
Iterative Improvement Algorithms

for the Blocking Job Shop

Angelo Oddi*, Riccardo Rasconi*, Amedeo Cesta*, and Stephen F. Smith^

* ISTC-CNR, Rome, Italy name.surname@istc.cnr.it

^ Robotics Institute, CMU, Pittsburgh, PA, USA sfs@cs.cmu.edu

Summary

 The BJSSP scheduling problem

 Modelling the BJSSP

 Iterative Flattening Search (IFS):

◦ Relaxation procedures

◦ Solving procedure

 Experimental evaluation

 Conclusions

The scheduling problem

.

.

.

.

.

.

.

.

 All jobs are released at time 0

 Each activity requires the exclusive use of a single resource

 Each solution imposes a total order on the subsets of activities requiring

the same resource

a1 (r1)

m resources

n activities

nj jobs

a2 (r2) ak-1 (r3) ak (r4)

p1 p2 pk-1 pk

Job 1

Job 2

Job nj

Let us start from a classical JSSP:

ai (rj)

pi

The scheduling problem

 No intermediate buffers for storing a job as it moves from one machine to another

 Each activity (except the last of each job) is a blocking activity that remains on the

machine until its successor activity starts

 No pre-emption is allowed

J1

J2

J2

J3 J5

J5

time

J1 J2 J3 J4 J5

r1

r2

r3

J1

J2 J2

J3

J5

J5

idle time

Why the Blocking JSSP differs:

blocking time

m
a
c
h
in

e
s

The scheduling problem

J1

J2

J2

J3 J5

J5

time

J1 J2 J3 J4 J5

r1

r2

r3

J1

J2 J2

J3

J5

J5

idle time blocking time

Objective: let Ck be the completion time of job Jk, the goal is to

minimize the makespan Cmax

Cmax = maxi  k  nj {Ck}

Solution: a set S = {s1, s2,..., sn} of assigned start times si that satisfy all

previous constraints

m
a
c
h
in

e
s

The IFS algorithm

 Solving procedure:
◦ Precedence

Constraint Posting
Search (PCP)

 Chain-based relaxation:
◦ Random

◦ Slack-based

iFlat (S, MaxFail)

 S* = S

 counter = 0

 while (counter <= MaxFail)

 Relax(S)

 Solve(S)

 if makespan(S) < makespan(S*)

 then S* = S

 counter = 0

 else counter = counter +1

 return(S*)

The IFS algorithm

CSP-based solving

procedure

iFlat (S, MaxFail)

 S* = S

 counter = 0

 while (counter <= MaxFail)

 Relax(S)

 Solve(S)

 if makespan(S) < makespan(S*)

 then

 S* = S

 counter = 0

 else counter = counter +1

 return(S*)

A CSP representation

A BJSSP instance can be represented as a graph G(AG, J, X) where:

J is the set of directed edges (ai, aj) that represent the problem precedence
constraints that exist among the activities

A CSP representation

A BJSSP instance can be represented as a graph G(AG, J, X) where:

X is the set of undirected edges (ai, aj) that represent the disjunctive
constraints among the activities that require the same resource, labeled with
the two possible orderings between ai and aj

J is the set of directed edges (ai, aj) that represent the problem precedence
constraints that exist among the activities

A CSP representation

ai succ(ai)

 How we modelled the Blocking constraints:

aj succ(aj)

[0, 0]

[0, 0]

Additional BJSSP constraints:

 for each activity ai (i = 1,..., nk-1):

 ei = si+1

A CSP representation

ai succ(ai)

 How we modelled the Blocking constraints:

oijr

aj succ(aj)

Additional BJSSP constraints:

 for each activity ai (i = 1,..., nk-1):

ei = si+1

 for each activity ai (i = 1,..., nk-1):

ei – si  pi

pa = [pa, ∞]

pb = [pb, ∞]

A CSP representation

 In CSP terms, the following decision variables are

introduced:
◦ a variable oijr for each pair of activities (ai,aj) requiring the same

resource r, whose domain is either aj  ai or ai  aj

oijr

ai succ(ai)

aj succ(aj)

pa = [pa, ∞]

pb = [pb, ∞]

{ai  aj, aj  ai}

Dominance Conditions

aj

ai

d(ei, sj)

ai

aj

d(ej, si)

ai before aj aj before ai

On the basis of the temporal distance d(x,y) between the activity

time points (STP representation [Dechter, Meiri and Pearl 1991]),

the following propagation rules are applicable on oijr:

1. unsolvable conflict: d(ei,sj) < 0  d(ej,si) < 0

2. solvable conflict:

a. d(ei,sj) < 0  d(ej,si)  0  -d(si,ej)
 { aj before ai }

b. d(ei,sj)  0  d(ej,si) < 0  -d(si,ej) { ai before aj }

c. d(ei,sj)  0  d(ej,si)  0 { aj before ai  ai before aj } SEARCH DECISION!

A constraint-based algorithm

Solve(P)

 Propagate(P)

 if (one decision variable has an empty domain)

 then return(failure)

 else if (all decision variables are set)

 then return(solution)

 else

 W  Variable Ordering(P)

 z  Value Ordering(W)

 set(z, W)

 Solve(P)

Heuristic Analysis

 The search process is enhanced by defining proper

Variable and Value ordering Heuristics based on shortest

path temporal information

 Key ideas:
◦ Variable ordering is performed according to the Most Constrained

First principle

◦ Value ordering is performed according to the Least Constraining

Value principle

Variable/Value ordering on oijr

 oijr variable ordering: we select the best pair (a*i, a*j)
representing the conflict with the minimum sequencing
flexibility (i.e., the conflict closest to Dominance Condition 1)

 oijr value ordering: the ordering a*i  a*j or a*j  a*i that
guarantees the highest amount of sequencing flexibility is
selected:

oijr =
ai before aj if d(ei, sj) > d(ej, si)

aj before ai otherwise

The IFS algorithm

Chain-based

Relaxation procedure

iFlat (S, MaxFail)

 S* = S

 counter = 0

 while (counter <= MaxFail)

 Relax(S)

 Solve(S)

 if makespan(S) < makespan(S*)

 then

 S* = S

 counter = 0

 else counter = counter +1

 return(S*)

Chain-based relaxation

Each chain(ri) imposes a total order on a subset of problem

activities requiring the same resource ri. For each chain,

activities are randomly removed with probability .

J1

J2

J2

J3 J5

J5

time

J1 J2 J3 J4 J5

r1

r2

r3

J1

J2 J2

J3

J5

J5

idle time blocking time

Slack-based relaxation

 Duration slack (ds): how much can ai’s duration be

extended without increasing the makespan?

 An activity ai is on the critical path (CP) when dsi = 0

 The smaller dsi the closest ai is to the CP

 Each activity ai is removed with the following probability:

Pri = γ (1 – ds/dsmax)

dsi pi

ai

Empirical analysis

 The empirical evaluation has been carried out on a set of 40 BJSSP

benchmark instances from the standard la01-la40 JSSP testbed

proposed by Lawrence (Lawrence 1984)

 Each instance is loaded as a BJSSP as previously discussed

 The 40 instances are divided in sets of 5 instances each, which

respectively contain 10x5, 15x5, 20x5, 10x10, 15x10, 20x10, 30x10

and 15x15 activities

 Current bests [Groeflin and Klinkert 2009; Groeflin, Pham and Burgy

2011]

 A time limit for each run was set to 1800 secs

 The algorithm has been implemented in Java and run on a AMD

Phenom II X4 Quad 3.5 Ghz under Linux Ubuntu 10.4.1

Random relaxation Vs Slack-based relaxation

Random relaxation

of improved solutions w.r.t. the current bests

Slack-based relaxation

CP-OPT * Performances

 CP-OPT obtains 25 improvements w.r.t. current bests

 CP-OPT obtains 11 improvements w.r.t. IFS

*Available at
http://www-01.ibm.com/software/websphere/ilog/

Conclusions

 In this paper we have proposed the use of Iterative Flattening Search

(IFS) as a means of effectively solving BJSSP instances

 The proposed IFS algorithm uses a core constraint-based solving

procedure which utilizes a set of propagation rules (dominance

conditions) as well as a Random and Slack-based relaxation strategy

 The performance of the procedure has been tested on a known JSSP

benchmark set (Lawrence 1984), where each JSSP instance is

loaded modelling BJSSP constraints

 Both relaxation strategies have been tested against the best results in

literature, exhibiting a significant performance improvement

 Very good results have also been shown using the ILOG CP-OPT

solver, especially for the largest benchmark instances, where IFS is

outperformed

