSSA. Next
the solving component in CPSSA is introduced, and then
a Space Mission Planning and Scheduling engine (SMPS),

45

which is an implementation of CPSSA, is presented. Finally,
we draw some conclusions about the proposed framework.

Problem Description
Basic Concepts

Task and Activity In classical planning, an action is an
abstract operation with preconditions and effects, and a se-
ries of actions must be instantiated, forming the plan that
transforms the initial facts into its goal. In classical schedul-
ing, a job equals a sequence of activities, each of which is
an operation with setup time, predecessors and successors.
A set of activities belong to jobs must be allocated limited
shared resources through time. In our framework, there are
a set of tasks (similar with job and goal) according to re-
quirements, each task could be decomposed into a series of
key activities, and each activity is an operation with pre-
conditions, predecessors and successors. Meanwhile, there
are also assistant activities, which are abstract operations
and could be instantiated to support tasks. Resources are too
rare to meet all tasks, thus only part of tasks (goals) could
be achieved. In the final plan, for each key activity of sched-
uled tasks, there must be a valid opportunity (introduced in
next paragraph) to execute, a rational start time in time win-
dows, predecessors and successors satisfied by activities of
the plan and preconditions satisfied by assistant activities,
and for each resource, there is a rational sequence of activi-
ties within its capacity.

Opportunity Derived from RCPSP (Brucker et al. 1999),
a new opportunity concept replacing mode concept is in-
troduced here. In Multi-Mode RCPSP (Brucker et al. 1999),
each mode reflects a feasible way to combine a duration
and resource requests that allow accomplishing the under-
lying activity. An activity’s opportunity has attributes of
time window, resource requirements, preconditions (domain
dependent), etc. It allows accomplishing the underlying ac-
tivity (activities, for some opportunities being shared among
activities, e.g. downloading opportunities). An activity must
be performed in one of its opportunities. And an activity can
be executed only if it is assigned to a valid opportunity with
enough setup time and rational preconditions in the plan
and satisfies predecessor and successor relations. Opportu-
nity change and preemption are not permitted during activity
execution.

Precondition Furthermore, we extend opportunity to han-
dle causal constraint with preconditions, which are derived
from preconditions of an action in HTN planning (Ghallab,
Nau, and Traverso 2004). The precondition implies how an
activity executes in the current opportunity and which assis-
tant activities should be executed before.

Thus, opportunity is defined for the activity to identify
execution opportunity, which has attributes of feasible time
window, resource requirements, preconditions, etc. In the
space domain, the opportunity is relatively limited within a
time horizon (e.g. daily).

Resource The concepts of resource are similar in
both planning and scheduling definition. We distinguish

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

reservoir resource, reusable resource and timeline re-
source, as in (Bedrax-Weiss, McGann, and Ramakrishnan
2003). In CAIP (Frank and Jonsson 2003), CNT (Pralet and
Verfaillie 2008), OMP (Fratini, Pecora, and Cesta 2008),
timeline means a component or thread of one distributed
complex control system. At any time of one timeline, there
would be no more than one activity to be executed, i.e. the
capacity of Timeline is 1. In our framework, timeline is
similar, which is repressed by a reusable resource with an
availability of one unit per period. For reservoir resource like
battery, capacity consumption will continue after activity ex-
ecution. For reusable resource, capacity will only be used
during activity execution. Each resource maintains its own
activities and profile. Also, our resources are able to gener-
ate new assistant activities in order to satisfy preconditions
of activities.

Plan or Schedule A Plan (or synonymously, Schedule),
is an activity graph made up of activities. Temporal rela-
tions and logical requirements for all activities in the plan
are satisfied. Each key activity is assigned an opportunity,
and physical constraints and preconditions of activities are
satisfied on each resource.

Planning Problem

Assume that 7 is the final plan/schedule. A planning prob-
lem is given by a six-tuple Il =< T'K, A, V,O, R,C >

TK is a set of tasks, {tkq,tka, ..., tkin}, Where tkn is
the number of tasks. Each tk; € TK can be decomposed
into a set of key activities A%, {a;1,a;2, ..., @i qin }» Where
ain is the number of activities in task tk;. A’ C A.

A is a set of activities. Some activities are assistant ac-
tivities Ax, where are independent of any task (produced
by preconditions of A’). Each a € A is at least associated
with three variables, start, end and duration. There may be
some variables to satisfy constraints, e.g. slew angle. Activ-
ity a is applicable if and only if its preconditions satisfies
Pre(a) C m,and a; ; € T = ao0;j = 0;) < Start,, ; €
TWZ'J'?k Ua;; € Resi,j_,k @] Preiijk enmy Effiyj,k € .

V is a set of variables, each v € V is associated with a
finite domain dom(v) and also not all variables related with
activities.

O is a set of activity opportunities, each o € O is asso-
ciated with activities. Opportunity o is exclusively belong to
one activity, e.g. imaging opportunity, or shared with several
activities, e.g. downloading opportunity. O; ; is the set of
opportunities for an activity a; j, {0 1,042, -, 0i j,on }»
while on is the number of elements in the set. There are
four attributes, time window T'W; ; ., resource requirement
Res; jr,» and quantity Qua; ;. preconditions Pre; ;i
for each opportunity o.

R is a set of resources,, each r € R is associated with
a fluent variable, and a conditional trigger to response to
preconditions of activities. {r1,r2, ..., 7, }, While rn is the
number of elements in the set. a; ; € r = profile; €
[0, capacity,],t € [0, HT], HT is the end of Horizon. Re-
source r checks its state and activity’s preconditions, and
generates new activities, Pre(a) Cm=d' C 7

C is the constraints of variables in V.

46

Then a plan 7 can be defined as a triple-tuple, 7 =<
A, V,=<>, A,V are the set of activities and variables in plan,
respectively. < is the order relation of activities in plan. Any
task is scheduled, every key activity of it must be scheduled,
ie. Vtk; € m = a;; € 7, Va;; € tk;. Activity graph AG,
as in Figure 5, means a directed graph < A, E >, A is the set
of activities, F is the set order relations in A. AG is a repre-
sentation of activity relations of 7,80 a; ; € AG < a;; €7

And optimization was generally assumed to be unim-
portant in planning, but our problem is an partial satisfac-
tion problem, and optimization criteria for IT is h(w) =
max 'y, Priy,,tk; € 7.

In this way, problems that can be represented by the above
concepts will be able to be solved in our framework.

Example

In the AEOS domain, we use basic concepts defined above
to describe reality problems as in Figure 3. We introduce
“Get Image” of a certain target or strip as a task, which
can be decomposed into two key activities, imaging and
downloading. There are also assistant activities, such as sun-
pointing, slewing, etc., produced by resources. The key ac-
tivities have their own opportunities, imaging opportunity
and downloading opportunity. Imaging opportunity identi-
fies time windows of satellites where the imaging of the
target can take, and the amount of memory being used, at-
titude and power preconditions, etc. Downloading opportu-
nity identifies which satellite can download images to which
station, how many memories will be transferred, how many
power will be consumed. For physical reasons, the imag-
ing opportunity is exclusively belong to a imaging activ-
ity, while the downloading opportunity is shared with many
downloading activities, i.e. images of imaging activities
could be downloaded together in a downloading opportu-
nity of a satellite with a ground station. In each opportunity,
there are temporal attributes, e.g. time window, predecessor
and successor, and logical attributes, e.g. power and attitude
preconditions. The resources could consider above precon-
ditions and generate new assistant activity instantiations into
current plan based on its state profile, and be responsible
for checking special constraints with third party code. An
attitude precondition implies a slewing activity if attitudes
of adjacent activities are different, which is determined by
attitude control resource, while a power precondition is han-
dled by battery resource. For example, one imaging activity
has preconditions, i.e. a 12 kwhr power precondition, a (0,
2, 3) attitude precondition (expressed in terms of Euler an-
gle (Yaw, Roll, Pitch)). To satisfy a power precondition,
battery resource of the satellite will insert or not a power
production activity (sun-pointing) based on its state. To sat-
isfy an attitude precondition, attitude control resource of the
satellite will insert or not a slewing activity based on attitude
difference of prior activity and this imaging activity. Simply,
activities claim preconditions of power or attitude, and then
resources respond it with new activity based on self-state.
As in Figure 3, attitude, sensor, battery, memory and sta-
tion are defined as ‘Timeline’, ‘Reservoir’ and ‘Reusable’
resources. A satellite is made up of attitude, sensor, battery,
memory, etc. In reservoir and reusable resource definition,

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

the numbers, e.g. 100 and 30, are capacities of the resources.
Slewing and sun-pointing is defined separately as abstract
activities. There are three tasks, getlmagel, getlmage2 and
getlmage3. In task definition, the numbers, e.g. 32, 13, etc.,
are the coordinates of targets. GetImagel includes two ac-
tivities, i.e. imaging1 and downloading1, which are concrete
activities and have their own opportunities. Downloading
opportunities dol, do2, do3 are shared with three download-
ing activities. Successor attribute of activities identifies or-
der relations of concrete activities. Opportunity attribute of
activities is a list of pending opportunities, which can be
shared with other activities. The resource requirement def-
inition, i.e. Res, is about resources and their consumption
quantities. The precondition definition, i.e. Pre, is about
state of resources, e.g. (Attitude, (0, 2, 5)) identifies that at-
titude resource is requested in attitude (0, 2, 5) before the
activity execution.

//Resource definition

Timeline attitudel, sensorl;

Reservoir batteryl (100), memoryl (30);

Reusable stationl (2), station2(3):

satellitel = {attitudel, sensorl, batteryl, memoryl};
//Task definition

Task getlmagel (32, 13), getlmage2(12, 34), getlmage3 (53, 21);
//Activity definition

Assistant Activity s/ewing, sun—-pointing;
getlmagel. Activity imagingl, downloadingl;
getlmage2. Aetivity imaging2l, imaging22, downloadingZ;
getlmagel3. Activity Imaging3, downloading3,
imagingl. Successor. Add (downloadingl) ;

imagingZ2l. Successor. Add (downloading?) ;

imaging22. Successor. Add (downloading?) ;

imaging3. Successor. Add (downloadings) ;
//Opportunity definition

Imaging Opportunity 7ol, 10Z;

Downloading Opportunity dol, do2, dos3;

imagingl. Opportunity. Add ({7011, 1012}) ;

imaging2. Opportunity. Add ({7021, 1022}) ;

imaging3. Opportunity. Add ({7031, 1052}) ;
downloadingl. Opportunity. Add ({dol, do2, do3}) ;
downloading2. Opportunity. Add ({dol, do2, do3}) ;
downloading3. Opportunity. Add ({dol, do2, do3}) ;

7ol TW = [0,3]; //time window

//resource requirement

iol.Res = {(sensorl, 1), (powerl, 40), (memoryl, 30)} ;
7ol.Pre = {(Attitude, (0, 2,5)), (Power, 80)};

702.TW = [6,9];

702 Res = {(sensorl, 1), (powerl, 40), (memoryl, 30)} ;
702 Pre = {(Attitude, (0, 2,5)), (Power, 80)} ;
//other imaging opportunities are curtailed.
dol.TW = [7,10];

dol.Res = {(powerl, 20), (stationl, 1)};
dol.Pre = {};

do2. TW = [12,17];

do2.Res = {(powerl, 20), (stationl, 1)} ;
do2 Pre = {};

do3. TW = [18,23];

do3. Res = {(powerl, 20), (stationl, 1)} ;
do3. Pre = {};

Figure 3: The problem description of an AEOS example

47

Constraint Model

The concepts defined above are not sufficient for our
constraint-based framework, since the constraint and vari-
able are also central concepts in ground level. This is done
by mapping each activity graph (partial plan) to a constraint
representation. The advantage of such a representation is
that any algorithm which solves Dynamic Constraint Satis-
faction Problem (DCSP) can be used to solve our integration
problem. However, there are some new requirements in con-
straint management in our AEOS problem.

As in Figure 4, for each activity, there are three basic vari-
ables, ‘start’, ‘end’ and ‘duration’, and a constraint ‘AddEq’
(start + duration = end). We can define customized vari-
ables (e.g. angle) and constraints between these variables
and other variables of a specific activity. Global constraint
between variables of different activities can also be defined.

Following a task’ schedule state and a activity’s gener-
ation or adjustment, a constraint model maintenances their
variables and constraints. For partial satisfaction feature of
problems, the constraint model will add or remove variables
and constraints of tasks and activities, and the domains of
variables will be relaxed or restricted.

Attitude angle of an imaging activity is a function of
its start time, 12_angle = Func(I2_start),I1_angle =
Func(Il_start). This function cannot be translated into
constraint representation for its complex spatial geometry
relations. So third part code must be used in this con-
straint model (Grasset-Bourdel, Verfaillie, and Flipo 2011).
The S_dur, duration variable of slewing activity depends
on I1_angle and I2_angle. S_dur also has influence on
11 _start and I2_start. This is a temporal dependence
problem, which cannot be described in early framework, e.g.
CAIP and OMP. In our framework, the third part function
is also derived from basic expression. Thus, physical con-
straints can also be embedded.

The slewing activity is also an example of handling log-
ical constraints in planning. For instance, attitude precon-
dition of 12 is I2_angle, and the attitude resource will add
a slewing activity by judging the condition, “I2_angle #
I1_angle = add a slewing activity”. Similarly, assistant
activities, like slewing and sun-pointing activities, can be
heuristically added by checking the conditional constraints,
which depend on time or activity’s precondition.

The special constraints as in Figure 3, are handled by
the derived class of resources. For example, the cumulative
imaging time could be defined in the camera definition and
checked in constraint reasoning. These special constraints
are also derived from basic constraint, but a black-box con-
straint checking function.

Solving

Our AEOS problem is translated into constraint models,
then can be solved with mature solution techniques of con-
straint programming, such as constraint propagation, con-
sistent checking. As a partial satisfaction problem, we use
mature heuristic search algorithms within high level con-
cepts. Thus, the solving process is composed with two parts,
i.e. heuristic search and constraint reasoning, and an activity

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Activity
Graph

Imaging! %—»‘ Slewing

Figure 4: An activity graph and its constraint representation
of a simple AEOS problem

graph is a bridge of them. In heuristic search, we construct
and revise the activity graph with causal constraints. In con-
straint reasoning, we resolve temporal conflicts and resource
flaws (Frank and Jonsson 2003). However, heuristic search
and constraint reasoning are not sequential stages, but inter-
leaved with each other.

Heuristic Search

Assuming that the initial condition is empty and the goal
is to be accomplished as many tasks as possible. If a task
comes into conflict with scheduled tasks, the task will be
unscheduled. So the tasks are tried to be scheduled in a
heuristic order. Optimization can be guaranteed by iterated
search with different order. Key activities of each task are
sequentially scheduled with heuristic information used to
search a feasible opportunity, and then resources response to
the opportunity’s preconditions by generating or adjusting
assistant activities. In this way, we can get an activity graph
satisfying the logical constraints and precedence constraints,
as in Figure 5. The heuristic search includes three parts,
i.e. scheduling order of tasks, opportunities of activities and
assistant activities for logical satisfaction of preconditions.
Following the feedback from the temporal reasoning and re-
source reasoning in constraint reasoning (discussed in the
next section), an iterative heuristic search discovers another
activity graph with different tasks, alternative opportunities
of key activities or different assistant activities generated.

Heuristic generate
.
/

-~ Precondition
—» Precedence
—— Current Opportunity

Task

Activity —a ela3]\ LSBT Has Opportunity
Opportunity
feedback Heuristic plan tasks and select
opportunities for their activities

Activity Graph [20]

Figure 5: Heuristic search process

Constraint Reasoning

Given an activity graph from ‘heuristic search’ process, con-
straint reasoning handles the temporal and resource con-
straints in the activity graph, as in Figure 6. The temporal

48

constraints are represented with a Simple Temporal Net-
work (STN). In our framework, a STN can be directly pro-
duced from activity graph and mapped into a distance graph.
Consistency checking is implemented by a shortest path al-
gorithm (Dechter, Meiri, and Pearl 1991) in the distance
graph. It is a popular technique in current research on in-
terval constraints. There would be a subset of activities of
an activity graph for each resource. This subset of activi-
ties can be expressed with a Resource Temporal Network
(RTN). In RTN, resource constraints can be handled by a
flaw management mechanism (Laborie 2003), and resolved
with envelope-based algorithm or ESTA algorithm (Policella
et al. 2009). It is sent to heuristic search process whether
there is a solution or not as a feedback.

[t2ss.t25¢] [t2es.t2ec] [t6ss.t6se] [tetbec]

Temporal

constraints [{lsstlsel
:>

Itlestiee]
[tdss,tdselltdes.tdee] [tSsstSse]

Simple Temporal Network

[63ss,35e] [t3es,3ey

Activity Graph

Flaw
b resolution

Resource
constraints

=l gl

=1 el
[1255.25e] [2e3,2¢] [t6ss.t6se] [16es.thee|

FL=10 0 plael
[edss.tdsel [tdes.tdee]

Timeline_1

fe=2 rie2
e)
[€255,025¢] [12e5,02¢¢] [t6ss.t6se] [t6es.t6ec]

Reusable_1

rie=l ool
[tfssitisel [tlestlee]

rl=3 rlg=l
[t3ss.3se] [t3es.tdec]

N I I —
|_:I|b,
Profile
— Compute
I I
[ﬁ |
(]
Lﬂ_ll.

=3
[t5es,tSec]

ri=3 o rle=l =1
[tssitdse] [tdesitdee] [(5s8tSse]

Resource Temporal Network

Reserior_1

Profile

Figure 6: Constraint reasoning process

Thus, we could find suitable solutions by interleaving the
heuristic search and constraint reasoning processes. Activity
graph bridges the gap of planning and scheduling in solving
by hybrid with heuristic search and constraint reasoning.

SMPS: An Implementation

The Space Mission Planning and Scheduling engine (SMPS)
is developed as an implementation of our framework. This
engine has been designed and implemented as a software
module. The engine first receives a problem description with
basic concepts, translates the description into a constraint
representation, and then solves it by interleaving a heuristic
search and constraint reasoning process. This software is not
totally stable, but it has already been proved to be suitable
for AEOS mission planning problems by a series of simple
experiments.

The SMPS engine is written in C# language and im-
plemented on ‘Windows’ platform. In our implementation,

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

there are seven components as in Figure 7. A ‘Constraint’
engine component, based on Cream.Net, is the basic part
of the engine. A ‘Third Party Functions’ component is a
encapsulation of dynamic linked library provided by indus-
try departments. A ‘Tasks’ component expands (Wang et al.
2011) with new activity decomposition model. An ‘Activity
Graph’ component, reference to OMP, bridges the top layer
of activities and bottom layer of variables. A ‘Solver’ com-
ponent has two parts, heuristic search and constraint reason-
ing. The heuristic search process consists of a greedy search
for high priority tasks and opportunities, and a heuristic se-
lection of assistant activity for preconditions. The constraint
reasoning process utilizes Floyd-Warshall to check tempo-
ral consistency in STN, sequence selects flaws of RTN to
make decision and resolve them with ESTA algorithm. A
‘Resources’ component utilizes profile to check resource ca-
pacity, and transfer third party functions to check special
constraints.

GUI
Solvers || Tasks Activity Resources Third l?arty
Graph Functions

Constraint Engine

Figure 7: SMPS software components

We selected seven simple examples in AEOS to test our
implementation of SMPS. There are different numbers of
satellites, ground stations and task requirements in exam-
ples, so tasks have different average numbers of imaging
opportunities and downloading opportunities. We built plans
for the examples with our SMPS. The results (3GB RAM,
Intel Core 2, 2.1GHz) are shown in Table 1.

For small instances, our SMPS can find a good solution
in limited time. There would be more scheduled tasks if
there are much more downloading opportunities between in-
stance2 and instance4. Similarly, there would also be more
scheduled tasks if there are more imaging opportunities be-
tween instance2 and instance5. However, that is not absolute
true, like in instance4 and instance6. The computing time
flares up when there are much more tasks to be scheduled,
which is because that there is not incremental constraint rea-
soning yet. We cannot prove that SMPS is a best engine so
far, but we can confirm that our framework is suitable for our
AEOS problem. And we will test it with much more com-
plex instances.

Conclusions and Future Work

We have presented a constraint-based framework of plan-
ning and scheduling for AEOS, introduced basic concepts
in the problem description, discussed constraint models and
solving techniques. We advocated a top level problem de-
scription incorporating planning and scheduling features. In
order to gain maximum flexibility in solving problems, we

49

used the constraint representation in constraint model, which
allows us to use algorithms from the constraint program-
ming community. In the solving framework, we interleaved
heuristic search and constraint reasoning instead of a hy-
brid of planning and scheduling processes. This framework
could handle new challenges of AEOS domain efficiently.
For instance, a partial satisfaction problem was described
by unrelated tasks and solved by heuristic search, a tem-
poral dependence problem was translated into a constraint
model with custom constraints from third party functions
and solved by flaw resolution in constraint reasoning, log-
ical constraints were checking by resources and resolved by
generating assistant activities and special constraints were
defined as custom constraints and checked by resources.

As an extension of RCPSP (Oddi and Rasconi 2009), the
framework could also be applied to the RCPSP scheduling.
Since any machine scheduling problem can be regarded as a
RCPSP problem (Brucker et al. 1999), the framework could
also be applied to machine scheduling, e.g. JSSPTW (Oddi
et al. 2011). In planning aspect, we have considered logical
preconditions of activities, so some planning problems could
be handled. Most important thing is that our framework
could handle space mission planning problems integrating
planning and scheduling features.

In conclusion, our work constitutes a “work-in-progress”,
several applications are being developed. We are ac-
tively considering extensions to support other domains,
e.g. geosynchronous earth observation satellites, navigation
satellites, deep space observation satellites and even more
general domains. We will further give more formal repre-
sentation and define its semantics. We also would like to
consider much more efficient algorithms (Kramer and Smith
2004; Oddi et al. 2011) in solving of our framework.

Acknowledgement

This work was funded by Chinese Natural Science Foun-
dation 71031007, 70801062 and 71071156. This work was
also supported by Hunan Provincial Innovation Foundation
for Postgraduate and National University of Defense Tech-
nology Doctorial Innovation Foundation B110504. The au-
thors would like to thank Thomas, Zhenyu Yang, Yuning
Chen and Renjie He for their help in grammar checking,
problem understanding and solving.

References

Beaumet, G., and Verfaillie, G. 2007. Estimation of the
minimal duration of an attitude change for an autonomous
agile earth-observing satellite. CP 2007 (LNCS 4741):3—
17.

Beaumet, G.; Verfaillie, G.; and Charmeau, M. 2007. Au-
tonomous planning for an agile earth-observing satellite.
Bedrax-Weiss, T.; McGann, C.; and Ramakrishnan, S. 2003.
Formalizing resources for planning. In Proceedings of
ICAPS-03 Workshops on PDDL, 7-14.

Brucker, P.; Drexl, A.; Mohring, R.; Neumann, K.; and
Pesch, E. 1999. Resource-constrained project scheduling:
Notation, classification, models, and methods. FEuropean
Journal of Operational Research 112:3-41.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Table I Results of examples computed by our SMPS engine

: average no. of average no. of no. of no. of no. of no. of .
instance time (s)

imaging opportunities ~ downloading opportunities ~ satellites ~ ground stations tasks scheduled tasks
instancel 4 12 2 2 20 18 0.71
instance2 6 12 2 2 20 17 0.73
instance3 5 30 3 3 20 19 1.06
instance4 6 24 3 3 90 27 4.33
instance5 7 12 2 2 100 33 8.75
instance6 7 15 3 3 100 35 10.76
instance? 7 46 4 3 500 80 156

Dechter, R.; Meiri, 1.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61-94.

Frank, J., and Jonsson, A. 2003. Constraint based attribute
and interval planning. Journal of Constraints 8(4):339-364.

Frank, J. D.; Clement, B. J.; Chachere, J. M.; Smith, T. B.;
and Swanson, K. J. 2011. The challenge of configuring
model-based space mission planners. In Seventh Interna-
tional Workshop on Planning and Scheduling for Space (IW-
PSS 2011).

Fratini, S.; Pecora, F.; and Cesta, A. 2008. Unifying plan-
ning and scheduling as timelines in a component-based per-
spective. Archives of Control Sciences 18(2):231-271.

Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning Theory and Practice. Elsevier.

Grasset-Bourdel, R.; Verfaillie, G.; and Flipo, A. 2011.
Building a really executable plan for a constellation of agile
earth observation satellites. In Seventh International Work-
shop on Planning and Scheduling for Space (IWPSS 2011).

Grasset-Bourdel, R. 2010. Interaction between action and
motion planning for an agile earth-observating satellite. In
Proceedings of the Twentieth International Conference on
Automated Planning and Scheduling (ICAPS-10).

ILog. 2003. ILOG Scheduler 5.3 User’s Manual.

Kramer, L. A., and Smith, S. F. 2004. Task swapping for
schedule improvement, a broader analysis. In Proceedings
of the 14th International Conference on Automated Planning
and Scheduling.

Laborie, P. 2003. Resource temporal networks: Definition
and complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, volume 18, 948—
953.

Lematre, M.; Verfaillie, G.; Jouhaud, F.; Lachiver, J.-M.;
and Bataille, N. 2002. Selecting and scheduling observa-
tions of agile satellites. Aerospace Science and Technology
6(5):367-381.

Lian, Z., and Xing, L. 2011. A heuristic approach to dy-
namic rescheduling of AEOS system. In 3nd International
Conference on Computer and Network Technology.

Lian, Z.; Tan, Y.; Xu, Y.; and Li, J. 2011. Static and dynamic
models of observation toward earth by agile satellite cover-
age. In International Workshop on Planning and Scheduling
for Space.

50

Muscettola, N. 1994. HSTS: Integrating Planning and
Scheduling. Intelligent Scheduling.

Oddi, A., and Rasconi, R. 2009. Solving resource-
constrained project scheduling problems with time-windows
using iterative improvement algorithms. In Nineteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS-09).

Oddi, A.; Rasconi, R.; Cesta, A.; and Smith, S. F. 2011. Ap-
plying iterative flattening search to the job shop scheduling
problem with alternative resources and sequence dependent
setup times. In Workshop on Constraint Satisfaction Tech-
niques for Planning and Scheduling Problems.

OptTime. 2011.
WWW.optwise.com.

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. E. 2009.
Solve-and-robustify: Synthesizing partial order schedules by
chaining. Journal of Scheduling 12:299-314.

Pralet, C., and Verfaillie, G. 2008. Using constraint
networks on timelines to model and solve planning and
scheduling problems. In Rintanen, J.; Nebel, B.; Beck, J. C.;
and Hansen, E. A., eds., ICAPS, 272-279. AAAI.

Wang, P., and Reinelt, G. 2010. A heuristic for an
earth observing satellite constellation scheduling problem
with download considerations. Electronic Notes in Discrete
Mathematics 36:711-718.

Wang, P.; Reinelt, G.; Gao, P.; and Tan, Y. 2011. A model, a
heuristic and a decision support system to solve the schedul-
ing problem of an earth observing satellite constellation.
Computers & Industrial Engineering 61:322-335.

Opttime scheduler. available via

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Integrated Project Selection and Resource Scheduling of Offshore OQil Well
Developments: An Evaluation of CP Models and Heuristic Assumptions

Thiago Serra and Gilberto Nishioka and Fernando J. M. Marcellino
PETROBRAS — Petréleo Brasileiro S.A., Av. Paulista, 901, 01311-100, Sdao Paulo — SP, Brazil
{thiago.serra, nishioka, fmarcellino } @ petrobras.com.br

Abstract

This work aims at introducing and tackling the inte-
grated problem of selecting well development projects
and scheduling offshore resources to maximize the
short-term production of oil. The importance of incor-
porating the project selection into the resource schedul-
ing comes from the need for immediate payback that
oil companies have due to the expenses for hiring such
resources. After all, the return of production can be
improved if projects with smaller compensation are
avoided. The approach is based on the refinement of a
Constraint-Based Scheduling (CBS) model previously
reported to tackle the Offshore Resource Scheduling
Problem (ORSP), and on the introduction of an alter-
native model. This latter model relies more heavily on
resource constraints in order to take into account the
recent developments on their propagation mechanisms.
Moreover, accessory constraints are explored to achieve
better solutions in short runs. They are intended to in-
crease the domain pruning with heuristic assumptions.
The experimental analysis conducted evidences the ca-
pability of both models to generate good solutions, a
short performance prevalence with the use of additional
constraints, and some situations where it is beneficial to
use short-run solutions as input to the long runs.

1 Introduction

When oil and gas offshore reservoirs are discovered, one of
the most critical bottlenecks that prevents their prompt ex-
ploitation is the availability of well development resources.
The development of each well relies on a sequence of ac-
tivities of different types, such as the early stages of well
drilling and completion performed by oil rigs, and the later
stage of connecting the wells to a producing unit with pipes
loaded at harbors and conveyed by pipelay vessels. Besides,
a number of technical requirements — such as the range of
depth for operation and onboard machinery available — re-
strains the types of resources capable of performing each ac-
tivity. Once the corresponding development sequence is con-
cluded, a daily production starts on each well. Thus, the most
straightforward alternative to assess the immediate payback
of the development resources of an oil company is to maxi-

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

51

mize the production that can be achieved in a given horizon
by scheduling them to develop wells on reservoirs.

The depiction of the Offshore Resource Scheduling Prob-
lem (ORSP) has been successively refined since its introduc-
tion by Hasle et al. (1996). do Nascimento (2002) showed
that it belongs to the class of NP-Hard problems for being as
hard as the Job-Shop Scheduling Problem. In other words,
it is not known an efficient algorithm to find an optimal so-
lution for the general case of the problem. In the following,
Accioly, Marcellino, and Kobayashi (2002), Pereira, Moura,
and de Souza (2005), Moura, Pereira, and de Souza (2008),
and Serra, Nishioka, and Marcellino (2011) complemented
the definition of the problem by including, among other
things, resource displacements, onboard inventory and pro-
duction maximization instead of makespan minimization.
Their approach to the problem varied back and forth from
Constraint Programming (CP) (Accioly, Marcellino, and
Kobayashi 2002; Serra, Nishioka, and Marcellino 2011) to
the GRASP metaheuristic (Pereira, Moura, and de Souza
2005; Moura, Pereira, and de Souza 2008). The focus was
switched back to CP due to recent developments of the tech-
nique, which provided a competitive edge for solving large
instances in a short amount of time and leaned the authors of
the later work towards using it to approach the problem once
more. In addition, Serra, Nishioka, and Marcellino (2011)
first approached the issue of assessing the optimality gap
of the solutions by means of a straightforward greedy al-
gorithm. Serra, Nishioka, and Marcellino (2012) reduced
the optimality gap of that former effort in a benchmark of
instances by approaching a relaxation of the problem that
corresponds to its prior depiction by Moura, Pereira, and de
Souza (2008) with a continuous-time Mixed-Integer Linear
Programming (MILP) model. Furthermore, there are several
other approaches concerned with similar or related problems
in the oil industry. To name but a few, Iyer et al. (1998)
addressed a different approach to integrate well develop-
ment planning and resource scheduling, Glinz and Beru-
men (2009) considered the resource scheduling of offshore
exploratory activities, and Aloise et al. (2006) tackled the
onshore scheduling of rigs for well maintenance activities.
The ORSP differs from those problems due to the amount
of details considered, which also evidences its importance
for handling operational decisions in one of the most expen-
sive and return-sensitive processes in the value chain of oil

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

companies.

The aim of the current refinement of the ORSP is to inte-
grate the project selection as a mean to improve the produc-
tion payback and to avoid infeasibility dead-ends. Infeasi-
bility can be caused by overconstrained situations in which
the available resources are not able to cope with the entire
set of activities. Moreover, it is possible to conceive cases
in which there are enough resources to do so but a better
outcome can be achieved if those resources are not obliged
to perform all activities. The problem is approached by two
Constraint-Based Scheduling (CBS) models. The first of
them is adapted from a model targeting the ORSP without
project selection. The second model presents major changes
to take the most of the developments related to domain filter-
ing of resource constraints. Additional constraints based on
heuristic assumptions are appended to both models for eval-
uation. They are aimed to reduce the search space in order
to provide better solutions in short runs.

The organization of the remainder of the paper is as fol-
lows. A definition of the ORSP including project selection
is provided in section 2. It is followed by the description of
the CP models and additional constraints conceived to tackle
the problem in section 3. The conducted experimental eval-
uation is described in section 4, and the results are discussed
in section 5. Final remarks on the achievements and possi-
bilities of future work are presented in section 6.

2 Problem Definition

The Offshore Resources Scheduling Problem (ORSP) can be
depicted as a matter of deciding if, when and how to perform
each of several activities using a set of resources in a short-
term period. Prior to considering project selection as a part
of the ORSP, only loading activities used to be considered
optional. Each project consists of the development activities
of a well that must be performed by rigs and vessels. Each
of those activities must be assigned to a resource compatible
with its needs. Those resources are required to attend to a
large geographical area, where displacements between sites
may take a considerable time. Time is represented in days,
starting from a date set as 0. For notational convention, re-
sources will be denoted by index ¢ assuming values in the
set I, activities by index j assuming values in the set .J, and
locations by index k assuming values in the set K. Further-
more, Jyr C J denotes the set of activities to be performed
on wells, Jo C Jy the set of connection activities unload-
ing pipes, Ky C K the set of wells, Jg = J \ Jy the set
of loading activities, and Ky = K \ Ky the set of harbors.

Optimization criteria

We want to maximize the short-term production of the
schedule, which is a measure of how much each well would
produce since the day its development finishes until a given
time horizon H. Each activity j induces a daily production
rate pr; once it is concluded, which is nonzero only in the
case of the last activity of each well.

Resource constraints

e Resources like rigs and vessels are unary, meaning that
each of them performs at most one activity at a time.

52

e A resource ¢ can be assigned to perform an activity j if,
and only if, ¢;; = 1.

e Only one resource can be assigned to perform an activity
on a well at any time.

e If aresource ¢ has to perform consecutive activities j; and
72 on distinct locations, it must be accounted the displace-
ment time dt;x, x, between them.

e Each resource ¢ has a contractual period of use, ranging
from its release date rr; > 0 to its deadline rd; > rr;.

e During that contract period, there are predicted periods
of unavailability. Without loss of generality, they can be
mapped as activities belonging to a separate set J;;.

Activity constraints

e Well development activities are non-preemptive: they are
performed without interruption until their conclusion.

e Each well activity j has to be scheduled between its re-
lease date ar; > 0 and its deadline ad; > ar;.

e Each activity j is associated with a location loc;.
e FEither all activities in a well are performed or none is.
e Each well activity j requires p; days to be processed.

e One activity may be preceded by other activities. Let
pcj i, = 11if, and only if, activity jy is preceded by j;
and pd;, ;, be the minimum delay in days between both.

e Some activities may belong to a cluster, in which all ac-

tivities should be performed by a single resource. Let cl;
denote the index of the cluster of each activity j.

Inventory constraints
e Each resource starts the schedule with an empty inventory.

e Each resource ¢ has a maximum inventory capacity ic;,
which is nonzero only for pipelay vessels.

e Only resources with positive inventory capacity may per-
form loading activities at harbors.

e Each harbor k£ may support up to s; simultaneous loading
activities, where k € Ky .

e A loading activity performed by a resource ¢ lasts from
mal; up to mal; days.

e The increase of the onboard inventory due to a loading
activity is proportional to the time it lasts, and a resource
1 increases its inventory by ic; after mal; days.

e I[f activity j involves a connection, the resource perform-
ing it must unload wp; of pipe weight in the well.

e [oading activities are not subject to clusters or precedence
constraints.

e The number of loading activities is not predetermined.
However, it is possible to set an upper limit as the product
of the number of harbors by the number of connections.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

3 Approach

The models designed to tackle the problem are based on the
Constraint Programming (CP) technique, or more specifi-
cally, on Constraint-Based Scheduling (CBS) solving mech-
anisms as well as on modeling abstractions involving inter-
val variables. Hence, a short introduction on the subject is
given prior to the description of the approach itself.

From CP and CBS to interval variables

Constraint Programming (CP) is defined by Lustig and
Puget (2001) as a computer programming technique in
which combinatorial problems are formulated using con-
straints designed to capture problem structure more easily.
According to Bartdk (2001), the strength of the technique
comes from the process of constraint propagation. It works
by means of filtering algorithms that infer domain reduc-
tions involving the decision variables of the problem. They
prune the search space before and during the search pro-
cess. The techniques to ensure the basic consistency lev-
els were first consolidated by Mackworth (1977). Henten-
ryck, Deville, and Teng (1992) provide a remarkable exam-
ple on how their performance can be improved if they are
specialized. More generally, the competitive edge of CP to
approach hard problems is due to how it can handle speci-
ficities of application domains, usually by means of global
constraints. Bessiere and Hentenryck (2003) observe that a
global constraint represents a complex but common relation
among a set of variables, for which more efficient propaga-
tion algorithms are designed. In addition, the techniques be-
neath the search process vary from the classical backtrack-
ing algorithms and their improvements (van Beek 2006) up
to adaptive methods (Laborie and Godard 2007) and local
search algorithms (Hoos and Stiitzle 2005). With the advent
of algebraic modeling languages supported by CP solvers,
Lustig and Puget regarded that the technique was no longer
restricted to computer programming experts. Therefore, it
was possible to use it in the development of abstract for-
mulations suitable for direct execution in these solvers. In
a singular manner, scheduling represents an application do-
main for which propagation, search and modeling devices
evolved noticeably, and thus contributed for a greater use of
CP. The interested reader is refered to Dechter (2003) and
Baptiste, Le Pape, and Nuijten (2001) for a broader intro-
duction to CP and to Constraint-Based Scheduling (CBS),
respectively; and to Baptiste et al. (2006) as well as Bartdk
and Salido (2011) for a slight update on the latter topic.
Interval variables represent an expressive generalization
of abstractions such as activities and resources for model-
ing scheduling problems. The concept as described hereafter
was first introduced by Laborie and Rogerie (2008) and fur-
ther extended by Laborie et al. (2009). Each interval variable
depicts an event through a collection of interdependent prop-
erties such as its presence, starting date, length and ending
date. Those properties can be used to define constraints be-
tween pairs of intervals and will be denoted by the follow-
ing functions over the interval given as argument, respec-
tively: presence, start, length and end. The consistency
of such binary constraints is easily guaranteed by handling

53

Boolean properties as a two-clause Satisfiability Problem (2-
SAT) (Laborie and Rogerie 2008), and temporal variables as
a Simple Temporal Problem (STS) (Cesta and Oddi 1996).
Besides, it is possible to formulate complex relations ac-
cording to a hierarchical structure imposed by one-to-many
constraints such as alternative and no-overlap, as well as
cumulative and state functions. The alternative constraint
imposes that only one interval in a collection can represent
some event and thus occur. Intervals can be grouped into se-
quences, upon which the no-overlap constraint can be im-
posed to state that only one interval can occur at a time.
Optionally, a transition function is given to define a setup
time between consecutive intervals in the sequence. Inter-
vals can also be used to define cumulative functions over
producing and consuming events. In such case, the start and
the end of each interval in the cumulative function is asso-
ciated with step variation coefficients. It is possible to con-
strain the value of a cumulative function during an interval or
on its entire domain. Cumulative functions represent a gen-
eralization of cumulative resources, for which many types
of consistency have been proposed and refined, and a num-
ber of filtering algorithms has been studied. They range from
the classical edge-finding algorithm that infers ordering rela-
tions between activities in disjunctive resources (Carlier and
Pinson 1994) up to recent developments such as energetic
reasoning in cumulative resources with activities of variable
length (Vilim 2009). Alternatively, state functions can be de-
fined as temporal properties that constrain the execution of
conflicting intervals. They can also be subject to transition
functions among their states. All the abstractions just men-
tioned will be used somehow to model the problem hereafter.

Adapting a model previously reported: M

The model described in this section is adapted from the one
introduced by Serra, Nishioka, and Marcellino (2011). The
main difference consists of permitting the absence of well
development activities in the current case. Moreover, con-
sidering the sparsity of the matrix M, which expresses the
combination of activities to resources, separate vectors were
used for well and harbor activities. They were indexed by the
pairs of resource-activity compatibilities instead. Neverthe-
less, given that this is more of an implementation issue than
a modeling design choice, the previous notation was kept in
the remainder of the description for simplicity.

Variables and constraints The first-class depiction by
means of interval variables is used to represent vector a and
matrix M. Since each interval of a corresponds to an activity
of the schedule, the following domain restrictions apply to
those related to well development and resource maintenance
activities:

start(aj) > arj, Viedw (1)
end(a;) < adj, vViedw (2)
length(a;) = pj, viedw ()
presence(a;) = 1, Viedu @)

The precedence constraints are directly stated over the inter-
vals of a associated with each activity. The first constraint

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

below guarantees the chronological order between pairs of
activities subject to a precedence relation, while the second
one ensures that the presence of the latter interval depends
on whether the former is also present. Notice that the lat-
ter constraint suffices to handle the project selection, since
it is only worth performing an activity of a well if all ac-
tivities associated with that well are also performed and any
resumed development can be removed at post-processing.
Besides, tighter constraints involving chains of activities are
avoided. The rationale is to facilitate the work of local search
algorithms in which the solver could possibly rely, since par-
tial developments are tolerated in this case.

end(aj,) + pdj, j, <

start(aj,), Vi1 € Jw,j2 € Jw,
g, =1 (5)
presence(aj,) —
presence(a;j,), Vi1 € Jw, j2 € Jw,
g, =1 (6)

Each non-empty cell m;; € M corresponds to a compat-
ible combination of a resource ¢ € I and an activity j € J,
i.e. ¢;; = 1. Therefore, it is present in a solution if such as-
signment occurs. The following domain restrictions are im-
posed according to the type of activity:

start(mgj) > MAX (rr,arj), Vi€ 1,5 € Jw,

Cij = 1 (7)

end(mi;) < MIN(rd;,ad;), Vi€ l,j€ Jw,
Cij = 1 @®
start(mg;) > rry, Viel,je Jg,ci; =1 (9)

end(m;;) < rd;,
length(m;;) > mil;,

Viel,je Ju,ci; =1 (10)
Vi el,je JH,CZ'j =1 (11)
Viel,je JH,CZ‘J‘ =1 (12)
The vector a and the matrix M are bound by the constraint

alternative, which states that at most one interval from the
j-th column of M occurs and that it corresponds to a;:

VieJ (13)

The clustering constraints are represented by logical impli-
cations, which force the occurrence of the intervals of all
activities of a cluster in the same line of M:

length(m,;) < mal;,

alternative(a;, Mj),

presence(m;, j,) —

Vip € 1,i9 €1,
jl S JWan S JW7
’il 7é iQ, Clj1 = Clj2 (14)

The control of concurrency on wells and in the usage of
each resource is based on the vectors of sequences w and r,
respectively. For the purposes of this work, each sequence
will be denoted as a set of intervals. Those intervals pertain
to a in the former case and to M in the latter:

Vk € Ky

Viel

- presence(m;, j,),

wy ={a; | j € J Nloc; =k},
ri:{mij|jEJ/\cij:1},

(15)
(16)

54

In order to prevent resources from being assigned to more
than one activity at a time, the no-overlap constraint is im-
posed over each sequence r; € r. It is accompanied by the
transition function r¢; : K x K — N, which defines the dis-

placement time of resource ¢ between consecutive locations:
no-overlap(r;, rt;), viel (17)

A similar constraint over w guarantees that only one activity
is performed on each well at a time:

Vk € Ky (18)

In the case of harbors, the concurrency on each location is
modeled by a different cumulative function of the vector h,
which is composed of unitary pulses for each loading:

>

j€Jm:locj=k

no-overlap(wy),

hy = pulse(aj, 1), Vke Ky (19)

Upper limits to the cumulative functions of h are then im-
posed over their entire domain:

hi, < sy, Vke Ky (20)

The control of inventory on each resource is also modeled
by means of a cumulative function. There is one element p;
of vector p corresponding to each resource ¢ € I. Each cu-
mulative function is composed of positive steps at the end of
each loading activity ranging from the smallest to the biggest
possible increase of inventory, and negative steps for each
activity that unloads inventory:

>

je€Jmicij=1

p>

je€Jw:cij=1

P = stepAtEnd(m;j,1,ic¢;)

stepAtEnd(mg;, wp;), Vi e I (21)

Both upper and lower limits are defined to those functions:
pi = 0, Viel (22)
p; <icq, Viel (23)
Moreover, the inventory increase due to each loading is lim-
ited by the length of the activity, as follows:
height AtEnd(p;, m;;) <

length{mig) =~ o g je Ju

i
mal;

(24)

Objective function The objective function represents the
expected short-term production as the summation of the pro-
duction triggered by each activity finished in the schedule:

Z MAX(H — end(aj),0) * pr;

JjE€Jw

Cijzl

max. (25)

Introducing a new model to the problem:)/,

The main motivation for introducing an alternative CBS
model to the ORSP refers to the unnecessary use of se-
quences in the model M; described above. First, sequences
represent not only a set of intervals upon which constraints

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

can be imposed, but also decision variables that depict an or-
der of such intervals from the domain of all possible permu-
tations (IBM 2010). Therefore, there was a certain concern
that the first approach would be prohibitive either in process-
ing time or in memory usage to scale up with respect to the
size of the instances to be solved. Second, the simple de-
piction as a cumulative function would fit most of the needs
first addressed by sequences. The only exception is related to
the resources displacement time, that can be represented by
means of state functions. Finally, an increasingly use of cu-
mulative functions in the modeling could benefit in a larger
extent from the recent developments related to the propaga-
tion of resource constraints, as mentioned previously.

Changes of the model The vector of sequences w is eas-
ily substituted by the vector of cumulative functions w’. It
handles concurrency on wells in the same way that it is done
with harbors:

>

jE€J:loc;=k

wy, = pulse(a;, 1), Vk € Kw (26)

The introduction of w’ requires the replacement of constraint
(18) by the following:

wy, < 1, Vk € Ky (27)

In the case of the vector r, the vector of cumulative func-
tions r’ and the vector of state functions r”* are used to rep-
resent each a part of what was modeled previously with r:

T, = Z pulse(mij;, 1), Viel (28)
jeJZCijzl
i i N = K U {0}, Viel (29)

While 7’ alone suffices to control the concurrency of use
of each resource, r” is necessary to represent the transition
related to resource displacements. Each function 7} € r”
maps the position of resource ¢ along time. The value 0 is
used for transitions and idleness periods.

A similar constraint is imposed over 7’ to replace con-
straint (17). It is accompanied by a set of constraints to de-
fine the values of 7}’ according to the location of i as well as
the transition time between different locations:

ri <1, viel (30)
i (t) = loc;, Vicl,jeJ,
t € [start(m;), end(mi;)) (31
[/ (t1) = k1 A7) (t2) = ko] —
ty 4 rti(ky, ke) < to, Viel,
ki € K,k‘g EK,k‘l #k‘g,
t1 e Nyto € Nyt < to (32)

Adding constraints to both models: M5 & Mspy

Some additional constraints are introduced in this section
in order to reduce the effort to find solutions with a certain
quality in short runs. While it is true that they provide a
stronger pruning in the domains of the variables, they also
eliminate solutions of all sorts. Nevertheless, they represent

55

the intuitive notion of some end users regarding how a good
solution would look like. Therefore, we decided to depict
them in order to evaluate the results that can be achieved if
they are considered for a while in the solving process.

The first set of constraints considered represent to no-
tion that, if possible, it is preferable to use a single resource
wthout interruption to develop a well. It restrains the solu-
tions space in two ways. First, if a resource performs an ac-
tivity at a well, it also does the following activity if it is com-
patible. Second, if consecutive activities in the same well are
not both connections, they are performed without interrup-
tion regardless of whether they use the same resource:

presence(m;j,) —
presence(m;j,), Viel,
J1 € Jw,j2 € Jw,

PCjrjs = 1, ¢ijy = 1,645, = 1,

locj, = locj, (33)
end(aj,) = start(ay,), Vi1 € Jw \ Jo,
J2 € Jw \ Jo,

pCj g, = 1,loc;, = loc;, (34)

The second set of constraints forces the presence of a
loading activity for each connection activity, thus forcing
each loading activity to carry the pipes of a single well. For
such matter, we consider the explicit manipulation of the
mapping between the set of connection activities .JJ and the
set of loading activities Jp. Given a function ful : Jo —
J, the constraints below force the presence of one loading
activity j;, € Jy corresponding to the unload of each occur-
ring connection activity jiy € Jc, that they are assigned to
the same resource, and constrain the start of the former to be
at or after the end of the latter:

presence(m;j,) —

Vi e,
Ju € Je,jr € Ju,
Cijy = 1, ¢4, = 1,

presence(m;j,),

ful(ju) =jo (35)
start(mgj,) > end(mij;,), Viel,
Ju € Je,jr € Ju,
Cijo = L, ¢ijo = 1,

ful(ju) =jr (36)

4 Experimental Evaluation

The models previously described were tested using a past
scenario that comprises the activities to develop 171 wells
using 73 resources. Such scenario was used to generate
seven instances, all of which using the same set of resources
but variable sets of activities. Serra, Nishioka, and Mar-
cellino (2011) made a prior use of those instances. Instance
O contains the entire set of activities, which is partitioned
approximately into halves for instances H1 and H2 as well
as into quarters for instances Q1 to Q4. Table 1 summa-
rizes how many activities (Acs.), wells (Wss.), rigs (Rgs.)
and vessels (Vss.) each instance (Ins.) has.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

[Ins. [QI [Q2] Q3[Q4[HI[H2] O |

Acs. | 116 | 118 | 116 | 115 | 231 | 234 | 465
Wis. | 46 | 37 | 45 | 43 | 82 | 89 | 171
Rgs. 64
Vss. 9

Table 1: Characteristics of the tested instances.

The models were implemented in the OPL language and
run using the IBM Cplex Studio 12.2 solver. For the run
of each model, the time limit was set as one hour in ac-
cordance to the end user expectation. Such time was also
split between the models My and My or Moy and M.
The output of Mz and Moy are used as input to M; and
M, respectively. The first goal of the hybrid splits was to
give to both models an equal time share. But since those
additional constraints were intended to provide a short-term
benefit, the first share was halved once more. Hence, the fol-
lowing proportions of minutes between each pair of models
were tested: 0 : 60, 15 : 45, 30 : 30 and 60 : 0. Each instance
was run once on each type of model for each time split. The
used computer had 4 Dual-Core AMD Opteron 8220 pro-
cessors, 16 Gb of RAM, and a Linux operating system.

The results of each run are summarized in tables 2 and 3.
Along with the solution achieved for each time split of each
model type on each instance, the tables also show the upper
bounds (U.B.) obtained by Serra, Nishioka, and Marcellino
(2012). For the sake of comparability, all values are normal-
ized considering the production of the best solution found
for each instance on the experiments of Serra, Nishioka, and
Marcellino (2011) as 100. Furthermore, the worst-case op-
timality gap guaranteed to the best solution found for each
instance is presented in table 4. Considering that greater per-
formance variations were observed only for instance O, the
progress of the full runs of each model for this instance are
presented in figure 1. Such progress is depicted in terms of
the best solution found along time.

5 Discussion

From the results summarized in tables 2 to 4, we observe a
substantial improvement in the best solution found for each
instance. According to table 4, the oil production of the best
solutions of instances Q1 to Q4, H1 and H2 are all less
than 1% smaller than those of optimal solutions. There were
varied but expressive improvements in terms of oil produc-
tion, ranging from 0.54% to 13.83% if they are compared to
those achieved by Serra, Nishioka, and Marcellino (2011).
In the case of instance O, an improvement of 11.48% was
achieved, so that the worst-case optimality gap was reduced
to 5.57%. Altogether, such improvements testify once more
the capability of CBS to obtain tight and timely results with
real-world optimization problems.

The two models presented had similar results in the ex-
perimental evaluation. While My performed slightly better
in instances Q1 to Q4 and O, it was outperformed by M; in
instances H1 and H2. However, such difference is explained
by the improvements achieved with the use of hybrid splits
in the latter case, since the incorporation of additional con-

56

[Ins. | Model [Split | Sol. [Best| U.B.

0:60 | 10400] *
M, | 15:45 [10400 [*
Y I'30:30 [104.00 | *
60:0 | 103.94
Ql 0.60 [10400 * | 1044
M, | 15:45 [10400 *
2 130:30 | 104.00 | *
60:0 | 103.94
0:60 | 113.83] *
M, | 1545 [11383 *
b o[30:30 11383 *
60:0 | 113.83 | *
Q2 0.60 1383 = | 13
M, | 15:45 [11383 *
2 130:30 | 113.83 | *
60:0 | 113.83 | *
0:60 | 10054] *
M, | 1545 [10054] *
b [730:30 [100.53
60:0 | 100.50
Q3 0:60 | 100.54 10062
M, | 1545 | 10054
2 1730:30 | 100.54
60:0 | 100.50
0:60 | 103.18
15:45 | 103.18
M 50730 T103.19
60:0 | 103.09
Q4 0:60 | 103.20 103.53
M, | 15:45 [10320
2 130:30 | 103.18
60:0 | 102.91

Table 2: Summary of runs for instances Q1 to Q4.

straints led to better results in model M; if compared to Ms.
Nevertheless, stronger conclusions about the comparison of
such models would require a large number of independent
runs, which could also explore varied levels of propagation
for the constraints that differ one model from the other.

The use of heuristic assumptions to impose additional
constraints had an increasing impact on the results. On the
one hand, the variation is small in table 2 and equal results
are attained by varied models. Therefore, it is possible to
suppose that the slightly worst results in three out of the four
instances for keeping those constraints during all the run
translate the impact that they represent in solution quality.
On the other hand, from table 3 we observe that better out-
comes for instances H1 and H2 were achieved with hybrid
splits, but also that the use of such constraints in instance
O had a negative effect. Nonetheless, due to the largest gap
left for instance O according to table 4, it is also possible
to suppose that a bigger time limit could produce different
results. Furthermore, from figure 1 it is possible to observe

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

[Ins. [Model | Split [Sol. [Best| U.B.

0:60 | 104.65
M, | 15145 [10473] *
Y 30:30 [10471
60:0 | 104.61
HI 0:60 | 104.66 105.00
M, | 15145 [10470
2 130:30 | 104.72
60:0 | 104.27
0:60 | 105.29
M, | 15145 [10534] *
Y 730:30]105.23
60:0 | 105.22
H2 0:60 | 105.30 10591
M, | 1514510522
2 130:30 | 105.12
60:0 | 104.88
0:60 | 111.07
15:45 | 110.91
Mi 5030 11021
60:0 | 108.16
© 0.60 | 111ag | + | 1806
M, | 1545 | 108.69
2 [30:30 | 107.41
60:0 | 102.93

Table 3: Summary of runs for instances H1, H2, and O.
Ins.| Q1 | Q2] Q3 | Q4 [Hl [H2 [O |
[Gap[0.38%0.06%0.08%[0.32%]0.26% [0.54%[5.57% |

Table 4: Worst-case optimality gap of the best solutions
found.

that the two models with additional constraints were ahead
of their counterparts at some early point in time. Hence, the
use of heuristic assumptions is not totally discarded, but it
would be necessary to figure out how to calibrate the time
split according to the characteristics of each instance.

6 Final Remarks

In this article, we introduced a new element to the Off-
shore Resource Scheduling Problem (ORSP) as well as dis-
cussed relevant issues regarding Constraint-Based Schedul-
ing (CBS) modeling and heuristic assumptions to tackle
scheduling problems. The incorporation of project selection
to the ORSP enabled to approach the problem in a more re-
alistic and flexible fit. Furthermore, the manner by which
the models were presented aimed to help other practition-
ers when approaching similar problems in at least two ways.
First, relevant issues of implementation and subsequent im-
provements to a model previously described in the literature
were presented. Second, an alternative model was also con-
ceived with the intent to leverage CBS strengths according to
the trends observed in the technique evolution. Besides, the
study on imposing additional constraints based on heuristic
assumptions shown the benefit one can have on achieving

57

production (hormalized)

100

w5l

60 1=

20

time(s)

0 1200 2400 3600

Figure 1: Best solution found along time for the full-time
run of each model on instance O.

better solutions earlier in the search, but also the long-term
loss if those constraints are kept until the end of the search.
Finally, the solutions found with the modification of the im-
plementation as well as with the new model improved con-
siderably the oil production over the results previously re-
ported. In addition, the quality of the results along instances
of similar size was much more uniform in the current case.
It is also worth to mention that they were obtained with sim-
ilar hardware and using the same time limit. Hooker (1995)
regarded this remark as important, but it is often forgotten
in experimental evaluations. Thus, the results evidence the
ability of CBS to handle problems like the ORSP. Hence, it
becomes clear that this work somewhat concludes the effort
on approaching ORSP with CBS for the sort of detail level
and size of instances considered.

Future work can be directed either to reduce the remaining
worst-case optimality gap or else to incorporate other oper-
ational details. As observed by Serra, Nishioka, and Mar-
cellino (2012), it is very likely that a closer gap estimation
would require a decomposition approach. Moreover, it is in-
teresting to observe that their approach to assess such gap
does not take into account the time required by loading ac-
tivities. In regard to the introduction of other operational de-
tails, it is quite clear that pipes are currently handled almost
as a commodity, so that it is possible and maybe desirable to
consider some singularities that would differ them by type
and availability. Nonetheless, the approach as described in
this work and complemented by previous efforts is already
at a level of reliance and capability that enables its daily use.

COPLAS 2012: Proceedings of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems

Acknowledgments The authors gratefully acknowledge
the company under study for authorizing the publication of
the information here present. Furthermore, the opinions and
concepts presented are the sole responsibility of the authors.

References

Accioly, R.; Marcellino, F. J. M.; and Kobayashi, H. 2002.
Uma aplicag@o da programacado por restricdes no escalona-
mento de atividades em pogos de petrdleo. In Proceedings
of the 34th Brazilian Symposium on Operations Research.

Aloise, D. J.; Aloise, D.; Rocha, C. T. M.; Ribeiro, C. C.;
Filho, J. C. R.; and Moura, L. S. S. 2006. Scheduling
workover rigs for onshore oil production. Discrete Applied
Mathematics 154:695-702(5).

Baptiste, P.; Laborie, P.; Le Pape, C.; and Nuijten, W. 2006.
Constraint-based scheduling and planning. In Rossi, F.; van
Beek, P.; and Walsh, T., eds., Handbook of Constraint Pro-
gramming. Elsevier. chapter 22.

Baptiste, P.; Le Pape, C.; and Nuijten, W. 2001. Constraint-
Based Scheduling: Applying Constraint Programming to
Scheduling Problems. Kluwer.

Bartédk, R., and Salido, M. 2011. Constraints special issue:
Constraint satisfaction for planning and scheduling prob-
lems, volume 16 (3). Springer.

Bartak, R. 2001. Theory and practice of constraint propa-
gation. In Proceedings of the 3rd Workshop on Constraint
Programming for Decision and Control (CPDC2001), T-14.
Wydavnictvo Pracovni Komputerowe;.

Bessiere, C., and Hentenryck, P. V. 2003. To be or not to
be ... a global constraint. In Rossi, F., ed., Principles and
Practice of Constraint Programming, volume 2823 of Lec-

ture Notes in Computer Science. Springer Berlin Heidel-
berg. 789-794.

Carlier, J., and Pinson, E. 1994. Adjustment of heads and
tails for the job-shop problem. European Jornal of Opera-
tional Research (EJOR) 78:146-161.

Cesta, A., and Oddi, A. 1996. Gaining efficiency and flexi-
bility in the simple temporal problem. In Proceedings of the
3rd Workshop on Temporal Representation and Reasoning
(TIME’96).

Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.

do Nascimento, J. M. 2002. Ferramentas computacionais
hibridas para a otimizacdo da producdo de petréleo em dguas
profundas. Master’s thesis, Universidade Estadual de Camp-
inas (Unicamp), Brazil.

Glinz, 1., and Berumen, L. 2009. Optimization model for an
oil well drilling program: Mexico case. Oil and Gas Busi-
ness 1.

Hasle, G.; Haut, R.; Johansen, B.; and Qlberg, T. 1996. Well
activity scheduling - an application of constraint reasoning.
In Artificial Intelligence in the Petroleum Industry: Symbolic
and Computational Applications II. Technip. 209-228.
Hentenryck, P. V;; Deville, Y.; and Teng, C. M. 1992. A
generic arc-consistency algorithm and its specializations.
Artificial Intelligence 57.

58

Hooker, J. 1995. Testing heuristics: We have it all wrong.
Journal of Heuristics 1:33-42.

Hoos, H. H., and Stiitzle, T. 2005. Stochastic Local Search:
Foundations and Applications. Morgan Kaufmann.

IBM. 2010. ILOG CPLEX Optimization Studio 12.2 docu-
mentation for ODM Enterprise.

Iyer, R.; Grossmann, I.; Vasantharajan, S.; and Cullick, A.
1998. Optimal planning and scheduling of offshore oil field
infrastructure investment and operations. Industrial & Engi-
neering Chemistry Research 37:1380-1397.

Laborie, P., and Godard, D. 2007. Self-adapting large
neighborhood search: Application to single-mode schedul-
ing problems. In Proceedings of the 3rd Multidisciplinary
International Conference on Scheduling: Theory and Appli-
cations (MISTA 2007), 276-284.

Laborie, P., and Rogerie, J. 2008. Reasoning with condi-
tional time-intervals. In Proceedings of the 21st Interna-
tional Florida Artificial Intelligence Research Society Con-
ference (FLAIRS 2008).

Laborie, P.; Rogerie, J.; Shaw, P.; and Vilim, P. 2009.
Reasoning with conditional time-intervals, part ii: An alge-
braical model for resources. In Proceedings of the 22st In-
ternational Florida Artificial Intelligence Research Society
Conference (FLAIRS 2009).

Lustig, 1. J., and Puget, J. E. 2001. Program does not
equal program: Constraint programming and its relationship
to mathematical programming. Interfaces 31:29-53(6).

Mackworth, A. 1977. Consistency in networks of relations.
Artificial Intelligence 8:99118(1).

Moura, A. V.; Pereira, R. A.; and de Souza, C. C. 2008.
Scheduling activities at oil wells with resource displace-
ment. International Transactions in Operational Research
15(25):659-683.

Pereira, R. A.; Moura, A. V.; and de Souza, C. C. 2005.
Comparative experiments with GRASP and constraint pro-
gramming for the oil well drilling problem. In Proceedings
of the 4th International Workshop on Experimental and Ef-
ficient Algorithms, 328-340. Springer.

Serra, T.; Nishioka, G.; and Marcellino, F. J. M. 2011. A
constraint-based scheduling of offshore well development
activities with inventory management. In Proceedings of the
43rd Brazilian Symposium on Operations Research.

Serra, T.; Nishioka, G.; and Marcellino, F. J. M. 2012. On es-
timating the return of resource aquisitions through schedul-
ing: An evaluation of continuous-time milp models to ap-
proach the development of offshore oil wells. In Proceed-
ings of the 6th Scheduling and Planning Applications Work-
shop. To be held.

van Beek, P. 2006. Backtracking search algorithms. In
Rossi, F.; van Beek, P.; and Walsh, T., eds., Handbook of
Constraint Programming. Elsevier. chapter 4.

Vilim, P. 2009. Max energy filtering algorithm for discrete
cumulative resources. In CPAIOR ’09: Proceedings of the
6th International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems, 294-308. Springer-Verlag.

