Optimizing Plans through Analysis of Action
Dependencies and Independencies
[aka.. post plan analysis to shorten plans..]

Context - Chrpa’s research

Useful Tools that can augment Existing
Planning Engines

Planning Problem
Reformulation
—Plan
Generation Speed-up
ECAI 2012 long paper

Post planning analysis
—>Plan optimality
ICAPS 2012 short

paper [this talk!]

Techniques to some degree are domain independent, can be
“slotted in” with planning engines to improve optimality and
speed.

Basic Idea

 Modern Planning Engines are often “satisficing” — they
are good at producing correct plans but the plans are
often not optimal: “fast planning” systems do not
guarantee optimal solutions.

 Some “speed up” techniques like using macro
operators make matters worse — they are prone to
introducing redundant actions into solutions.

 We try to use post-planning analysis to reduce plan
length regardless of planner used without
compromising plan generation times. So a method with
low polynomial time with respect to length of plan.

Assumptions

* This work assumes
— we’re working in simple STRIPS formalisms

— solutions to planning problem (actions, initial
state |, goal conditions G) are sequences of
ground actions with preconditions, add and
delete lists

— looking to create domain independent methods
- action inverses and replacability are
computed for each domain in the runtime of
the method

Examples of potential optimization

e Some situations where an action and its inverse
may be removed ..

[...,stack (a,b), ..., unstack(a,b)]

 Some situations where a two actions may be
replaced by one action

[...,drive (x,y), ..., drive(y,z),..]
 Some complex situations

[...,pickup(a), .., stack(a,b), .., pickup(c), .., stack(c,d),
..., unstack(a,b), ..., putdown(a)]

Definition 1

NOTATION

Pre

aj is directly dependent on ai
(like “causal link”)

+ NO other action between a; and a; has
p in its add list

Chrpa, McCluskey and Osborne, University
of Huddersfield

Definition 1 +

a; is dependent on a, — transitive
closure of directly dependent

Chrpa, McCluskey and Osborne, University
of Huddersfield

Observation

Necessary condition for optimal
plan — a, dependent on every

action

Chrpa, McCluskey and Osborne, University
of Huddersfield

Definition 2

d ind dent if a, does not have arolei
a;and a; are independent if ... achieving a/’s precons

In words, a; is not dependent on a,, the later action

does not clobber atoms needed by the earlier one,
the earlier action does not clobber positive effects of

the later one

Definition 2

a, does not have arolei
achieving a;’s precons

a;and a, are independent if ...

So, assuming they were adjacent—
e could swap the positions of ai and aj ...

Precons still achieved

N

! a; does not delete any of

A aj’s add list (it does not act as a
aj does not clobber the clobberer against aj)
achievement of of ai’s precondtiions

P a;

Moving actions to each other —

looking for weak adjacency
Forn, § &>

L e L L e

T <.

Four different situations for moving the intermediate actions (grey-
filled) before or after one of the boundary actions (black-filled).

Replacing (weakly) adjacent actions
with one action - replacability..

Action (or action sequence) a is replaceable by
a if
— pre(a’) < pre(a)
— eff(a') < eff(a)
— efft(a') o eff*(a)

[where a is a sequence, pre(a) etc are computed as
if a is macro]

Efficiently removing inverses -
Proposition 2

3; and a; can be safely removed from a plan if a; is
an inverse to a,, and for all k, I <k <j ...

This special case of the independence relation is for
when ga; is inverse to a; so that these inverse pairs can

be removed efficiently

Implemented algorithm which inputs
plan and shortens it:

1. Compute action dependencies, and remove all actions on
which the goal is not dependent .

2. Repeat

Ildentify and remove all pairs of inverse actions using
Proposition 2

Until no actions are removed.

3. Compute independencies. Identify pairs of weakly adjacent

actions which are replaceable by a single action (and replace
if applicable).

4. if any pair in 3. is replaced, goto step 2 else end.

Experiments with 5 Domains

120 %
100 L/ 80 + JO!(-Miner
. 70 .
80 . V. - .
60 S = PG 50 = o a *LPG
. o WLPG+opt | 4o | * o, *° s 5° ¢ B LPG + opt
40 m a8 = & Gamer 30 0—-%‘— n = ;-—. Gamer
g [[] - 20 B
20
10
0 A A e A 0 b A A A A A A A A
0 5 10 15 20 Depots 10 15 20 25 30
600
500 ¢ o
400 A DepOtS (Sma”)
S e | Gold-Miner (16%)
200 - e «mer | Storage (63%)
e (Zeno and Sattelite
T TTLLILLTE LN
’ 0 5 10 15 20 25 Storage C.S%, nOt ShOWﬂ)

Example Related Work 1: AIRS

Estrem & Krebsbach — FLAIRS 2012

Identify (by heuristic) which states (visited during the execution of the
plan) might be closer to each other

Use an optimal or nearly-optimal planner to re-plan between these states

-- comment — for local reduction, includes re-planning, specifically aimed at
anytime planning

Example Related Work 2:
Neighborhood Graph

Nakhost & Muller — ICAPS 2010

Expand each state visited during plan execution to a pre-
defined depth

. Then by applying Dijkstra's algorithm find a (better) solution

- comment: as AIRS, aimed at local improvement in parts of the
plan

Results and Conclusions 1

. Initial experimental results are promising

. Method is low order polynomial in length of
plan (see paper for details)

particular features — analytical method
possible to remove/replace pairs of actions
near or far away from each other in the input
plan

Results and Conclusions 2

. Method in the paper cannot deal with some nesting
scenarios e.g. cannot remove these pairs of inverse
actions sucessively (pair by pair) but all together:

[...,pickup(a), .., stack(a,b), .., pickup(c), ..,
stack(c,d), ..., unstack(a,b), ... , putdown(a)]

?

e« Questions

Chrpa, McCluskey and Osborne, University
of Huddersfield

