lterative Improvement Algorithms
for the Blocking Job Shop

Angelo Oddi*, Riccardo Rasconi*, Amedeo Cesta*, and Stephen F. Smith™
*ISTC-CNR, Rome, ltaly name.surname@istc.cnr.it
N Robotics Institute, CMU, Pittsburgh, PA, USA sfs@cs.cmu.edu

Summary

» The BJSSP scheduling problem
» Modelling the BJSSP
» Iterative Flattening Search (IFS):
> Relaxation procedures
> Solving procedure
» Experimental evaluation
» Conclusions

I|_|| The scheduling problem

Let us start from a classical JSSP:

P, Py-1 Py
&, () F{ag () =] a () 3
—> —> M resources
N activities
nj jobs
P
a; (1) —>__ >

» All jobs are released at time O
» Each activity requires the exclusive use of a single resource

» Each solution imposes a total order on the subsets of activities requiring
the same resource

l|_|| The scheduling problem

Why the Blocking JSSP differs:

y N
Iy
(7p]
()
£
e
S 2
©
=
I

- blocking time - idle time

» No intermediate buffers for storing a job as it moves from one machine to another

» Each activity (except the last of each job) is a blocking activity that remains on the
machine until its successor activity starts

No pre-emption is allowed

l|_|| The scheduling problem

Solution: a set S = {s;, S,,..., S, of assigned start times s; that satisfy all
previous constraints

A
I
0 1
Q
=
£
@©
£
Iy

idle time

Objective: let C, be the completion time of job J,, the goal is to
minimize the makespan C,,.,

Cmax = maXi <k <nj {/Ck}

II_|| The IFS algorithm

IFlat (S, MaxFail)
S*=3S
counter =0 » Solving procedure:
while (counter <= MaxFail) ° Precedence
Relax(S Constraint Posting
elax(S) Search (PCP)
Solve(S)
if makespan(S) < makespan(S*) » Chain-based relaxation:
then S* —_ S ° R’andﬁm
Slack-based
counter =0
else counter = counter +1
return(s*)

II_|| The IFS algorithm

iFlat (S, MaxFail)
S*=3S
counter =0
while (counter <= MaxFail)
Relax(S)

Solve(S)
If makespan(S) < makespan(S*)
then
S*=S
counter =0
else counter = counter +1
return(S*)

CSP-based solving
procedure

il_" A CSP representation

A BJSSP instance can be represented as a graph G(Ag, J, X) where:

J is the set of directed edges (a;, @) that represent the problem precedence
constraints that exist among the activities

il_" A CSP representation

A BJSSP instance can be represented as a graph G(Ag, J, X) where:

J is the set of directed edges (a;, @) that represent the problem precedence
constraints that exist among the activities

X Is the set of undirected edges (a, @) that represent the disjunctive
constraints among the activities that require the same resource, labeled with
the two possible orderings between a; and g

Planning & Scheduling Team

il_" A CSP representation

» How we modelled the Blocking constraints:

Additional BJSSP constraints:
» for each activity a, (i = 1,..., n-1):

il_" A CSP representation

» How we modelled the Blocking constraints:

Ojj

Pa = [Pa <] I
N -

Py = [P *]

a, succ(a;)

]

Additional BJSSP constraints:
» for each activity a, (i = 1,..., n.-1):

» for each activity ai (i = 1,..., nk-1):

il_" A CSP representation

» In CSP terms, the following decision variables are
Introduced:

> avariable o, for each pair of activities (a;,a,) requiring the same

resource r, whose domain is either a; —a;ora; —a,

Oj

S {a, » aj, a = a;}

] Dominance Conditions

On the basis of the temporal distance d(x,y) between the activity
time points (STP representation [Dechter, Meiri and Pearl 1991)),
the following propagation rules are applicable on o

IjI’

1. unsolvable conflict: d(e,s) <0 A d(e;s) <0
2. solvable conflict:

a. d(e,s)<0Ad(e,s)=0A-d(s,e) === {a beforea}
b. d(e;s)=0Ad(e,s) <0A-d(s,e) == {a beforea}

C. d(e,s)=20A0d(e;s)20 ==

a before a; a; before a;

d(e;, s) : : : : d(e;, s) 2 :

|I_|| A constraint-based algorithm

Solve(P)
Propagate(P)
If (one decision variable has an empty domain)
then return(failure)
else if (all decision variables are set)
then return(solution)
else
W <« Variable Ordering(P)
z <« Value Ordering(W)
set(z, W)

Solve(P)

Heuristic Analysis

» The search process is enhanced by defining proper
Variable and Value ordering Heuristics based on shortest
path temporal information

» Key ideas:

- Variable ordering is performed according to the Most Constrained
First principle

- Value ordering is performed according to the Least Constraining
Value principle

Variable/Value ordering on oy,

» 05, variable ordering: we select the best pair (a*, a*)
representing the conflict with the minimum sequencing
flexibility (i.e., the conflict closest to Dominance Condition 1)

» 0y, value ordering: the ordering a*, — a* or a* — a* that
guarantees the highest amount of sequencing flexibility is
selected:

a; before a; if d(e;, s;) > d(e;, S))
ou={ .
a; before a; otherwise

II_|| The IFS algorithm

iFlat (S, MaxFail)
S*=3S
counter =0
while (counter <= MaxFail)

Relax(S) Chain-based
Solve(S) Relaxation procedure

If makespan(S) < makespan(S*)
then
S*=S
counter =0
else counter = counter +1
return(S*)

il_ll Chain-based relaxation

- blocking time - idle time

Each chain(r;) imposes a total order on a subset of problem
activities requiring the same resource r,. For each chain,
activities are randomly removed with probability y.

s Slack-based relaxation

» Duration slack (ds): how much can a;’s duration be
extended without increasing the makespan?

» An activity a, is on the critical path (CP) when ds; =0
» The smaller ds; the closest a, is to the CP
» Each activity a, is removed with the following probability:

a;

Pr, =y (1 —ds/ds,,) ‘ | \

Pi ds;

.
L

EEEl Empirical analysis

ISTITUTO na‘.u

The empirical evaluation has been carried out on a set of 40 BJSSP
benchmark instances from the standard la01l-la40 JSSP testbed
proposed by Lawrence (Lawrence 1984)

Each instance is loaded as a BJSSP as previously discussed

The 40 instances are divided in sets of 5 instances each, which
respectively contain 10x5, 15x5, 20x5, 10x10, 15x10, 20x10, 30x10
and 15x15 activities

Current bests [Groeflin and Klinkert 2009; Groeflin, Pham and Burgy
2011]

A time limit for each run was set to 1800 secs

The algorithm has been implemented in Java and run on a AMD
Phenom Il X4 Quad 3.5 Ghz under Linux Ubuntu 10.4.1

||II Random relaxation Vs Slack-based relaxation
[

Random relaxation

inst. best | ~
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

AVC. | 3K | 2K | 2K | 2K | 2K | 2K | 2K | 1K

Fimpr. | (35 0 2 1 3 | 4 5 g 6

of improved solutions w.r.t. the current bests

Slack-based relaxati

inst. o ¥
. 0.3 [}.4! 0.5 0.6 0.7 0.8 0.9
A 3K 2K 2K i 2K 2K 2K 2K 2K
Fimpr. | (34) | I | 3 | 2 | 22 { 7 [T [1 | 6
N7 [1

CP-OPT * Performances

inst. | best cp ifs inst. | best cp ifs inst. | best cp ifs

la01 | 820 | 793 | 793 [lal5 | 1630 | 1571 | 1527 | la29 | 1990 | 1898 | 1963
la02 | 793 | 815 | 793 Q lal6 | 1142 | 1150 | 1084 § la30 | 2097 | 2147 | 2095
la3 | 740 | 790 | 715 Qlal7 | 977 | 996 | 930 { la3! | 3137 | 2921 | 3078
laO4 | 764 | 784 | 743 QR lal8 | 1078 | 1135 | 1026 § la32 | 3316 | 3237 | 3336
la05 | 666 | 664 | 664 f lal9 | 1093 | 1108 | 1043 | la33 | 3061 | 2844 | 3147
la06 | 1180 | 1131 | 1064 § la20 | 1154 | 1119 | 1074 | la34 | 3146 | 2848 | 3125
la07 | 1084 | 1106 | 1038 { la2l | 1545 | 1579 | 1521 { la35 | 3171 | 2923 | 3148
la0§ | 1125 | 1129 | 1062 § la22 | 1458 | 1379 | 1425 | la36 | 1919 | 1952 | 1793
la09 | 1223 | 1267 | 1185 § la23 | 1570 | 1497 | 1531 § la37 | 2029 | 1952 | 1983
lal0 | 1203 | 1168 | 1110 § la24 | 1546 | 1523 | 1498 | la38 | 1828 | 1880 | 1708
lall | 1584 | 1520 | 1466 § la25 | 1499 | 1561 | 1424 § la39 | 1882 | 1813 | 1783
lal2 | 1391 | 1308 | 1272 § la26 | 2125 | 2035 | 2045 | lad0 | 1925 | 1928 | 1777
lal3 | 1541 | 1528 | 1465 { la27 | 2175 | 2155 | 2104
lal4 | 1620 | 1506 | 1548 § la28 | 2071 | 2062 | 2027

» CP-OPT obtains 25 improvements w.r.t. current bests
» CP-OPT obtains 11 improvements w.r.t. IFS

*Available at
http://www-01.ibm.com/software/websphere/iloqg/

|5"

©

N Conclusions

Dimi

In this paper we have proposed the use of Iterative Flattening Search
(IFS) as a means of effectively solving BJSSP instances

The proposed IFS algorithm uses a core constraint-based solving
procedure which utilizes a set of propagation rules (dominance
conditions) as well as a Random and Slack-based relaxation strategy

The performance of the procedure has been tested on a known JSSP
benchmark set (Lawrence 1984), where each JSSP instance is
loaded modelling BJSSP constraints

Both relaxation strategies have been tested against the best results in
literature, exhibiting a significant performance improvement

Very good results have also been shown using the ILOG CP-OPT
solver, especially for the largest benchmark instances, where IFS is
outperformed

