Predicting Optimal Solution Cost with Bidirectional Stratified Sampling

Levi Lelis Computing Science Dept. University of Alberta

Joint work with:

Roni Stern and Ariel Felner Information Systems Engineering Computer Science Dept. **Ben-Gurion University**

Sandra Zilles University of Regina

Robert Holte Computing Science Dept. University of Alberta

The Problem

- Given:
 - a start state and a goal state of a state space problem.
- Efficiently predict the optimal solution cost from start to goal.

Motivation

- * A path from start to goal is not always required. Sometimes the solution cost suffices.
 - Bidding problem.
- Accurate predictions of the solution cost can be used to enhance search.
 - * Find the w-value for WIDA* (SoCS 2011).
 - Set the upper bound for Potential Search (SoCS 2011).
 - Learn strong heuristic functions (SoCS 2012).

Cost Prediction vs. Heuristics

- Heuristic functions also estimate the solution cost. However,
 - Often are biased to never overestimate the optimal solution cost.
 - Poor Estimates.
 - Need to be fast to guide search.
 - * We expect more accurate estimates by allowing predictors more computation time.
 - Our measure of effectiveness is accuracy, not search speed.

Existing Algorithm

- * Solution Cost Predictor (SCP) -- with Roni Stern and Shahab Jabbari Arfaee (SoCS'11).
 - SCP has problems scaling to large state spaces.

Definition

Type System for States

Type System for States

- * A Type System might consider:
 - * the heuristic value.
 - other information about the states.

Illustrative Example - 8-puzzle

- * Heuristic = distance of the blank from its goal position (top left).
- * The other information indicates if the blank is in a corner, egde of middle position

	1	2
3	4	5
6	7	8

Types

The Algorithm

* Chen's Stratified Sampling (SS) was designed for estimating the size of backtrack search trees.

SS efficiently estimates the size of backtrack search trees.

SS for Predicting Optimal Cost?

- Chen was aiming at predicting the size of backtrack search trees.
- * In theory SS can be used to measure any property in the search tree.
- * Is SS able to accurately predict the optimal solution cost?

First Attempt

- * Run SS until the goal is found.
 - An actual path from start and goal will be found.
- * Initial results on the 24-puzzle were not promising (solution length was more than 2x optimal cost).

* BiSS predicts the optimal solution cost by running SS from both directions, forward from the start and backward from the goal.

•S

• g

* BiSS predicts the optimal solution cost by running SS from both directions, forward from the start and backward from the goal.

• g

* BiSS predicts the optimal solution cost by running SS from both directions, forward from the start and backward from the goal.

When to Stop?

- * Stopping when the intersection of types of the two frontiers is not empty will often underestimate the actual solution cost.
- * A more elaborated stopping condition is required.

S

g

- * Stopping when the intersection of types of the two frontiers is not empty will often underestimate the actual solution cost.
- * A more elaborated stopping condition is required.

g

- * Stopping when the intersection of types of the two frontiers is not empty will often underestimate the actual solution cost.
- * A more elaborated stopping condition is required.

- * Stopping when the intersection of types of the two frontiers is not empty will often underestimate the actual solution cost.
- * A more elaborated stopping condition is required.

- * Stopping when the intersection of types of the two frontiers is not empty will often underestimate the actual solution cost.
- * A more elaborated stopping condition is required.

Theoretical Result

* In the limit as the number of probes goes to infinity BiSS predictions are guaranteed to be perfect.

Empirical Results

BiSS vs. SCP - 15-Puzzle

	Error		
Cost	BiSS	SCP	Bootstrap
51	0.07	0.03	0.07
52	0.07	0.03	0.07
53	0.07	0.03	0.06
54	0.07	0.03	0.07
55	0.06	0.03	0.08
56	0.07	0.04	0.07

BiSS vs. SCP – 15-Blocks World

	Error		
Cost	BiSS	SCP	Bootstrap
20	0.01	0.09	0.20
21	0.02	0.12	0.15
22	0.02	0.14	0.12
23	0.01	0.17	0.08
24	0.01	0.18	0.06
25	0.01	0.20	0.04

BiSS – 20-Blocks World

	Error		
Cost	BiSS	Bootstrap	
28	0.02	0.18	
29	0.01	0.15	
30	0.02	0.13	
31	0.01	0.10	
32	0.01	0.08	

BiSS - 24-Puzzle

	Error		
Cost	BiSS	Bootstrap	
100	0.03	0.08	
102	0.04	0.08	
104	0.03	0.08	
106	0.04	0.08	
108	0.03	0.08	

BiSS – Large Sliding-Tile Puzzles

	6x6	7x7	8x8
Time (minutes)	6	18	80
Avg. Predicted Cost	172	280	423
Polynomial Fit	171	268	397

Conclusions

- BiSS efficiently and accurately predicts the optimal solution cost (SCP does that too!).
- BiSS scales to very large state spaces (well, SCP does not scale very well).
- BiSS might require (SCP does not require these)
 - a goal state to be available, and
 - invertible operators to be available.