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Summary 

 The BJSSP scheduling problem 

 Modelling the BJSSP 

 Iterative Flattening Search (IFS): 

◦ Relaxation procedures 

◦ Solving procedure 

 Experimental evaluation 

 Conclusions 



The scheduling problem 

. 

. 

. 

. 

. 

. 

. 

. 

 All jobs are released at time 0 

 Each activity requires the exclusive use of a single resource 

 Each solution imposes a total order on the subsets of activities requiring 

the same resource 
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Let us start from a classical JSSP: 
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The scheduling problem 

 No intermediate buffers for storing a job as it moves from one machine to another 

 Each activity (except the last of each job) is a blocking activity that remains on the 

machine until its successor activity starts 

 No pre-emption is allowed 
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Why the Blocking JSSP differs: 

blocking time 
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The scheduling problem 
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Objective: let Ck be the completion time of job Jk, the goal is to 

minimize the makespan Cmax 

 

Cmax = maxi  k  nj {Ck} 

Solution: a set S = {s1, s2,..., sn} of assigned start times si that satisfy all 

previous constraints 
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The IFS algorithm 

 Solving procedure: 
◦ Precedence 

Constraint Posting 
Search (PCP) 
 

 Chain-based relaxation: 
◦ Random  

◦ Slack-based 
 

iFlat (S, MaxFail) 

     S* = S 

     counter = 0 

     while (counter <= MaxFail)  

 Relax(S) 

 Solve(S) 

 if makespan(S) < makespan(S*)  

    then S* = S 

            counter = 0 

    else  counter = counter +1 

     return(S*) 



The IFS algorithm 

CSP-based solving 

procedure  

iFlat (S, MaxFail) 

     S* = S 

     counter = 0 

     while (counter <= MaxFail)  

 Relax(S) 

 Solve(S) 

 if makespan(S) < makespan(S*)  

    then 

         S* = S 

         counter = 0 

    else  counter = counter +1 

     return(S*) 



A CSP representation 

A BJSSP instance can be represented as a graph G(AG, J, X) where: 

J is the set of directed edges (ai, aj) that represent the problem precedence 
constraints that exist among the activities 



A CSP representation 

A BJSSP instance can be represented as a graph G(AG, J, X) where: 

X is the set of undirected edges (ai, aj) that represent the disjunctive 
constraints among the activities that require the same resource, labeled with 
the two possible orderings between ai and aj 

J is the set of directed edges (ai, aj) that represent the problem precedence 
constraints that exist among the activities 



A CSP representation 

ai succ(ai) 

 

 How we modelled the Blocking constraints: 

aj succ(aj) 

 

[0, 0] 

[0, 0] 

Additional BJSSP constraints: 

 for each activity ai (i = 1,..., nk-1): 

 ei = si+1 



A CSP representation 

ai succ(ai ) 

 

 How we modelled the Blocking constraints: 

oijr 

aj succ(aj ) 

 
Additional BJSSP constraints: 

 for each activity ai (i = 1,..., nk-1): 

ei = si+1 

 

 for each activity ai (i = 1,..., nk-1): 

ei – si  pi 

pa = [ pa, ∞] 

pb = [ pb, ∞] 



A CSP representation 

 In CSP terms, the following decision variables are 

introduced: 
◦ a variable oijr for each pair of activities (ai,aj ) requiring the same 

resource r, whose domain is either  aj   ai or ai   aj  

oijr 

ai succ(ai ) 

 

aj succ(aj ) 

 

pa = [ pa, ∞] 

pb = [ pb, ∞] 

{ai  aj,  aj  ai} 



Dominance Conditions 
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ai before aj aj before ai 

On the basis of the temporal distance d(x,y) between the activity 

time points (STP representation [Dechter, Meiri and Pearl 1991]), 

the following propagation rules are applicable on oijr: 

1. unsolvable conflict: d(ei,sj) < 0  d(ej,si) < 0 

2. solvable conflict: 

a. d(ei,sj) < 0  d(ej,si)  0  -d(si,ej)
     { aj before ai } 

b. d(ei,sj)  0  d(ej,si) < 0  -d(si,ej)     { ai before aj } 

c. d(ei,sj)  0  d(ej,si)  0         { aj before ai  ai before aj } SEARCH DECISION! 



A constraint-based algorithm 

Solve(P) 

    Propagate(P) 

    if (one decision variable has an empty domain) 

 then return(failure) 

 else if (all decision variables are set) 

  then return(solution)  

  else 

      W  Variable Ordering(P) 

      z   Value Ordering(W) 

      set(z, W) 

     Solve(P) 



Heuristic Analysis 

 The search process is enhanced by defining proper 

Variable and Value ordering Heuristics based on shortest 

path temporal information 

 

 Key ideas: 
◦ Variable ordering is performed according to the Most Constrained 

First principle 

◦ Value ordering is performed according to the Least Constraining 

Value principle 



Variable/Value ordering on oijr 

 oijr variable ordering: we select the best pair (a*i, a*j) 
representing the conflict with the minimum sequencing 
flexibility (i.e., the conflict closest to Dominance Condition 1) 

 

 oijr value ordering: the ordering a*i  a*j  or a*j  a*i  that 
guarantees the highest amount of sequencing flexibility is 
selected: 

oijr =  
ai before aj  if d(ei, sj) > d(ej, si)   

aj before ai  otherwise   



The IFS algorithm 

Chain-based 

Relaxation procedure  

iFlat (S, MaxFail) 

     S* = S 

     counter = 0 

     while (counter <= MaxFail)  

 Relax(S) 

 Solve(S) 

 if makespan(S) < makespan(S*)  

    then 

         S* = S 

         counter = 0 

    else  counter = counter +1 

     return(S*) 



Chain-based relaxation 

Each chain(ri) imposes a total order on a subset of problem 

activities requiring the same resource ri. For each chain, 

activities are randomly removed with probability . 
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Slack-based relaxation 

 Duration slack (ds): how much can ai’s duration be 

extended without increasing the makespan? 

 An activity ai is on the critical path (CP) when dsi = 0 

 The smaller dsi the closest ai is to the CP 

 Each activity ai is removed with the following probability: 

Pri = γ (1 – ds/dsmax) 

dsi pi 

ai 



Empirical analysis 

 The empirical evaluation has been carried out on a set of 40 BJSSP 

benchmark instances from the standard la01-la40 JSSP testbed 

proposed by Lawrence (Lawrence 1984) 

 Each instance is loaded as a BJSSP as previously discussed 

 The 40 instances are divided in sets of 5 instances each, which 

respectively contain 10x5, 15x5, 20x5, 10x10, 15x10, 20x10, 30x10 

and 15x15 activities 

 Current bests [Groeflin and Klinkert 2009; Groeflin, Pham and Burgy 

2011] 

 A time limit for each run was set to 1800 secs 

 The algorithm has been implemented in Java and run on a AMD 

Phenom II X4 Quad 3.5 Ghz under Linux Ubuntu 10.4.1 



Random relaxation Vs Slack-based relaxation  

Random relaxation 

# of improved solutions w.r.t. the current bests 

Slack-based relaxation 



CP-OPT *  Performances 

 CP-OPT obtains 25 improvements w.r.t. current bests 

 CP-OPT obtains 11 improvements w.r.t. IFS 

*Available at 
http://www-01.ibm.com/software/websphere/ilog/ 



Conclusions 

 In this paper we have proposed the use of Iterative Flattening Search 

(IFS) as a means of effectively solving BJSSP instances 

 The proposed IFS algorithm uses a core constraint-based solving 

procedure which utilizes a set of propagation rules (dominance 

conditions) as well as a Random and Slack-based relaxation strategy  

 The performance of the procedure has been tested on a known JSSP 

benchmark set (Lawrence 1984), where each JSSP instance is 

loaded modelling BJSSP constraints 

 Both relaxation strategies have been tested against the best results in 

literature, exhibiting a significant performance improvement 

 Very good results have also been shown using the ILOG CP-OPT 

solver, especially for the largest benchmark instances, where IFS is 

outperformed 


