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Tutorial Outline 

1. Modeling Continuous Problems 
a) Why continuous? 

b) MDPs and POMDPs 

c) (P)PDDL and RDDL 

 

2. Solving Continuous Problems 
a) Exact dynamic programming 

• Data structures 

b) Open problems 

c) Survey of other solution methods 

d) Connections to control and scheduling 

 



Part 1a: Modeling 
 

Why continuous? 



Why Continuous Planning? 

• Many real-world problems have a continuous 
component of state,  action, or observations 

– Time 

– Space and derivatives 

• Position and angle 

• Velocity, acceleration, … 

– Resources 

• Fuel, energy, … 

– Expected statistics 

• Traffic volume 

• Density, speed, … 



Mars Rovers 

• Objective? 
– Carry out actions near places within time windows 

 

• What’s continuous? 
– Time (t), Energy (e), Robot position (x,y,) 

 

Mealeau, Benazera, 
Brafman, Hansen, 
Mausam.  JAIR-09. 



Elevator Control 

• Dynamics 
– Random arrivals (e.g., Poisson) 

 
• Objective? 

– Minimize sum of wait times 
 

• What’s continuous? 
– Expected people waiting 

• At each floor 
• In elevator 

– Expected time waiting 
• At each floor 
• For each level in elevator 

 

http://www.melsa.com.sa/images/Elevators at Kingdom Centre, Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg


DARPA Grand Challenge 
• Autonomous driving 

– Real-time, partially observed 
 

• Objective? 
– Reach goal, stay on road (wherever it is) 

 

• What’s continuous? 
– State: position, velocity 
– Sensing: vision, sonar, laser range finders 

 

http://upload.wikimedia.org/wikipedia/commons/0/0c/DesertToCity.jpg
http://en.wikipedia.org/wiki/Image:Stanleyrobot.jpg
http://en.wikipedia.org/wiki/Image:ElementBlack2.jpg


Traffic Control 

• Objective? 
– Minimize congestion, stops, fuel consumption 

 

• What’s continuous? 
– Expected traffic volume, velocity, wait times 

 



Goal-oriented Path Planning 

• Robotics 
– Continuous position, 

joint angles 

– Nonlinear dynamics 
(sin, cos) 
 

• Obstacle Navigation 
– 2D, 3D, 4D (time) 

– Linear dynamics 

– Don’t discretize! 
• Grid worlds 

x 

y 

h=1 

h=2 

Solve in  
2 steps! 



If you can effectively solve any of the 
previous problems: people will care 

But first you have to model them! 



Part 1b: Modeling 
 

MDPs and POMDPs 



Observations, States, & Actions 

Observations 

State 

Actions 



Observations 

• Observation set O 

– Perceptions, e.g.,  

• My opponent’s bet in Poker 

• Distance from car to edge of road 

 

Continuous 
observations! 



States 

• State set S 

– At any point in time, system is in some state 

• My opponent’s hand of cards in Poker 

• Actual distance to edge of road 
 

Continuous 
states! 



Agent Actions 

• Action set A 
 

– Actions could be concurrent 

– If k actions, A = A1  …  Ak 

• Schedule all deliveries to be made at 10am 

• Set multiple joint angles in robotics 
 

 

Continuous 
actions! 



Agent Actions 

• Action set A 
 

– All actions need not be under agent control 

 

• Other agents, e.g., 
– Alternating turns: Poker, Othello 

– Concurrent turns: Highway Driving, Soccer 
 

 

• Exogenous events due to Nature, e.g., 
– Random arrival of person waiting for elevator 

– Random failure of equipment 

 

 



Recap 

• So far 

– States (S) 

– Actions (A) 

– Observations (O) 
 

• How to map between 

– Previous states, actions, and future states? 

– States and observations? 

– States, actions and rewards? 

– Sequences of rewards and optimization criteria? 

 



Observation Function 

• How to relate states and observations? 
 

• Partially observable:  
– Observations provide a belief over possible states 
– The most realistic world model 

» E.g., Driving 
– Solution techniques highly non-trivial 

» Beyond the scope of this introductory tutorial 

 
• Fully observable:  

– S  O … the case we focus on! 
– Assume complete knowledge of state 

» Inventory Control 
– Usually OK for “almost fully observable”, e.g., 

» Traffic, Path Planning, Elevators, Mars Rover 
 

 

 



Transition Function 

• How do actions take us between states? 
 

– Some properties 
 

• Stationary: T does not change over time 
» e.g., cannot be controlled adversarial agent 

 
 

• Markovian:  
– Next state dependent only upon previous state / action 

 

– If not Markovian, can always augment state description 

» e.g., elevator traffic model differs throughout day; 
        so encode time in state to make T Markovian! 



Goals and Rewards 

• Goal-oriented rewards  

– Assume maximizing reward… 

– Assign any reward value s.t. R(success) > R(fail) 

– Can have negative costs C(a) for action a 
 

• What if multiple (or no) goals? 

– How to specify preferences? 

– R assigns utilities to states and actions 

• E.g., Continuous: R(x,y,a) = x2 + xy 

• Then maximize expected reward (utility) 

But, how to trade off 
rewards over time? 



Optimization: Best Action when s=1? 

• Must define objective criterion to optimize! 
– How to trade off immediate vs. future reward? 

– E.g., use discount factor  (try =.9 vs. =.1) 

s=1 

s=2 
R=0 

a=stay 

R=2 

a=change 
R=10 

s=1 

s=2 
R=0 

a=stay 

R=2 

a=change 
R=10 

s=1 

s=2 
R=0 

a=stay 

R=2 

a=change 
R=10 

Start 



Trading Off Sequential Rewards 

• Sequential-decision making objective 
 

– Horizon (h) 

• Finite: Only care about h-steps into future 

• Infinite: Literally; will act same today as tomorrow 
 

 

– How to trade off reward over time? 

• Expected average cumulative return 

• Expected discounted cumulative return 

– Use discount factor  

– Reward t time steps in future discounted by t 



Recap 

• So far 

– Actions (A) 

– States (S) 

– Observation (O) 

– Transition function (T) 

– Observation function (Z) 

– Reward function (R) 

– Optimization criteria 
 

• But are the above 

– Known or unknown? 
 



Knowledge of Environment 

• Model-known:  
– Know <S,A,T,R> and if partially observed, also <O,Z> 

– Called: Planning (under uncertainty) [Focus of this tutorial] 
• Decision-theoretic planning if maximizing expected utility 

 

• Model-free:  
– 1 unknown: <S,A,T,R> and if partially observed, also <O,Z> 

– Called: Reinforcement learning 
• Have to interact with environment to obtain samples  
 

• Model-based: 
– Between model-known and model-free 

– Learn approximate model from samples 

– Permits hybrid planning and learning 

Saves expensive 
interaction! 

Important part of AI that is 
overlooked… learning relevant model! 



Finally a Formal Model 

• Two main model types: 
– MDP:  S, A, T, R   
– POMDP:  S, A, O, Z, T, R   
– Model Known? 

• Yes: (decision-theoretic) planning under uncertainty 
• No: reinforcement learning (model-free or model-based) 

 
• Cannot solve a problem until know objective! 

– Single agent (possibly concurrent) 
• Maximize expected average or discounted sum of rewards 

 

– Multi-agent 
• Solution criteria depends on 

– Alternating vs. concurrent 
– Zero sum vs. general sum 

• Beyond scope of this tutorial 



Part 1c: Modeling 
 

(P)PDDL and RDDL 



(P)PDDL 

Relational  
Effects-based Model  

for Single Agent MDPs 



PDDL – Predicate and Functional Fluents 

(define (domain test-domain) 
   (:requirements :typing :equality :conditional-effects :fluents) 
   (:types car box) 
 
   (:predicates (parked ?x - car) (holding ?x - box) 
                         (in ?x - box ?y - car)) 
   (:functions (fuel-level ?x - car)) 
 
   (:action load  :parameters (?x - box ?y - car) 
    :precondition (and (holding ?x) (parked ?y)) 
    :effect (and (in ?x ?y) 
                   (forall (?z - car) 
                      (when (not (= ?z ?y)) 
                         (not (in ?x ?z)))))) 
 
   (:action refuel   :parameters (?x - car) 
    :precondition (< (fuel-level ?x) 10) 
    :effect (increase (fuel-level ?x) 1))) 

Ex. from Younes and 
Littman, PPDDL 1.0 

Boolean and 
numeric 
fluents 

Boolean 
fluent action 

effects 

Continuous 
fluent action 

effects 



Probabilistic PDDL – PPDDL 
(define (domain test-domain) 
   (:requirements :typing :equality :conditional-effects :fluents) 
   (:types car box) 
 
   (:predicates (parked ?x - car) (holding ?x - box) 
                         (in ?x - box ?y - car)) 
   (:functions (fuel-level ?x - car)) 
 
   (:action load  :parameters (?x - box ?y - car) 
    :precondition (and (holding ?x) (parked ?y)) 
    :effect (probabilistic 0.7  
                   (and (in ?x ?y) 
                      (forall (?z - car) 
                         (when (not (= ?z ?y)) 
                            (not (in ?x ?z))))))) 
 
   (:action refuel   :parameters (?x - car) 
    :precondition (< (fuel-level ?x) 10) 
    :effect (probabilistic 0.3 (increase (fuel-level ?x) 1) 
                                         0.5 (decrease (fuel-level ?x) 1)))) 

Probabilistic effects 
 
• In absence of 

effect, assume 
no change 
 

• Assume effects 
are consistent 
(no conflicing  
 assignments) 



Looking ahead… will need something  
more like Relational DBN 

What’s missing in PPDDL, Part I 

• Continuous effects-based modeling is natural:  
– Can use arithmetic functions for numeric fluent updates 

– But  
• Little provision for state-dependent probabilities 
  

• Multiple Independent Exogenous Events: 
– PPDDL only allows 1 independent event to affect fluent 

• In a stochastic setting, what if cars in a queue change lanes,  
or brake randomly? 



What’s missing in PPDDL, Part II 

• Expressive transition 
distributions: 
– Stochastic difference 

equations with arbitrary 
noise 
• Poisson arrivals 
• Gaussian noise 

 

– Resolving conflicts of 
concurrent actions under 
exogenous events 
• Unprotected traffic turns 

 

• Partial observability: 
– E.g., only observe stopline 

Traffic Network 



What’s missing in PPDDL, Part III 

• Distinguish fluents from nonfluents: 
– E.g., topology of traffic network 

– Lifted planners must know this to be efficient! 

 

• Expressive rewards  
– E.g., sums and products over all objects! 

– Function of state (e.g., SysAdmin) 

 

• Global state-action constraints  for domain verification: 
– Concurrent domains need global action preconditions 

• E.g., two traffic lights cannot go into a given state 
 

– In logistics, vehicles cannot be in two different locations 

• Regression planners need state constraints! 



Is there any hope? 

Yes, but we need to borrow from factored 
MDP / POMDP community… 



RDDL 

Relational Fluent-oriented 
Model for Single Agent, 

Concurrent Action (PO)MDPs 
 



What is RDDL? 

• Relational Dynamic Influence 
Diagram Language 
– Relational  

[DBN + Influence Diagram] 

– State, action, observations, 
reward are all variables (fluents) 

• Variables depend on 
parents in diagram 
 

• Think of it as  
Relational Factored 
MDPs and POMDPs 
– SPUDD / Symbolic Perseus  

  t        t+1 

a 

x1 

x2 

r 

x1’ 

x2’ 

o1 o2 



RDDL Principles I 

• Everything is a fluent (parameterized variable) 
– State fluents 

– Observation fluents  
• for partially observed domains 

– Action fluents 
• supports factored concurrency 

– Intermediate fluents 
• derived predicates, correlated effects, … 

– Constant nonfluents (general constants, topology relations, …) 

 

• Flexible fluent types 
– Binary (predicate) fluents 

– Multi-valued (enumerated) fluents 

– Integer and continuous fluents (from PDDL 2.1) 

Regression planners 
need to know what 

fluents do not change! 



RDDL Principles II 

• Semantics is ground DBN / Influence Diagram 

– DBN leads to consistent transition semantics 

• Supports unrestricted concurrency 

– i.e., concurrent actions may conflict 

– DBN transitions inherently resolve these conflicts 

 

– Naturally supports independent exogenous events 

• E.g., each car in traffic moving autonomously  

– random braking 

– random lane changes 

 



RDDL Principles III 
• Expressive transition and rewards 

– Logical expressions (, ,, , , )  

– Arithmetic expressions (+,−,*,/)  

– In/dis/equality comparison expressions (=,, <,>,, ) 

– Conditional expressions (if-then-else, switch) 

– Sum and product over all domain objects: x,x 

– General probability distributions 
• Bernoulli 

• Discrete 

• Normal 

• Poisson 

• Exponential 

• … 

Parameters can 
be function of 

state and action! 

x,x aggregators 
over domain objects  
extremely powerful 



RDDL Principles IV 

• Arbitrary state/action constraints 
 

– Joint action preconditions 

• e.g., two lights cannot be green  
if they allow crossing traffic 

 

– State invariant assertions 

• e.g., cars can neither be created  
nor destroyed 

• e.g., a package cannot be in two 
locations 

 

Interesting problems 
for ICKEPS community: 
 

• How to  generate 
conflicts? 

• Correct domain 
when conflict 
arises? 

• Correct when 
solutions don’t 
display expected 
properties? 

Many possible states 
are illegal – 

Important to identify 
for regression planning 



RDDL Principles V 

• Goal + General (PO)MDP objectives 
– Arbitrary reward 

• goals, costs, numerical preferences (c.f., PDDL 3.0) 

– Finite horizon 

– Discounted or undiscounted 

Can use x,x 
aggregators here…  

 
e.g., sum of all 

delivery costs for all 
packages 



RDDL Examples 

Easiest to understand  
RDDL in use… 



How to Represent Factored MDP? 

P(p’|p,r) 



RDDL Equivalent 

Can think of 
transition 

distributions as 
“sampling 

instructions” 

Boolean variables 
are {0,1} so can sum 



A Discrete-Continuous POMDP? 

Integer 

Multi-
valued 

Real 



A Discrete-Continuous POMDP, Part I 

Intermediate 
variables – 

correlated effects, 
derived predicates 

Observation 
variables 



A Discrete-Continuous POMDP, Part II 

Integer 

Multi-
valued 

Real 

Variance comes from other 
previously sampled variables 

Mixture of 
Normals 



RDDL so far… 

• Mainly SPUDD / Symbolic Perseus with a different 
syntax  
– A few enhancements  

• concurrency 

• constraints 

• integer / continuous variables 

 

• Real problems (e.g., traffic) need lifting 
– An intersection model 

– A vehicle model 
• Specify each intersection / vehicle model once! 



Lifting: Conway’s Game of Life 
(simpler than traffic) 

• Cells born, live, die based on neighbors 
– < 2 or > 3 

neighbors: 
cell dies  

– 2 or 3  
neighbors: 
cell lives 

– 3 neighbors 
 cell birth! 
 

– Make into MDP 
• Probabilities 
• Actions to turn 

on cells 
• Maximize number 

of cells on 
 
 

• Compact RDDL specification for any grid size?  Relational lifting. 

http://en.wikipedia.org/wiki/Conway's_Game_of_Life 

http://en.wikipedia.org/wiki/Conway's_Game_of_Life


Lifted 
MDP: 

 

Game  
of Life 

Concurrency as 
factored action 

variables 
 

How many 
possible joint 
actions here? 



A Lifted MDP 
Intermediate variable: like derived predicate 

Using counts to  
decide next state 

Additive reward! 

State constraints, 
preconditions 



Nonfluent and Instance Defintion 

Objects that don’t change 
b/w instances 

Topologies over 
these objects 

Numerical constant 
nonfluent 

Import a topology 

Initial state as usual 

Concurrency 



Power of Lifting 
        
non-fluents game3x3 { 
 
 domain = game_of_life; 
  
 objects {  
  x_pos : {x1,x2,x3}; 
  y_pos : {y1,y2,y3}; 
 }; 
   
 non-fluents {  
  NEIGHBOR(x1,y1,x1,y2); 
  NEIGHBOR(x1,y1,x2,y1); 
  NEIGHBOR(x1,y1,x2,y2); 
  NEIGHBOR(x1,y2,x1,y1); 
  NEIGHBOR(x1,y2,x2,y1); 
  NEIGHBOR(x1,y2,x2,y2); 
  NEIGHBOR(x1,y2,x2,y3); 
  NEIGHBOR(x1,y2,x1,y3);  
 NEIGHBOR(x1,y3,x1,y2); 
  NEIGHBOR(x1,y3,x2,y2); 
  NEIGHBOR(x1,y3,x2,y3);  
 NEIGHBOR(x2,y1,x1,y1); 
  NEIGHBOR(x2,y1,x1,y2); 
  NEIGHBOR(x2,y1,x2,y2); 
  NEIGHBOR(x2,y1,x3,y2); 
  NEIGHBOR(x2,y1,x3,y1);  
 NEIGHBOR(x2,y2,x1,y1); 
  NEIGHBOR(x2,y2,x1,y2); 
  NEIGHBOR(x2,y2,x1,y3); 
  NEIGHBOR(x2,y2,x2,y1); 
  NEIGHBOR(x2,y2,x2,y3); 
  NEIGHBOR(x2,y2,x3,y1); 
  NEIGHBOR(x2,y2,x3,y2); 
  NEIGHBOR(x2,y2,x3,y3);  
 NEIGHBOR(x2,y3,x1,y3); 
  NEIGHBOR(x2,y3,x1,y2); 
  NEIGHBOR(x2,y3,x2,y2); 
  NEIGHBOR(x2,y3,x3,y2); 
  NEIGHBOR(x2,y3,x3,y3);  
 NEIGHBOR(x3,y1,x2,y1); 
  NEIGHBOR(x3,y1,x2,y2); 
  NEIGHBOR(x3,y1,x3,y2);  
 NEIGHBOR(x3,y2,x3,y1); 
  NEIGHBOR(x3,y2,x2,y1); 
  NEIGHBOR(x3,y2,x2,y2); 
  NEIGHBOR(x3,y2,x2,y3); 
  NEIGHBOR(x3,y2,x3,y3);  
 NEIGHBOR(x3,y3,x2,y3); 
  NEIGHBOR(x3,y3,x2,y2); 
  NEIGHBOR(x3,y3,x3,y2); 
 }; 
} 

 

non-fluents game2x2 { 
 
 domain = game_of_life; 
  
 objects {  
  x_pos : {x1,x2}; 
  y_pos : {y1,y2}; 
 }; 
   
 non-fluents {  
  PROB_REGENERATE = 0.9; 
   
  NEIGHBOR(x1,y1,x1,y2); 
  NEIGHBOR(x1,y1,x2,y1); 
  NEIGHBOR(x1,y1,x2,y2); 
   
  NEIGHBOR(x1,y2,x1,y1); 
  NEIGHBOR(x1,y2,x2,y1); 
  NEIGHBOR(x1,y2,x2,y2); 
   
  NEIGHBOR(x2,y1,x1,y1); 
  NEIGHBOR(x2,y1,x1,y2); 
  NEIGHBOR(x2,y1,x2,y2); 
 
  NEIGHBOR(x2,y2,x1,y1); 
  NEIGHBOR(x2,y2,x1,y2); 
  NEIGHBOR(x2,y2,x2,y1); 
 }; 
} 
         

Simple domains can 
generate complex 

DBNs! 
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Complex Lifted Transitions: SysAdmin 
SysAdmin (Guestrin et al, 2001) 

• Have n computers C = {c1, …, cn} in a network 
• State: each computer ci is either “up” or “down” 

 
 
 
 
 
 

 
• Transition: computer is “up” proportional to its 

state and # upstream connections that are “up” 
• Action: manually reboot one computer 
• Reward: +1 for every “up” computer 

c1 

c2 

c4 

c3 



Complex Lifted Transitions 

Probability of a 
computer running 

depends on ratio of 
connected computers 

running! 



How to Think About RDDL Distributions  

• Transition distribution is stochastic program 
– Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer) 
– Basically just complex conditional distributions 

 

• Specification of generative sampling process  
– E.g., noisy distance measurement in robotics 

 

• First draw boolean Noise := sample from Bernoulli (.1) 
 

• Then draw real Measurement :=  
 If (Noise == true) 

» Then sample from Uniform(0, 10) 
» Else sample from Normal(true-distance, 2) 

0 10 

true-distance Convenient way to write 
complex mixture models and 
conditional distributions that 

occur in practice! 



Lifted Continuous MDP in RDDL: 
Simple Mars Rover 

x 

y 

Picture  
Point 1 

Picture  
Point 3 

Picture  
Point 2 



Simple Mars Rover: Part I 
 types { picture-point : object; }; 
 
 pvariables {     
   
  PICT_XPOS(picture-point)   : { non-fluent, real, default = 0.0 }; 
  PICT_YPOS(picture-point)   : { non-fluent, real, default = 0.0 }; 
  PICT_VALUE(picture-point)  : { non-fluent, real, default = 1.0 }; 
  PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 }; 
   
   
  xPos : { state-fluent, real, default = 0.0 }; 
  yPos : { state-fluent, real, default = 0.0 }; 
  time : { state-fluent, real, default = 0.0 }; 
 
   
  xMove       : { action-fluent, real, default = 0.0 }; 
  yMove       : { action-fluent, real, default = 0.0 }; 
  snapPicture : { action-fluent, bool, default = false }; 
 }; 
 

Constant 
picture points, 
bounding box 

Rover position 
(only one rover) 

and time 

Rover  
actions 

Question, how 
to make multi-

rover? 



Simple Mars Rover: Part II 

 cpfs { 
 
  // Noisy movement update 
  xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE_MULT*xMove); 
 
  yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE_MULT*yMove); 
   
 
  // Time update 
  time' = if (snapPicture) 
    then DiracDelta(time + 0.25) 
    else DiracDelta(time +  
     [if (xMove > 0) then xMove else -xMove] +  
     [if (yMove > 0) then yMove else -yMove]); 
 
 }; 
  

Fixed time for picture 

Time proportional to 
distance moved 

White noise, variance proportional 
to distance moved 



Simple Mars Rover: Part III 
 
 // We get a reward for any picture taken within picture box error bounds  
 // and the time limit. 
 reward = if (snapPicture ^ (time <= MAX_TIME)) 
     then sum_{?p : picture-point} [  
          if ((xPos >= PICT_XPOS(?p) - PICT_ERROR_ALLOW(?p)) 
   ^ (xPos <= PICT_XPOS(?p) +  PICT_ERROR_ALLOW(?p))  
   ^ (yPos >= PICT_YPOS(?p) - PICT_ERROR_ALLOW(?p)) 
   ^ (yPos <= PICT_YPOS(?p) + PICT_ERROR_ALLOW(?p))) 
          then PICT_VALUE(?p) 
          else 0.0 ] 
      else 0.0; 
  
 state-action-constraints { 
 
  // Cannot snap a picture and move at the same time 
  snapPicture => ((xMove == 0.0) ^ (yMove == 0.0)); 
 }; 

Reward for all pictures taken 
within bounding box! 

Cannot move and take 
picture at same time. 



RDDL Software 

Open source & online at 
http://code.google.com/p/rddlsim/  

http://code.google.com/p/rddlsim/


RDDL Java Software Overview 

• BNF grammar and parser 
 

• Simulator 
 

• Automatic translations 
– LISP-like format (easier to parse) 
– SPUDD & Symbolic Perseus (boolean subset) 
– Ground PPDDL (boolean subset) 

 

• Client / Server 
– Evaluation scripts for log files 

 

• Visualization 
– DBN Visualization 
– Domain Visualization – see how your planner is doing 



RDDL vs. PPDDL (In)equivalance 

• For a fixed domain instance and discrete noise 
– RDDL and PPDDL are expressively equivalent 
– Both convertible to Influence Diagram + DBN 

 
• For lifted domain specification (no instance) 

– There exist lifted models in RDDL that cannot  
be expressed in lifted PPDDL 
• SysAdmin 

– transition probability function of state 
– reward sum over all objects 

• Traffic 
– indefinite concurrent actions, constraints 

• Simple Mars Rover 
– Gaussian noise 



Summary of Part 1: Modeling 

• Many real-world problems naturally modeled 
with continuous variables 

 

• MDPs and POMDPs can formalize almost any 
continuous problem 

 

• RDDL (and to some extent PPDDL) allow very 
compact lifted models of these domains 

 

 



Tutorial Outline 

1. Modeling Continuous Problems 
a) Why continuous? 

b) MDPs and POMDPs 

c) (P)PDDL and RDDL 

 

2. Solving Continuous Problems 
a) Exact dynamic programming 

• Data structures 

b) Open problems 

c) Survey of other solution methods 

d) Connections to control and scheduling 

 



Part 2a: Solutions 
 

Exact dynamic 
programming 



Ra(~b; ~x) = x21 + x1x2

P (~b0;~x0j~b; ~x; a) =
Ã
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| {z }
discrete

0
@
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1
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continuous

Discrete and Continuous (DC-)MDPs 

• Mixed discrete / continuous state 

 
• Discrete action set aA 

 

• DBN factored transition model 

 

 
 

 
• Action-dependent reward 

(~b; ~x) = (b1; : : : ; bn; x1; : : : ; xm)2 f0; 1gn £Rm



Exact Dynamic Programming for DC-MDPs 

• Value of policy in state is expected sum of rewards 
 

• Want optimal value Vh,* over horizons h0..H 

– Implicitly provides optimal horizon-dependent policy 
 

• Compute inductively via Value Iteration for h0..H 
 

– Regression step: 

 

 

 
– Maximization step: 

Vh+1 = max
a2A

Qh+1
a (~b; ~x)
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P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0



Exact Solutions to n-D DC-MDPs: Domain 

• 2-D Navigation 
 

• State: (x,y) 
 

• Actions: 
– move-x-2 

• x’ = x + 2 
• y’ = y 

– move-y-2 
• x’ = x 
• y’ = y + 2 

 
• Reward: 

– R(x,y) = I[ (x > 5) ^ (x < 10) ^ (y > 2) ^ (y < 5) ] 

 

x 

y 
Goal 

R(x,y) 

= 1 

= 0 

Assumptions: 
1.  Continuous transitions are deterministic  

 and linear 
2.  Discrete transitions can be stochastic 
3.  Reward is piecewise rectilinear 

Feng et al, UAI-04 

2 R2



Exact Solutions to n-D DC-MDPs: Regression 

• Continuous regression is just translation of “pieces” 

 

x’ 

y’ 

V’(x’,y’) 

= 1 

= 0 

Feng et al, UAI-04 

x 

y 

Q(move-x-2,x,y) 

x 

y 

Q(move-y-2,x,y) 



Exact Solutions to n-D DC-MDPs: Maximization 

• Q-value maximization yields piecewise rectilinear solution 

 

Feng et al, UAI-04 

x 

y 

Q(move-x-2,x,y) 

x 

y 

Q(move-y-2,x,y) 

x 

y 

maxa Q(a,x,y) 

= 1 

= 0 



Previous Work Limitations I 

• Exact regression when transitions nonlinear? 
 

Action move-nonlin: 
 

– x’ = x3y + y2 
 

– y’ = y * log(x2y) 

x’ 

y’ 

V’(x’,y’) 

= 1 

= 0 

y 

Q(move-nonlin,x,y) 

? 

x 

How to compute 
boundary in closed-

form? 



Previous Work Limitations II 

• max(.,.) when reward/value arbitrary piecewise? 

x 

y 

Q(action-1,x,y) 

x 

y 

Q(action-2,x,y) 

max                                               , 

x 

y 

V(x,y) 

= 1 

= 0 

Closed-form 
representation 

for max? 



Brief History of Exact DP for 
Continuous MDPs 

• Time-dependent MDPs (1-D) 
– Fascinating solution by Boyan and Littman (NIPS-00) 
– Recent extensions by Rachelson 

 

• General n-D Solutions 
– Bresina, Dearden, Meuleau, Ramkrishnan, Smith, Washington, R. 

(UAI 2002) stress importance 
– Feng, Dearden, Meuleau, Washington, (UAI 2004) introduce first 

restricted exact solutions (hyperrectangular) 
– Li and Littman (AAAI 2005), more expressive dynamics, 

approximate solutions 
– Sanner, Delgado, Barros (UAI 2011) extend to expressive domains 
– Zamani, Sanner, Fang (AAAI 2012) extend to continuous actions 

under some restrictions 

 



Symbolic Dynamic  
Programming (SDP) 

A solution to previous limitations: 

Ehsan Abbasnejad 
Zahra Zamani 

Karina Valdivia Delgado  
Leliane Nunes de Barros 

Cheng 
Fang 

Joint work with: 



Symbolic Dynamic Programming 
requires a Symbolic Representation 

Piecewise Case Statement! 



z = f(x; y) =

(
(x > 3) ^ (y · x) : x+ y

(x · 3) _ (y > x) : x2 + xy3

Piecewise Functions (Cases) 

Quadratic 
constraints and 

value 

Linear 
constraints and 

value 

Linear 
constraints, 

constant value 

Constraint Value 

Partition 



Case Operations: ,  

(
Á1 : f1

Á2 : f2
©
(
Ã1 : g1

Ã2 : g2
= ? 



(
Á1 : f1

Á2 : f2
©
(
Ã1 : g1

Ã2 : g2
=

8
>>><
>>>:

Á1 ^ Ã1 : f1 + g1

Á1 ^ Ã2 : f1 + g2

Á2 ^ Ã1 : f2 + g1

Á2 ^ Ã2 : f2 + g2

Case Operations: ,  

• Similarly for  
– Expressions trivially closed under +, * 

 

• What about max? 
– max(f1, g1) not pure arithmetic expression  



max

Ã(
Á1 : f1

Á2 : f2
;

(
Ã1 : g1

Ã2 : g2

!
=

Case Operations: max 

? 



max

Ã(
Á1 : f1

Á2 : f2
;

(
Ã1 : g1

Ã2 : g2

!
=

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Á1 ^ Ã1 ^ f1 > g1 : f1

Á1 ^ Ã1 ^ f1 · g1 : g1

Á1 ^ Ã2 ^ f1 > g2 : f1

Á1 ^ Ã2 ^ f1 · g2 : g2

Á2 ^ Ã1 ^ f2 > g1 : f2

Á2 ^ Ã1 ^ f2 · g1 : g1

Á2 ^ Ã2 ^ f2 > g2 : f2

Á2 ^ Ã2 ^ f2 · g2 : g2

Case Operations: max 

Key point: still in 
case form! 

Size blowup?  We’ll 
get to that… 



All Case Ops for Dynamic Programming? 

• Value Iteration for h0..H 
 

– Regression step: 
 
 
 
 

– Maximization step: 
 

 
– Almost there: we need to define b’ and x’ 

Vh+1 = max
a2A

Qh+1
a (~b; ~x)

Qh+1
a (~b; ~x) = Ra(~b; ~x) + °¢

X

~b0

Z

~x0

0
@

nY

i=1

P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0



SDP Regression Step 
 

• Binary variable  
  

– As done in SPUDD: Hoey et al, UAI-99 

 

 

 
 

X

bi2f0;1g

f(~b; ~x) = f(~b; ~x)jbi=1 © f(~b; ~x)jbi=0

©=
X

b12f0;1g

8
><
>:

Á1 ^ b1 : f1

Á1 ^ :b1 : f2

:Á1 : f3

(
Á1 : f1

:Á1 : f3

(
Á1 : f2

:Á1 : f3



 

• Continuous variables xj 
 

–                                              triggers symbolic substitution 

 

SDP Regression Step 

 

– e.g.,                                                           

 
 

 

 

– If g is case: need conditional substitution 
• see Sanner, Delgado, Barros (UAI 2011) 

Z

x01

±[x01 ¡ (x21 + 1)]

Ã(
x01 < 2 : x01
x01 ¸ 2 : x021

!
dx01 =

(
x21 + 1 < 2 : x21 + 1

x21 + 1 ¸ 2 : (x21 + 1)2

Z

x0
j

±[x0j ¡ g(~x)]V 0dx0j = V 0fx0j=g(~x)g

Z

x

±[x¡ y]f(x)dx = f(y)



That’s SDP! 

• Value Iteration for h0..H 
 

– Regression step: 

 

 

 

– Maximization step: 

Vh+1 = max
a2A

Qh+1
a (~b; ~x)

Qh+1
a (~b; ~x) = Ra(~b; ~x) + °¢

X

~b0

Z

~x0

0
@

nY

i=1

P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0

In theory 

Exact for any 
reward, 

discrete noise 
transition 
dynamics! 



Data Structures for  
Continuous Planning 

 
Case  XADD 

SDP needs an efficient data structure for 

• compact, minimal case representation 

• efficient case operations 



BDD / ADDs 

Quick Introduction 



Function Representation (Tables) 

• How to represent 
functions: Bn  R? 

 

• How about a fully 
enumerated table… 

 

• …OK, but can we be 
more compact? 

a b c F(a,b,c) 

0 0 0 0.00 

0 0 1 0.00 

0 1 0 0.00 

0 1 1 1.00 

1 0 0 0.00 

1 0 1 1.00 

1 1 0 0.00 

1 1 1 1.00 



Function Representation (Trees) 

• How about a tree?  Sure, can simplify. 

a b c F(a,b,c) 

0 0 0 0.00 

0 0 1 0.00 

0 1 0 0.00 

0 1 1 1.00 

1 0 0 0.00 

1 0 1 1.00 

1 1 0 0.00 

1 1 1 1.00 

a 

b c 

c 1 0 

1 0 

0 

Context-specific 
independence! 



Algebraic 
Decision 
Diagram 
(ADD) 

Function Representation (ADDs) 

• Why not a directed acyclic graph (DAG)? 

a b c F(a,b,c) 

0 0 0 0.00 

0 0 1 0.00 

0 1 0 0.00 

0 1 1 1.00 

1 0 0 0.00 

1 0 1 1.00 

1 1 0 0.00 

1 1 1 1.00 

a 

b c 

c 1 0 

1 0 

0 

Think of BDDs as {0,1}  
subset of ADD range 



Binary Operations (ADDs) 
• Why do we order variable tests? 
• Enables us to do efficient binary operations… 

a 

b 

1 0 

c 

a 
a 

0 

0 2 

c 
b 

c 

2 

 
Result: ADD 
operations can 
avoid state 
enumeration 



Case  XADD 
 
 

Efficient XADD data structure for cases 
• strict ordering of atomic inequality tests 
 
 compact, minimal case representation 
 efficient case operations 

XADD = continuous variable extension  
              of algebraic decision diagram 



V =

8
>>>>>>>><
>>>>>>>>:

x1 + k > 100 ^ x2 + k > 100 : 0

x1 + k > 100 ^ x2 + k · 100 : x2

x1 + k · 100 ^ x2 + k > 100 : x1

x1 + x2 + k > 100 ^ x1 + k · 100 ^ x2 + k · 100 ^ x2 > x1 : x2

x1 + x2 + k > 100 ^ x1 + k · 100 ^ x2 + k · 100 ^ x2 · x1 : x1

x1 + x2 + k · 100 : x1 + x2

XADDs 
• Extended ADD representation of case statements 

 



XADD Maximization 

y > 0 

y 

max(                    ,                  )   = 

y > 0 

x 

x > 0 x > 0 

x > y 

y 

x > 0 

x x y 

May introduce new 
decision tests 



Maintaining XADD Orderings I 

• Max may get variables out of order 

Decision 
ordering 
(rootleaf) 

• x > y 

• y > 0 

• x > 0 

y > 0 

y 

max(                  ,                   )  = x > 0 

x x y 

y > 0 

x 

x > 0 x > 0 

x > y 

y 
Newly introduced  

node is out of order! 



Maintaining XADD Orderings II 

• Substitution may get vars out of order 

Decision 
ordering 
(rootleaf): 

• x > y 

• y > 0 

• x > z 

y > 0 

x > z x > z 

z x y x 

= 

={ z/y } y > 0 

x > y x > y 

y x y x 

Substituted nodes are 
now out of order! 



Correcting XADD Ordering 

• Obtain ordered XADD from unordered XADD 

– key idea: binary operations maintain orderings 

 

z 

ID1 ID0 

z is out of order 

 
ID1 
 z 

1 0 
ID0 

 z 

0 1 

result will have z in order! 

Inductively assume ID1 
and ID0 are ordered. 

All operands ordered, so 
applying ,  produces 

ordered result! 



XADD Pruning 

y > 0 

x 

x > 0 

y 

Node unreachable – 
x + y < 0 always false if 

x > 0 & y > 0 

x + y < 0 

x + y 

y 

y > 0 

x > 0 

x + y 

If linear, can detect with 
feasibility checker of LP 

solver & prune 

Similar to Penberthy & Weld, AAAI-94 



Take-home point:  
SDP impossible without XADD 

How well does it work? 



Results: XADD Pruning vs. No Pruning 

Summary: 
  

• without pruning: superlinear vs. horizon 
  

• with pruning: linear vs. horizon 
  

Worth the effort to prune! 



Exact 3D Value Functions 

Exact value functions in case form: 
  

• linear & nonlinear piecewise boundaries! 
  

• nonlinear function surfaces! 

Knapsack Mars Rover Linear Mars Rover Nonlinear 



Continuous Actions 

• Inventory control 
– Reorder based on stock,  

future demand 

– Action:  

 

• Need max  in Bellman backup 

 

 

 
• Track maximizing  substitutions to recover 

Vh+1 = max
a2A

max
~¢

Qh+1
a (~b; ~x; ~¢)

a(~¢); ~¢ 2 Rjaj



Max-out Case Operation 

• maxx case(x) can be done partition-wise 
– In a single case partition 

…max w.r.t. critical points 
 

• Derive LB, UB in case form 

• Derivative Der0 in case form 

 

• max( case(x/LB),  
         case(x/UB),  
         case(x/Der0) ) 

 

– Can even track substitutions 
to recover optimal policy 

UBLB @Qh
a

@~¢
= 0

See AAAI 2012 
(Zamni, Sanner, Fang) 

for details 

First exact solutions 
to multivariate 

inventory in 50 years! 



Illustrative Value and Policy 

Reward 

x 

y 

V1 

V2 

Value (Policy) 



Fully Stochastic DC-MDP 

• Add continuous noise  to transitions 
– x’ = x + 2 +   

• or x’ = x* + 2 

–   N (; 0,2) 
• or   N (; f1(x), f2(x)) 

 

– Introduce intermediate vars  for noise 
• Must be integrated out 

• Requires non- continuous integral   
– See AAAI-12 (Abbasnejad and Sanner) for   operation 

– Unfortunately not closed-form for SDP in MDPs  

 



Partially Observable – Continuous 

• POMDPs 
– Standard discrete observation 

solution enumerates 
conditional policy trees 
 

– Continuous observations… 
•  policy trees! 

 
• But in many cases… 

– Policy only dependent upon 
finite partitioning of 
observation space 
 

– SDP methods allow one to 
derive this partitioning and 
apply discrete solutions! 
• If (temperature > 10) 

  then … 
  else … 

a1 

a1 a2 

a1 a2 a1 a2 

o1 o2 

o1 o2 o1 o2 

Policy   

V(b) 

 = {-vectors} 

P(b) b’ 

a 



Summary: Exact Solutions 

• Solutions to continuous state (PO)MDPs 
 

– Discrete action MDPs              

 

– Continuous action MDPs (incl. exact policy) 

 

– Extensions to full continuous noise 
• Initial work on required integration 

 

– Discrete action, continuous observation POMDPs 

 

Sanner et al, UAI-11 

Zamani et al, AAAI-12 

Sanner et al, AAAI-12 

In progress 



Part 2b: Solutions 
 

Open problems  
(some work in progress) 



Nonlinearity and Continuous Actions 

• Robotics 

– Need nonlinear cos, sin 

– Can use cubic spline  

 

• General path planning 

– Not obvious, but 
requires bilinear 
constraints for 
obstacle specification 

 x 

y 

h=1 

h=2 



Real-time Dynamic Programming (RTDP) 

• Reachability and drawbacks of synch. DP (VI) 
 
 
 
 

 
 
– Better to think of relevance to optimal policy 

 

• How to do RT-SDP for continuous problems? 
– HAO* (Meuleau et al, JAIR-09) provides some hints 
– Or instead do HAO* using SDP for DP operation 

 
 
 
 

S 

F 



Approximation 

• Bounded (interval) approximation 

 

 

 

 

 

 

– This XADD has > 1000 nodes! 

– Should only require < 10 nodes! 



Can use ADD to Maintain Bounds! 

• Change leaf to represent range [L,U] 

– Normal leaf is like [V,V] 

– When merging leaves… 

• keep track of min and max values contributing 

How to 
approximate 
for XADDs – 
expressions 
in decisions 
and leaves? 



(X)ADDs vs. (X)AADDs 
• Additive functions: i=1..n xi 

Sanner & 
McAllester 
(IJCAI-05) 

  

AADD: affine 
transform on 

edges 

Exponential 
savings! 

Affine 
XADDs? 



Part 2c: Solutions 
 

Survey of other methods 



(Adaptive) Discretization 

• Approximate by discretizing continuous variables 
– Then apply discrete solution! 
– Can often bound error, but O(ND) 

 
– (Adaptively) discretize model: 

• Still O(ND) 
• Adaptivity is an artform 

 

 

– Munos and Moore, MLJ 2002. 
– Nouri, Weinstein, Littman, NIPS 2008. 



Search – Bounded 

• Deterministic 
– Geometric reasoning 
– KongMing 

(Li, Williams,  
 ICAPS 2008) 

– COLIN 
(Coles, Coles,  
 Fox, Long,  
 IJCAI 2009,  JAIR 2012) 

 

• Uncertainty 
– HAO* - AO* search using dynamic programming 

(extends previous DP methods to search!) 



Search – Sampling 

• UCT extremely effective for many MDPs 
– Maintain a partial tree for visited states 

– Treat each node in the tree as a bandit problem 

• Hence UCB for trees – UCT 
(Kocsis, Szepesvari, ECML 2006) 

 

• Extensions of UCT for continuous actions  
and state 
– (Mansley, Weinstein, Littman, ICAPS 2012) 



Direct Optimization 

• Deterministic Planning 
– Extend SAT compilation to continuous variables 

– Use LP-SAT (SAT + linear constraints) 

– TM-LPSAT (Shin, Davis, AIJ 2005) 

 

• Uncertain (MDP) 
– Approximate Bellman fixed point directly 

– (Kveton, Hauskrecht, and Guestrin, JAIR 2006) 

– Requires a priori knowledge of basis functions 



Part 2d: Solutions 
 

Connections to Control 
and Scheduling 

(very brief) 



Control 

• Overlap with (PO)MDPs for discrete time control 
– Almost always have continuous actions in control 

• E.g., servos 
• But rarely discrete time 

 

• Different problem for continuous time control 
 

– Modeled as partial differential equations (PDEs) 
• E.g., airplane stabilizer control 

 

– Policy must be continuous time as well 
• Not act and wait until next time step 
• But apply continuous control signal as a function of 

observation inputs 
• Rely on specialized PDE solutions 



Scheduling 

• Cornerstone of scheduling is concurrency 
– Deliveries 

– Factory processes 

 

• But importantly: asynchronous concurrency 
– Processes start and end at different times 

– Not well-modeled as synchronous, discrete time (PO)MDP 
 

• If not stochastic, can view from constraints perspective 
(Bartak’s tutorial) 
 

• If stochastic, might consider Generalized Semi-(PO)MDPs 
(Younes and Simmons, AAAI 2004) 



Summary of Part 2: Solutions 
• Express model in language of your choice (RDDL!) 

– Compile to a factored (PO)MDP 

 
• Exact dynamic programming for factored (PO)MDPs 

– Important to say what optimal solution looks like! 
– Many open problems for bounded / exact solutions 

 
• Not all problems can be solved exactly 

– Useful to take hints from heuristic / approximation literature 
– Much work to be done in generalizing discrete MDP techniques 

 
• In some cases (control and continuous time scheduling), 

factored MDP and POMDP insufficient 
– Need to extend or seek alternate models 



Tutorial Summary 

• Many real-world planning problems require 
continuous models 

– Need compact, expressive languages (e.g., RDDL) 

 

• Need to understand exact solutions & limits 

 

• Need to develop effective practical solutions 

– Wide open area for research 


