
Sample-based Planning and Learning
for

Continuous Markov Decision Processes

Ari Weinstein
Rutgers University

Michael L. Littman
Rutgers University, Brown University

1

Motivation

• Many real-world planning problems are
fundamentally continuous

• Planning literature is mostly interested in
discrete domains
– Common approach is to coarsely discretize

continuous dimensions; can be effective but is
wasteful

• We are interested in efficient planning in
continuous Markov Decision Processes
(MDPs)

2

Overview

• Bandits
– Discrete, UCB

– Continuous, HOO

• Markov Decision Processes
– MDP Planning with HOO: HOLOP

• Empirical Results: HOLOP vs. UCT

sample code made available at:

 http://code.google.com/p/holop/

3

k-armed Bandits
• Agent selects an arm from a set A, where |A|=k
• Each arm a has a distribution over rewards R(a)

• Call the arm pulled at time t at , reward rt~R(at)
• The regret is the sum of differences in reward between arms pulled

and optimal arm; want regret to increase sub-linearly in t

• UCB1 algorithm [Auer et al. 02]:

– Has optimal regret: O(log(t))
• Setting can be extended to continuum of arms with some smoothness

over the expected reward of “nearby” arms





0

*

t)(regret
t

traR

4

a
Aa

ntaR /)ln(2)(ˆmaxarg 


 )(maxarg* aREa
Aa



Hierarchical Optimistic Optimization (HOO)
[Bubeck et al. 08]

• For use in continuous bandit domains (stochastic global
optimization)

• Partition action space by a tree, matintain rewards for each subtree

• Follow B-scores from root to leaf,
bisect leaf on sampling

• Blue is the bandit, red is the
decomposition of HOO tree
– Thickness represents estimated

reward

• Tree grows deeper and builds estimates at high resolution where
reward is highest

5

HOO continued

• Exploration bonuses for number of samples and size of
each subregion
– Regions with large volume and few samples are unknown, vice

versa

• Pull arm in region according to maximal B from root

• Has optimal regret: O(sqrt(t)), independent of action
dimension

  )(),(max),(min)(

)(

)ln(2
)(ˆ)(

2,112,1,,

1

,

,,

tBtBtUtB

v
tN

t
ttU

ihihihih

h

ih

ihih



 

6

Markov Decision Processes (MDP)

• Composed of:
– States S (s, s’ from S)
– Actions A (a from A)
– Transition distribution T(s,a)
– Reward function R(s,a)
– Discount factor γ

• Assume A is infinitely large
• No assumption on S
• We will maximize expected discounted finite-horizon

return:
 











n

t

t

trE
0



Sample-based Planning in MDPs

• Agent can query a generative model:

– For any query <s,a>, generative model returns
<r,s’>: r = R(s,a), s’ ~ T(s,a)

• Repeat :

– Domain informs agent of current state, s

– Agent queries generative model for any number of
arbitrary <s,a> gets <r,s’>

– Agent informs domain of true action to take, a

8

MDP Planning with HOO (HOLOP)

• HOLOP – Hierarchical Open Loop Optimistic Planning

• Introduced and analyzed theoretically in Bubeck and
Munos 10

• Casts the n-step planning problem as a large
optimization problem

• Planning is open-loop; a sequence of actions is
executed in order and return is observed

• Use HOO to optimize n-step planning, and then only
use action recommended for first step.

9

1-Step Lookahead in HOLOP

• Maximizes immediate reward, r1

• 1 dimensional; horizontal axis represents immediate
action

• Equivalent to bandit setting

10

2-Step Lookahead in HOLOP

• Maximizes r1+ γ r2

• 2 dimensional; horizontal axis represents immediate
action, vertical represents next action

11

3-Step Lookahead in HOLOP

• Maximizes r1+ γ r2 + γ2 r3

• 3 dimensional; horizontal axis represents immediate action,
vertical represents next action, depth represents third action

• Can be extended to arbitary dimensions/depth

12

Properties of HOLOP

• Regret of HOO/HOLOP improves at rate of O(sqrt(t)),
and independent of |A|, n
– True as t >> |A| x n so in most settings size does matter

• Open loop control means state agnostic
– Cost independent of |S|
– Functions identically in discrete, continuous, hybrid state

• Anytime planner
– Policy continuously improves over time
– Unlike PAC-style planners, can be interrupted at any time

• Open loop control means performance can be poor in
noisy domains with particular structures

13

Comparison of HOLOP to UCT

• Upper Confidence Bounds applied to Trees
(UCT) is a sample-based planning algorithm
[Kocsis Szepesvari 06]

– Functions in discrete MDPs

– Has had significant empirical success in Go [Silver et al. 08]

• Because the domains are continuous,
UCT uses a uniform coarse discretization
over both the state and action spaces

14

Comparison: UCT and HOLOP

15

• Double integrator: Object with position(p) and
velocity(v) [Santamaría et al. 98]

– Control acceleration (a)

– R((p,v), a) = -(p2+a2)

• Inverted Pendulum: [Pazis and Lagoudakis 09]

– Reward penalizes high-magnitude actions, angles
off balance, and high angular velocities

Comparison: UCT and HOLOP

• Graphs depict average cumulative reward of episodes
• UCT has a “heat map” because it must discretize state

and actions; HOLOP functions natively in both domains
and needs no tuning

• HOLOP outperforms all 49 parameterizations of UCT
(almost all cases with statistical significance)

16

Conclusions

• HOLOP is an effective continuous-action planner

• It is almost entirely parameter-free
– Good performance is easy to achieve

• Open loop control means algorithm functions without
modification in discrete, continuous, hybrid domains

• Although domains with some structures can cause
problems for open-loop planners, we did not
encounter this in practice

• Because of poor generalization, algorithms that are
effective in discrete domains are usually not effective
in continuous domains when a coarse discretization is
applied

17

Citations

• Auer et al. 02: Auer, P., Fischer, P., and Cesa-Bianchi, N. Finite-time analysis of the multi-armed
bandit problem. Machine Learning, 47, 2002.

• Bubeck et al 08:, S. Bubeck, R. Munos, G. Stoltz, C. Szepesvari. Online Optimization in X-Armed
Bandits, NIPS 08

• Bubeck Munos 10: Bubeck, S., and Munos, R. 2010. Open loop optimistic planning. COLT 2010.
• Moore 91: Efficient Memory-based Learning for Robot Control. PhD. Thesis; University of

Cambridge, 1991.
• Nouri Littman 08:Nouri, A. and Littman, M. L. Mutli-resolution Exploration in Continuous Spaces.

NIPS 2008
• Pazis and Lagoudakis 09: Pazis, J., and Lagoudakis, M. 2009. Binary action search for learning

continuous-action control policies. ICML 2009.
• Santamaría et al. 98: Santamaría, Juan C., Sutton, R., and Ram, Ashwin. Experiments with

reinforcement learning in problems with continuous state and action spaces. In Adaptive Behavior
6, 1998.

• Silver et al. 08: Silver, D.; Sutton, R.; and Muller, M. 2008. Sample-based learning and search with
permanent and transient memories. ICML 2008.

• Tassa et al. 07: Tassa, Yuval, Erez, Tom, and Smart, William D. Receding horizon differential dynamic
programming. In Advances in Neural Information Processing Systems 21. 2007.

• Kocsis Szepesvari 06: Kocsis, L., and Szepesvari, C. 2006. Bandit based monte-carlo planning. In
Proceedings of the 17th European Conference on Machine Learning, 282–293.

18

