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Motivation 

• Many real-world planning problems are 
fundamentally continuous 

• Planning literature is mostly interested in 
discrete domains 
– Common approach is to coarsely discretize 

continuous dimensions; can be effective but is 
wasteful 

• We are interested in efficient planning in 
continuous Markov Decision Processes 
(MDPs) 

2 



Overview 

•  Bandits  
– Discrete, UCB 

– Continuous, HOO 

• Markov Decision Processes 
– MDP Planning with HOO: HOLOP 

• Empirical Results: HOLOP vs. UCT 

 

 
sample code made available at:  

 http://code.google.com/p/holop/ 

3 



k-armed Bandits 
• Agent selects an arm from a set A, where |A|=k 
• Each arm a has a distribution over rewards R(a) 

 
 

• Call the arm pulled at time t at , reward rt~R(at) 
• The regret is the sum of differences in reward between arms pulled 

and optimal arm; want regret to increase sub-linearly in t 
 
 

• UCB1 algorithm [Auer et al. 02]: 
 
 

– Has optimal regret: O(log(t)) 
• Setting can be extended to continuum of arms with some smoothness 

over the expected reward of “nearby” arms 
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Hierarchical Optimistic Optimization (HOO) 
[Bubeck et al. 08] 

• For use in continuous bandit domains (stochastic global 
optimization) 

• Partition action space by a tree, matintain rewards for each subtree 

• Follow B-scores from root to leaf, 
bisect leaf on sampling 

• Blue is the bandit, red is the 
decomposition of HOO tree 
– Thickness represents estimated 

reward 

• Tree grows deeper and builds estimates at high resolution where 
reward is highest 

5 



HOO continued 

• Exploration bonuses for number of samples and size of 
each subregion 
– Regions with large volume and few samples are unknown, vice 

versa 

• Pull arm in region according to maximal B from root 
 
 
 
 
 

• Has optimal regret: O(sqrt(t)), independent of action 
dimension 
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Markov Decision Processes (MDP) 

• Composed of: 
– States S (s, s’ from S) 
– Actions A (a from A) 
– Transition distribution T(s,a) 
– Reward function R(s,a) 
– Discount factor γ 

• Assume A is infinitely large 
• No assumption on S 
• We will maximize expected discounted finite-horizon 

return: 
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Sample-based Planning in MDPs 

• Agent can query a generative model: 

– For any query <s,a>, generative model returns 
<r,s’>: r = R(s,a), s’ ~ T(s,a) 

• Repeat : 

– Domain informs agent of current state, s 

– Agent queries generative model for any number of 
arbitrary <s,a> gets <r,s’> 

– Agent informs domain of true action to take, a 
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MDP Planning with HOO (HOLOP) 

• HOLOP – Hierarchical Open Loop Optimistic Planning 

• Introduced and analyzed theoretically in Bubeck and 
Munos 10 

• Casts the n-step planning problem as a large 
optimization problem 

• Planning is open-loop; a sequence of actions is 
executed in order and return is observed 

• Use HOO to optimize n-step planning, and then only 
use action recommended for first step.   
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1-Step Lookahead in HOLOP 

• Maximizes immediate reward, r1 

• 1 dimensional; horizontal axis represents immediate 
action 

• Equivalent to bandit setting 
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2-Step Lookahead in HOLOP 

• Maximizes r1+ γ r2  

• 2 dimensional; horizontal axis represents immediate 
action, vertical represents next action 
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3-Step Lookahead in HOLOP 

• Maximizes r1+ γ r2 + γ2 r3  

• 3 dimensional; horizontal axis represents immediate action, 
vertical represents next action, depth represents third action 

• Can be extended to arbitary dimensions/depth 
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Properties of HOLOP 

• Regret of HOO/HOLOP improves at rate of O(sqrt(t)), 
and independent of |A|, n 
– True as t >> |A| x n so in most settings size does matter 

• Open loop control means state agnostic 
– Cost independent of |S| 
– Functions identically in discrete, continuous, hybrid state 

• Anytime planner 
– Policy continuously improves over time 
– Unlike PAC-style planners, can be interrupted at any time 

• Open loop control means performance can be poor in 
noisy domains with particular structures 
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Comparison of HOLOP to UCT  

 

• Upper Confidence Bounds applied to Trees 
(UCT) is a sample-based planning algorithm 
[Kocsis Szepesvari 06] 

– Functions in discrete MDPs 

– Has had significant empirical success in Go [Silver et al. 08]  

• Because the domains are continuous, 
UCT uses a uniform coarse discretization 
over both the state and action spaces 
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Comparison: UCT and HOLOP 

15 

• Double integrator: Object with position(p) and 
velocity(v) [Santamaría et al. 98] 

– Control acceleration (a) 

– R((p,v), a) = -(p2+a2) 

• Inverted Pendulum: [Pazis and Lagoudakis 09] 

– Reward penalizes high-magnitude actions, angles 
off balance, and high angular velocities 



Comparison: UCT and HOLOP 

• Graphs depict average cumulative reward of episodes 
• UCT has a “heat map” because it must discretize state 

and actions; HOLOP functions natively in both domains 
and needs no tuning 

• HOLOP outperforms all 49 parameterizations of UCT  
(almost all cases with statistical significance) 
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Conclusions 

• HOLOP is an effective continuous-action planner 

• It is almost entirely parameter-free 
– Good performance is easy to achieve 

• Open loop control means algorithm functions without 
modification in discrete, continuous, hybrid domains 

• Although domains with some structures can cause 
problems for open-loop planners, we did not 
encounter this in practice 

• Because of poor generalization, algorithms that are 
effective in discrete domains are usually not effective 
in continuous domains when a coarse discretization is 
applied 
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