
Optimizing Plans through Analysis of Action
Dependencies and Independencies

[aka.. post plan analysis to shorten plans..]

Lukas Chrpa, Lee McCluskey and
Hugh Osborne

Univeristy of Huddersfield, UK

Chrpa, McCluskey and Osborne, University
of Huddersfield

ai

aj
p

p

Context - Chrpa’s research

Useful Tools that can augment Existing
Planning Engines

Techniques to some degree are domain independent, can be

“slotted in” with planning engines to improve optimality and
speed.

Planning Problem
Reformulation

Plan
Generation Speed-up
ECAI 2012 long paper

Post planning analysis
Plan optimality
ICAPS 2012 short
paper [this talk!]

Chrpa, McCluskey and Osborne, University
of Huddersfield

Basic Idea

• Modern Planning Engines are often “satisficing” – they
are good at producing correct plans but the plans are
often not optimal: “fast planning” systems do not
guarantee optimal solutions.

• Some “speed up” techniques like using macro
operators make matters worse – they are prone to
introducing redundant actions into solutions.

• We try to use post-planning analysis to reduce plan
length regardless of planner used …. without
compromising plan generation times. So a method with
low polynomial time with respect to length of plan.

Chrpa, McCluskey and Osborne, University
of Huddersfield

Assumptions
• This work assumes

– we’re working in simple STRIPS formalisms

– solutions to planning problem (actions, initial
state I, goal conditions G) are sequences of
ground actions with preconditions, add and
delete lists

– looking to create domain independent methods
- action inverses and replacability are
computed for each domain in the runtime of
the method

Chrpa, McCluskey and Osborne, University
of Huddersfield

 Examples of potential optimization
• Some situations where an action and its inverse

may be removed ..

[…,stack (a,b), …, unstack(a,b)]

• Some situations where a two actions may be
replaced by one action

[…,drive (x,y), …, drive(y,z),..]

• Some complex situations

[…,pickup(a), .., stack(a,b), .., pickup(c), .., stack(c,d),
…, unstack(a,b), … , putdown(a)]

Chrpa, McCluskey and Osborne, University
of Huddersfield

aj is directly dependent on ai

(like “causal link”)

aj p ai

p

+ NO other action between ai and aj has

 p in its add list

Chrpa, McCluskey and Osborne, University
of Huddersfield

Pre
eff+

eff-
ai

NOTATION

Definition 1

aj is dependent on ak – transitive

closure of directly dependent

aj p ai

p

Chrpa, McCluskey and Osborne, University
of Huddersfield

Definition 1 +

ak q

q

Necessary condition for optimal
plan – ag dependent on every

action

ag goals ai

Chrpa, McCluskey and Osborne, University
of Huddersfield

Observation

Definition 2

aj p ai

ai does not have a role in
achieving aj’s precons

X

X

X

Chrpa, McCluskey and Osborne, University
of Huddersfield

ai and aj are independent if …

In words, aj is not dependent on ai, the later action

does not `clobber` atoms needed by the earlier one,

the earlier action does not `clobber` positive effects of

the later one

Definition 2

aj p ai

So, assuming they were adjacent–
we could swap the positions of ai and aj …

ai aj

ai does not have a role in
achieving aj’s precons

aj does not clobber the
achievement of of ai’s precondtiions

X

X

aj does not delete any of
aj’s add list (it does not act as a
clobberer against aj)

X

X

X

Chrpa, McCluskey and Osborne, University
of Huddersfield

ai and aj are independent if …

p

Precons still achieved

Moving actions to each other –
looking for weak adjacency

Four different situations for moving the intermediate actions (grey-
filled) before or after one of the boundary actions (black-filled).

Replacing (weakly) adjacent actions
with one action - replacability..

Action (or action sequence) a is replaceable by
a' if

– pre(a')  pre(a)

– eff-(a')  eff-(a)

– eff+(a')  eff+(a)

[where a is a sequence, pre(a) etc are computed as
if a is macro]

Chrpa, McCluskey and Osborne, University
of Huddersfield

Efficiently removing inverses -
Proposition 2

ak p ai

X

X

Chrpa, McCluskey and Osborne, University
of Huddersfield

ai and aj can be safely removed from a plan if aj is
an inverse to ai, and for all k, I < k < j …

This special case of the independence relation is for
when aj is inverse to ai so that these inverse pairs can

be removed efficiently

aj

Implemented algorithm which inputs
plan and shortens it:

1. Compute action dependencies, and remove all actions on
which the goal is not dependent .

2. Repeat

 Identify and remove all pairs of inverse actions using
Proposition 2

 Until no actions are removed.

3. Compute independencies. Identify pairs of weakly adjacent
actions which are replaceable by a single action (and replace
if applicable).

4. if any pair in 3. is replaced, goto step 2 else end.

Chrpa, McCluskey and Osborne, University
of Huddersfield

Experiments with 5 Domains

Depots (small)
Gold-Miner (16%)
Storage (63%)
(Zeno and Sattelite
c.5%, not shown) 0 5 10 15 20 25

0

100

200

300

400

500

600

LPG

LPG + opt

Gamer

0 5 10 15 20

0

20

40

60

80

100

120

LPG

LPG + opt

Gamer

10 15 20 25 30

0

10

20

30

40

50

60

70

80

90

LPG

LPG + opt

Gamer

Depots

Storage

Example Related Work 1: AIRS

● Estrem & Krebsbach – FLAIRS 2012

● Identify (by heuristic) which states (visited during the execution of the
plan) might be closer to each other

● Use an optimal or nearly-optimal planner to re-plan between these states

-- comment – for local reduction, includes re-planning, specifically aimed at
anytime planning

Example Related Work 2:
Neighborhood Graph

● Nakhost & Muller – ICAPS 2010

● Expand each state visited during plan execution to a pre-
defined depth

● Then by applying Dijkstra's algorithm find a (better) solution

- comment: as AIRS, aimed at local improvement in parts of the
plan

Results and Conclusions 1

● Initial experimental results are promising

● Method is low order polynomial in length of
plan (see paper for details)

● particular features – analytical method
possible to remove/replace pairs of actions
near or far away from each other in the input
plan

Results and Conclusions 2

● Method in the paper cannot deal with some nesting
scenarios e.g. cannot remove these pairs of inverse
actions sucessively (pair by pair) but all together:

[…,pickup(a), .., stack(a,b), .., pickup(c), ..,

stack(c,d), …, unstack(a,b), … , putdown(a)]

aj aj

Chrpa, McCluskey and Osborne, University
of Huddersfield

? Questions

