
Incremental ARA*:
An Anytime Incremental Search

Algorithm For Moving Target Search

Xiaoxun Sun William Yeoh

Tansel Uras Sven Koenig

University of Southern California

Singapore Management University

Moving Target Search

• Assumptions
– The hunter knows the terrain.
– The hunter knows its own cell.
– The hunter knows the cell of the target.

Moving Target Search

• Offline search

– e.g. minimax search (Reverse Minimax A*)

• Online search

– e.g. repeated deterministic searches

• The hunter finds a short path to the target and moves
along the path.

• Whenever the target moves off the path, the hunter
repeats the process.

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A* (with consistent h-values).

hunter

target

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A*.

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A*.

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A*.

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A*.

A* [Hart, Nilsson, Raphael, 1968]

diagonal moves have cost one

A* [Hart, Nilsson, Raphael, 1968]

A* [Hart, Nilsson, Raphael, 1968]

Small (but soft) time limit for time between two moves of the hunter
1-3 ms per search for Bioware [Bulitko et al, 2007]

1 move

A* [Hart, Nilsson, Raphael, 1968]

• The hunter uses A*.

time limit for time between two moves of the hunter
1-3 ms per search for Bioware [Bulitko et al, 2007]

FRA* [Sun, Yeoh, Koenig, 2009]

• Idea 1:

– Reduce the runtime of the A* search by using
incremental A* search

FRA*

• The hunter uses A*.

hunter

target

FRA*

• The hunter uses A*.

FRA*

• The hunter uses A*.

FRA*

• The hunter uses A*.

FRA*

• The hunter uses A*.

FRA*

FRA*

FRA*

FRA*

• The hunter uses incremental A*.

time limit for time between two moves of the hunter

DISCLAIMER

WA* [Pohl, 1970]

• Idea 2:

– Reduce the runtime of the A* search with
weighted A* search

WA*

• The hunter uses weighted A*.
The smaller the weight w, the slower the search but the shorter the path.
Weighted A* with weight one is identical to A*.

w=2.5
13 expansions
11 movements

w=1.5
15 expansions
11 movements

w=1.0
20 expansions
10 movements

Courtesy of Maxim Likhachev

f(s) = g(s) + w h(s)

WA*

w=1.6

WA*

w=1.4

WA*

w=1.2

WA*

w=1.0

WA*

• The hunter uses weighted A*.
The smaller the weight w, the slower the search but the shorter the path.
Weighted A* with weight one is identical to A*.

w=2.0

time limit for time between two moves of the hunter

w=2.0

Repeated WA*

• The hunter uses weighted A* repeatedly,
where the weight decreases over time until it is one.

w=2.0 w=1.9
Decrease w by Dw. Set w to maxw.

time limit for time between two moves of the hunter

w=2.0
Set w to maxw.

Repeated WA*

• The hunter uses weighted A* repeatedly,
where the weight decreases over time until it is one.

w=2.0 w=1.9
Decrease w by Dw. Set w to maxw.

time limit for time between two moves of the hunter

w=2.0
Set w to maxw.

… A B

ARA* [Likhachev, Gordon, Thrun, 2003]

• The hunter uses weighted A*.
The smaller the weight w, the slower the search but the shorter the path.
Weighted A* with weight one is identical to A*.

w=2.5
13 expansions
11 movements

w=1.5
15 expansions
11 movements

w=1.0
20 expansions
10 movements

Courtesy of Maxim Likhachev

f(s) = g(s) + w h(s)

ARA*

• The hunter uses weighted A*.
The smaller the weight w, the slower the search but the shorter the path.
Weighted A* with weight one is identical to A*.

Courtesy of Maxim Likhachev

f(s) = g(s) + w h(s)

w=2.5
13 expansions
11 movements

w=1.5
1 expansion

11 movements

w=1.0
9 expansions

10 movements

ARA*

• The hunter uses incremental weighted A*
repeatedly, where the weight decreases over time until it is one.

w=2.0 w=1.9
Decrease w by Dw. Set w to maxw.

time limit for time between two moves of the hunter

w=1.8
Decrease w by Dw.

w=2.0
Set w to maxw.

A B

Incremental ARA* = FRA* + ARA*

A

Incremental ARA* = FRA* + ARA*

B

ARA* [Likhachev, Gordon, Thrun, 2003]

• The hunter uses incremental weighted A*
repeatedly, where the weight decreases over time until it is one.

w=2.0 w=1.9
Decrease w by Dw. Set w to maxw.

time limit for time between two moves of the hunter

w=1.8
Decrease w by Dw.

w=2.0
Set w to maxw.

Incremental ARA* = FRA* + ARA*

• The hunter uses incremental weighted A*
repeatedly, where the weight decreases over time until it is one.

w=2.0 w=1.9
Decrease w by Dw. Set w to maxw.

time limit for time between two moves of the hunter

w=1.8
Decrease w by Dw.

w=2.0
Set w to maxw.

Incremental ARA* = FRA* + ARA*

FRA*

Incremental ARA* = FRA* + ARA*

ARA*

Incremental ARA* = FRA* + ARA*

Incremental ARA* = FRA* + ARA*

Incremental ARA* = FRA* + ARA*

• The algorithm:
– Make the new state of the hunter locally consistent.
– Delete all states from the search tree that are not in the subtree

rooted in the new state of the hunter.
– Add to the OPEN list all states that border non-leaf states in the

search tree.
– If the f-value of the new state of the target is no larger than the

smallest f-values of all states in the OPEN list (= the search tree
already contains a w-suboptimal path from the state of the
hunter to the state of the target), then decrease w to max(1, w-
Dw). Otherwise, set w to maxw.

– Run an ARA* search to find an w-suboptimal path from the state
of the hunter to the state of the target.

– Move the hunter along the path until it catches the target or the
target moves off the path. In the former case, stop. In the latter
case, repeat.

Experimental Results

• We use 100 test cases with randomly selected
unblocked connected cells for the hunter and
target, namely
– 100 four-neighbor random maps of size 1,000x1,000

with 25 percent randomly blocked cells; and

– one four-neighbor game map of size 626x626 adapted
from Warcraft III

• The target repeatedly follows a shortest path
from its current cell to a randomly selected
unblocked cell, skipping every tenth move.

Experimental Results

• FRA*, Repeated ARA* and Incremental ARA*
were implemented in similar ways (e.g. using
a binary heap).

• There is a time limit for each search but we
allow the search algorithms to exceed the
time limit until they find some path from the
hunter to the target.

• For Repeated ARA* and Incremental ARA*, we
use maxw=2.0 and Dw=0.1.

Experimental Results (Random Maps)

Time limit Moves
per test
case

First
searches
exceeding
the time
limit

Searches per
time interval

FRA* 200μs 747 17.6% -

Repeated ARA* 200μs 868 65.2% 3.29

Incremental ARA* 200μs 827 6.8% 5.47

FRA* 500μs 747 12.8% -

Repeated ARA* 500μs 852 28.4% 5.53

Incremental ARA* 500μs 804 0.5% 7.55

FRA* 1000μs 747 3.6% -

Repeated ARA* 1000μs 836 4.1% 7.82

Incremental ARA* 1000μs 785 0.2% 9.07

Experimental Results (Game Map)

Time limit Moves
per test
case

First
searches
exceeding
the time
limit

Searches per
time interval

FRA* 200μs 545 15.5% -

Repeated ARA* 200μs 652 69.1% 3.29

Incremental ARA* 200μs 613 6.1% 5.47

FRA* 500μs 545 10.0% -

Repeated ARA* 500μs 645 49.0% 4.69

Incremental ARA* 500μs 596 0.7% 7.51

FRA* 1000μs 545 5.7% -

Repeated ARA* 1000μs 639 34.3% 5.97

Incremental ARA* 1000μs 577 0.3% 8.87

Conclusions

• Replanning is important when the search
problem changes.

• We begin to understand replanning for goal-
directed navigation in unknown terrain
towards a stationary target (where the hunter
gains knowledge about the terrain).

• This paper studies replanning for goal-directed
navigation in known terrain towards a moving
target (where the hunter gains knowledge
about the target cell).

Conclusions

• Incremental ARA* is the first incremental
anytime search algorithm for moving target
search in known terrain.

• Incremental ARA* can be used with smaller
time limits between moves of the hunter than
competing state-of-the-art moving target
search algorithms.

Acknowledgements

• Thanks to Nathan Sturtevant for his test problems
and HOG2 environment (see movingai.com).

• The research at USC was supported by NSF, ARO and
ONR.

• The research at Singapore Management University
was supported by the Singapore National Research
Foundation.

• The views and conclusions are those of the authors
and should not be interpreted as representing the
official policies of the sponsoring organizations.

