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• Given:

– a start state and a goal state of a state space problem.

• Efficiently predict the optimal solution cost from start to goal.

The Problem
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Motivation

✤ A path from start to goal is not always required. Sometimes the 
solution cost suffices.

✤ Bidding problem.

✤ Accurate predictions of the solution cost can be used to enhance 
search.

✤ Find the w-value for WIDA* (SoCS 2011).

✤ Set the upper bound for Potential Search (SoCS 2011).

✤ Learn strong heuristic functions (SoCS 2012).
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Cost Prediction vs. Heuristics

✤ Heuristic functions also estimate the solution cost. However,

✤ Often are biased to never overestimate the optimal solution cost.

✤ Poor Estimates.

✤ Need to be fast to guide search.

✤ We expect more accurate estimates by allowing predictors more 
computation time.

✤ Our measure of effectiveness is accuracy, not search speed.
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Existing Algorithm

✤ Solution Cost Predictor (SCP) -- with Roni Stern and Shahab Jabbari 
Arfaee (SoCS’11).

✤ SCP has problems scaling to large state spaces.
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Original State Space Type System Space

type(s)

Type System for States
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Type System for States

✤ A Type System might consider:

✤ the heuristic value.

✤ other information about the states.
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Illustrative Example - 8-puzzle

✤ Heuristic = distance of the blank from its goal 
position (top left).

✤ The other information indicates if the blank is in 
a corner, egde of middle position
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The Algorithm
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Stratified Sampling
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✤ Chen’s Stratified Sampling (SS) was designed for estimating the size 
of backtrack search trees.
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✤ SS efficiently estimates the size of backtrack search trees.

Stratified Sampling

12

✤ Chen’s Stratified Sampling (SS) was designed for estimating the size 
of backtrack search trees.
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SS for Predicting Optimal Cost?

✤ Chen was aiming at predicting the size of backtrack search trees.

✤ In theory SS can be used to measure any property in the search tree.

✤ Is SS able to accurately predict the optimal solution cost?
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First Attempt

✤ Run SS until the goal is found.

✤ An actual path from start and goal will be found.

✤ Initial results on the 24-puzzle were not promising (solution length 
was more than 2x optimal cost).
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Bidirectional SS (BiSS)

✤ BiSS predicts the optimal solution cost by running SS from both 
directions, forward from the start and backward from the goal.
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Bidirectional SS (BiSS)
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Bidirectional SS (BiSS)

✤ BiSS predicts the optimal solution cost by running SS from both 
directions, forward from the start and backward from the goal.
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When to Stop?
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Stopping Condition

✤ Stopping when the intersection of types of the two frontiers is not 
empty will often underestimate the actual solution cost.

✤ A more elaborated stopping condition is required.
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Theoretical Result

✤ In the limit as the number of probes goes to infinity BiSS predictions 
are guaranteed to be perfect.
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Empirical Results
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ErrorErrorError

Cost BiSS SCP Bootstrap

51 0.07 0.03 0.07

52 0.07 0.03 0.07

53 0.07 0.03 0.06

54 0.07 0.03 0.07

55 0.06 0.03 0.08

56 0.07 0.04 0.07

BiSS vs. SCP – 15-Puzzle
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ErrorErrorError

Cost BiSS SCP Bootstrap

20 0.01 0.09 0.20

21 0.02 0.12 0.15

22 0.02 0.14 0.12

23 0.01 0.17 0.08

24 0.01 0.18 0.06

25 0.01 0.20 0.04

BiSS vs. SCP – 15-Blocks World
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ErrorError

Cost BiSS Bootstrap

28 0.02 0.18

29 0.01 0.15

30 0.02 0.13

31 0.01 0.10

32 0.01 0.08

BiSS – 20-Blocks World
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ErrorError

Cost BiSS Bootstrap

100 0.03 0.08

102 0.04 0.08

104 0.03 0.08

106 0.04 0.08

108 0.03 0.08

BiSS – 24-Puzzle
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6x6 7x7 8x8

Time (minutes) 6 18 80

Avg. Predicted Cost 172 280 423

Polynomial Fit 171 268 397

BiSS – Large Sliding-Tile Puzzles
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Conclusions

✤ BiSS efficiently and accurately predicts the optimal solution cost 
(SCP does that too!).

✤ BiSS scales to very large state spaces (well, SCP does not scale 
very well).

✤ BiSS might require (SCP does not require these)

✤  a goal state to be available, and

✤  invertible operators to be available.
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