
ICAPS 2012 Tutorial

TexPoint fonts used in EMF.
Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAAAAAAAAAAA

Scott Sanner

Recent Advances in
Continuous Planning

http://users.rsise.anu.edu.au/~ssanner/

Tutorial Outline

1. Modeling Continuous Problems
a) Why continuous?

b) MDPs and POMDPs

c) (P)PDDL and RDDL

2. Solving Continuous Problems
a) Exact dynamic programming

• Data structures

b) Open problems

c) Survey of other solution methods

d) Connections to control and scheduling

Part 1a: Modeling

Why continuous?

Why Continuous Planning?

• Many real-world problems have a continuous
component of state, action, or observations

– Time

– Space and derivatives

• Position and angle

• Velocity, acceleration, …

– Resources

• Fuel, energy, …

– Expected statistics

• Traffic volume

• Density, speed, …

Mars Rovers

• Objective?
– Carry out actions near places within time windows

• What’s continuous?
– Time (t), Energy (e), Robot position (x,y,)

Mealeau, Benazera,
Brafman, Hansen,
Mausam. JAIR-09.

Elevator Control

• Dynamics
– Random arrivals (e.g., Poisson)

• Objective?

– Minimize sum of wait times

• What’s continuous?
– Expected people waiting

• At each floor
• In elevator

– Expected time waiting
• At each floor
• For each level in elevator

http://www.melsa.com.sa/images/Elevators at Kingdom Centre, Riyadh.JPG
http://alpha.dickinson.edu/prorg/nectfl/elevators.jpg

DARPA Grand Challenge
• Autonomous driving

– Real-time, partially observed

• Objective?
– Reach goal, stay on road (wherever it is)

• What’s continuous?
– State: position, velocity
– Sensing: vision, sonar, laser range finders

http://upload.wikimedia.org/wikipedia/commons/0/0c/DesertToCity.jpg
http://en.wikipedia.org/wiki/Image:Stanleyrobot.jpg
http://en.wikipedia.org/wiki/Image:ElementBlack2.jpg

Traffic Control

• Objective?
– Minimize congestion, stops, fuel consumption

• What’s continuous?
– Expected traffic volume, velocity, wait times

Goal-oriented Path Planning

• Robotics
– Continuous position,

joint angles

– Nonlinear dynamics
(sin, cos)

• Obstacle Navigation
– 2D, 3D, 4D (time)

– Linear dynamics

– Don’t discretize!
• Grid worlds

x

y

h=1

h=2

Solve in
2 steps!

If you can effectively solve any of the
previous problems: people will care

But first you have to model them!

Part 1b: Modeling

MDPs and POMDPs

Observations, States, & Actions

Observations

State

Actions

Observations

• Observation set O

– Perceptions, e.g.,

• My opponent’s bet in Poker

• Distance from car to edge of road

Continuous
observations!

States

• State set S

– At any point in time, system is in some state

• My opponent’s hand of cards in Poker

• Actual distance to edge of road

Continuous
states!

Agent Actions

• Action set A

– Actions could be concurrent

– If k actions, A = A1  …  Ak

• Schedule all deliveries to be made at 10am

• Set multiple joint angles in robotics

Continuous
actions!

Agent Actions

• Action set A

– All actions need not be under agent control

• Other agents, e.g.,
– Alternating turns: Poker, Othello

– Concurrent turns: Highway Driving, Soccer

• Exogenous events due to Nature, e.g.,
– Random arrival of person waiting for elevator

– Random failure of equipment

Recap

• So far

– States (S)

– Actions (A)

– Observations (O)

• How to map between

– Previous states, actions, and future states?

– States and observations?

– States, actions and rewards?

– Sequences of rewards and optimization criteria?

Observation Function

• How to relate states and observations?

• Partially observable:
– Observations provide a belief over possible states
– The most realistic world model

» E.g., Driving
– Solution techniques highly non-trivial

» Beyond the scope of this introductory tutorial

• Fully observable:

– S  O … the case we focus on!
– Assume complete knowledge of state

» Inventory Control
– Usually OK for “almost fully observable”, e.g.,

» Traffic, Path Planning, Elevators, Mars Rover

Transition Function

• How do actions take us between states?

– Some properties

• Stationary: T does not change over time
» e.g., cannot be controlled adversarial agent

• Markovian:
– Next state dependent only upon previous state / action

– If not Markovian, can always augment state description

» e.g., elevator traffic model differs throughout day;
 so encode time in state to make T Markovian!

Goals and Rewards

• Goal-oriented rewards

– Assume maximizing reward…

– Assign any reward value s.t. R(success) > R(fail)

– Can have negative costs C(a) for action a

• What if multiple (or no) goals?

– How to specify preferences?

– R assigns utilities to states and actions

• E.g., Continuous: R(x,y,a) = x2 + xy

• Then maximize expected reward (utility)

But, how to trade off
rewards over time?

Optimization: Best Action when s=1?

• Must define objective criterion to optimize!
– How to trade off immediate vs. future reward?

– E.g., use discount factor  (try =.9 vs. =.1)

s=1

s=2
R=0

a=stay

R=2

a=change
R=10

s=1

s=2
R=0

a=stay

R=2

a=change
R=10

s=1

s=2
R=0

a=stay

R=2

a=change
R=10

Start

Trading Off Sequential Rewards

• Sequential-decision making objective

– Horizon (h)

• Finite: Only care about h-steps into future

• Infinite: Literally; will act same today as tomorrow

– How to trade off reward over time?

• Expected average cumulative return

• Expected discounted cumulative return

– Use discount factor 

– Reward t time steps in future discounted by t

Recap

• So far

– Actions (A)

– States (S)

– Observation (O)

– Transition function (T)

– Observation function (Z)

– Reward function (R)

– Optimization criteria

• But are the above

– Known or unknown?

Knowledge of Environment

• Model-known:
– Know <S,A,T,R> and if partially observed, also <O,Z>

– Called: Planning (under uncertainty) [Focus of this tutorial]
• Decision-theoretic planning if maximizing expected utility

• Model-free:
– 1 unknown: <S,A,T,R> and if partially observed, also <O,Z>

– Called: Reinforcement learning
• Have to interact with environment to obtain samples

• Model-based:
– Between model-known and model-free

– Learn approximate model from samples

– Permits hybrid planning and learning

Saves expensive
interaction!

Important part of AI that is
overlooked… learning relevant model!

Finally a Formal Model

• Two main model types:
– MDP:  S, A, T, R 
– POMDP:  S, A, O, Z, T, R 
– Model Known?

• Yes: (decision-theoretic) planning under uncertainty
• No: reinforcement learning (model-free or model-based)

• Cannot solve a problem until know objective!

– Single agent (possibly concurrent)
• Maximize expected average or discounted sum of rewards

– Multi-agent
• Solution criteria depends on

– Alternating vs. concurrent
– Zero sum vs. general sum

• Beyond scope of this tutorial

Part 1c: Modeling

(P)PDDL and RDDL

(P)PDDL

Relational
Effects-based Model

for Single Agent MDPs

PDDL – Predicate and Functional Fluents

(define (domain test-domain)
 (:requirements :typing :equality :conditional-effects :fluents)
 (:types car box)

 (:predicates (parked ?x - car) (holding ?x - box)
 (in ?x - box ?y - car))
 (:functions (fuel-level ?x - car))

 (:action load :parameters (?x - box ?y - car)
 :precondition (and (holding ?x) (parked ?y))
 :effect (and (in ?x ?y)
 (forall (?z - car)
 (when (not (= ?z ?y))
 (not (in ?x ?z))))))

 (:action refuel :parameters (?x - car)
 :precondition (< (fuel-level ?x) 10)
 :effect (increase (fuel-level ?x) 1)))

Ex. from Younes and
Littman, PPDDL 1.0

Boolean and
numeric
fluents

Boolean
fluent action

effects

Continuous
fluent action

effects

Probabilistic PDDL – PPDDL
(define (domain test-domain)
 (:requirements :typing :equality :conditional-effects :fluents)
 (:types car box)

 (:predicates (parked ?x - car) (holding ?x - box)
 (in ?x - box ?y - car))
 (:functions (fuel-level ?x - car))

 (:action load :parameters (?x - box ?y - car)
 :precondition (and (holding ?x) (parked ?y))
 :effect (probabilistic 0.7
 (and (in ?x ?y)
 (forall (?z - car)
 (when (not (= ?z ?y))
 (not (in ?x ?z)))))))

 (:action refuel :parameters (?x - car)
 :precondition (< (fuel-level ?x) 10)
 :effect (probabilistic 0.3 (increase (fuel-level ?x) 1)
 0.5 (decrease (fuel-level ?x) 1))))

Probabilistic effects

• In absence of

effect, assume
no change

• Assume effects
are consistent
(no conflicing
 assignments)

Looking ahead… will need something
more like Relational DBN

What’s missing in PPDDL, Part I

• Continuous effects-based modeling is natural:
– Can use arithmetic functions for numeric fluent updates

– But
• Little provision for state-dependent probabilities

• Multiple Independent Exogenous Events:
– PPDDL only allows 1 independent event to affect fluent

• In a stochastic setting, what if cars in a queue change lanes,
or brake randomly?

What’s missing in PPDDL, Part II

• Expressive transition
distributions:
– Stochastic difference

equations with arbitrary
noise
• Poisson arrivals
• Gaussian noise

– Resolving conflicts of
concurrent actions under
exogenous events
• Unprotected traffic turns

• Partial observability:
– E.g., only observe stopline

Traffic Network

What’s missing in PPDDL, Part III

• Distinguish fluents from nonfluents:
– E.g., topology of traffic network

– Lifted planners must know this to be efficient!

• Expressive rewards
– E.g., sums and products over all objects!

– Function of state (e.g., SysAdmin)

• Global state-action constraints for domain verification:
– Concurrent domains need global action preconditions

• E.g., two traffic lights cannot go into a given state

– In logistics, vehicles cannot be in two different locations

• Regression planners need state constraints!

Is there any hope?

Yes, but we need to borrow from factored
MDP / POMDP community…

RDDL

Relational Fluent-oriented
Model for Single Agent,

Concurrent Action (PO)MDPs

What is RDDL?

• Relational Dynamic Influence
Diagram Language
– Relational

[DBN + Influence Diagram]

– State, action, observations,
reward are all variables (fluents)

• Variables depend on
parents in diagram

• Think of it as
Relational Factored
MDPs and POMDPs
– SPUDD / Symbolic Perseus

 t t+1

a

x1

x2

r

x1’

x2’

o1 o2

RDDL Principles I

• Everything is a fluent (parameterized variable)
– State fluents

– Observation fluents
• for partially observed domains

– Action fluents
• supports factored concurrency

– Intermediate fluents
• derived predicates, correlated effects, …

– Constant nonfluents (general constants, topology relations, …)

• Flexible fluent types
– Binary (predicate) fluents

– Multi-valued (enumerated) fluents

– Integer and continuous fluents (from PDDL 2.1)

Regression planners
need to know what

fluents do not change!

RDDL Principles II

• Semantics is ground DBN / Influence Diagram

– DBN leads to consistent transition semantics

• Supports unrestricted concurrency

– i.e., concurrent actions may conflict

– DBN transitions inherently resolve these conflicts

– Naturally supports independent exogenous events

• E.g., each car in traffic moving autonomously

– random braking

– random lane changes

RDDL Principles III
• Expressive transition and rewards

– Logical expressions (, ,, , , )

– Arithmetic expressions (+,−,*,/)

– In/dis/equality comparison expressions (=,, <,>,, )

– Conditional expressions (if-then-else, switch)

– Sum and product over all domain objects: x,x

– General probability distributions
• Bernoulli

• Discrete

• Normal

• Poisson

• Exponential

• …

Parameters can
be function of

state and action!

x,x aggregators
over domain objects
extremely powerful

RDDL Principles IV

• Arbitrary state/action constraints

– Joint action preconditions

• e.g., two lights cannot be green
if they allow crossing traffic

– State invariant assertions

• e.g., cars can neither be created
nor destroyed

• e.g., a package cannot be in two
locations

Interesting problems
for ICKEPS community:

• How to generate
conflicts?

• Correct domain
when conflict
arises?

• Correct when
solutions don’t
display expected
properties?

Many possible states
are illegal –

Important to identify
for regression planning

RDDL Principles V

• Goal + General (PO)MDP objectives
– Arbitrary reward

• goals, costs, numerical preferences (c.f., PDDL 3.0)

– Finite horizon

– Discounted or undiscounted

Can use x,x
aggregators here…

e.g., sum of all

delivery costs for all
packages

RDDL Examples

Easiest to understand
RDDL in use…

How to Represent Factored MDP?

P(p’|p,r)

RDDL Equivalent

Can think of
transition

distributions as
“sampling

instructions”

Boolean variables
are {0,1} so can sum

A Discrete-Continuous POMDP?

Integer

Multi-
valued

Real

A Discrete-Continuous POMDP, Part I

Intermediate
variables –

correlated effects,
derived predicates

Observation
variables

A Discrete-Continuous POMDP, Part II

Integer

Multi-
valued

Real

Variance comes from other
previously sampled variables

Mixture of
Normals

RDDL so far…

• Mainly SPUDD / Symbolic Perseus with a different
syntax 
– A few enhancements

• concurrency

• constraints

• integer / continuous variables

• Real problems (e.g., traffic) need lifting
– An intersection model

– A vehicle model
• Specify each intersection / vehicle model once!

Lifting: Conway’s Game of Life
(simpler than traffic)

• Cells born, live, die based on neighbors
– < 2 or > 3

neighbors:
cell dies

– 2 or 3
neighbors:
cell lives

– 3 neighbors
 cell birth!

– Make into MDP
• Probabilities
• Actions to turn

on cells
• Maximize number

of cells on

• Compact RDDL specification for any grid size? Relational lifting.

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

http://en.wikipedia.org/wiki/Conway's_Game_of_Life

Lifted
MDP:

Game
of Life

Concurrency as
factored action

variables

How many
possible joint
actions here?

A Lifted MDP
Intermediate variable: like derived predicate

Using counts to
decide next state

Additive reward!

State constraints,
preconditions

Nonfluent and Instance Defintion

Objects that don’t change
b/w instances

Topologies over
these objects

Numerical constant
nonfluent

Import a topology

Initial state as usual

Concurrency

Power of Lifting

non-fluents game3x3 {

 domain = game_of_life;

 objects {
 x_pos : {x1,x2,x3};
 y_pos : {y1,y2,y3};
 };

 non-fluents {
 NEIGHBOR(x1,y1,x1,y2);
 NEIGHBOR(x1,y1,x2,y1);
 NEIGHBOR(x1,y1,x2,y2);
 NEIGHBOR(x1,y2,x1,y1);
 NEIGHBOR(x1,y2,x2,y1);
 NEIGHBOR(x1,y2,x2,y2);
 NEIGHBOR(x1,y2,x2,y3);
 NEIGHBOR(x1,y2,x1,y3);
 NEIGHBOR(x1,y3,x1,y2);
 NEIGHBOR(x1,y3,x2,y2);
 NEIGHBOR(x1,y3,x2,y3);
 NEIGHBOR(x2,y1,x1,y1);
 NEIGHBOR(x2,y1,x1,y2);
 NEIGHBOR(x2,y1,x2,y2);
 NEIGHBOR(x2,y1,x3,y2);
 NEIGHBOR(x2,y1,x3,y1);
 NEIGHBOR(x2,y2,x1,y1);
 NEIGHBOR(x2,y2,x1,y2);
 NEIGHBOR(x2,y2,x1,y3);
 NEIGHBOR(x2,y2,x2,y1);
 NEIGHBOR(x2,y2,x2,y3);
 NEIGHBOR(x2,y2,x3,y1);
 NEIGHBOR(x2,y2,x3,y2);
 NEIGHBOR(x2,y2,x3,y3);
 NEIGHBOR(x2,y3,x1,y3);
 NEIGHBOR(x2,y3,x1,y2);
 NEIGHBOR(x2,y3,x2,y2);
 NEIGHBOR(x2,y3,x3,y2);
 NEIGHBOR(x2,y3,x3,y3);
 NEIGHBOR(x3,y1,x2,y1);
 NEIGHBOR(x3,y1,x2,y2);
 NEIGHBOR(x3,y1,x3,y2);
 NEIGHBOR(x3,y2,x3,y1);
 NEIGHBOR(x3,y2,x2,y1);
 NEIGHBOR(x3,y2,x2,y2);
 NEIGHBOR(x3,y2,x2,y3);
 NEIGHBOR(x3,y2,x3,y3);
 NEIGHBOR(x3,y3,x2,y3);
 NEIGHBOR(x3,y3,x2,y2);
 NEIGHBOR(x3,y3,x3,y2);
 };
}

non-fluents game2x2 {

 domain = game_of_life;

 objects {
 x_pos : {x1,x2};
 y_pos : {y1,y2};
 };

 non-fluents {
 PROB_REGENERATE = 0.9;

 NEIGHBOR(x1,y1,x1,y2);
 NEIGHBOR(x1,y1,x2,y1);
 NEIGHBOR(x1,y1,x2,y2);

 NEIGHBOR(x1,y2,x1,y1);
 NEIGHBOR(x1,y2,x2,y1);
 NEIGHBOR(x1,y2,x2,y2);

 NEIGHBOR(x2,y1,x1,y1);
 NEIGHBOR(x2,y1,x1,y2);
 NEIGHBOR(x2,y1,x2,y2);

 NEIGHBOR(x2,y2,x1,y1);
 NEIGHBOR(x2,y2,x1,y2);
 NEIGHBOR(x2,y2,x2,y1);
 };
}

Simple domains can
generate complex

DBNs!

53

Complex Lifted Transitions: SysAdmin
SysAdmin (Guestrin et al, 2001)

• Have n computers C = {c1, …, cn} in a network
• State: each computer ci is either “up” or “down”

• Transition: computer is “up” proportional to its

state and # upstream connections that are “up”
• Action: manually reboot one computer
• Reward: +1 for every “up” computer

c1

c2

c4

c3

Complex Lifted Transitions

Probability of a
computer running

depends on ratio of
connected computers

running!

How to Think About RDDL Distributions

• Transition distribution is stochastic program
– Similar to BLOG (Milch, Russell, et al), IBAL (Pfeffer)
– Basically just complex conditional distributions

• Specification of generative sampling process
– E.g., noisy distance measurement in robotics

• First draw boolean Noise := sample from Bernoulli (.1)

• Then draw real Measurement :=
 If (Noise == true)

» Then sample from Uniform(0, 10)
» Else sample from Normal(true-distance, 2)

0 10

true-distance Convenient way to write
complex mixture models and
conditional distributions that

occur in practice!

Lifted Continuous MDP in RDDL:
Simple Mars Rover

x

y

Picture
Point 1

Picture
Point 3

Picture
Point 2

Simple Mars Rover: Part I
 types { picture-point : object; };

 pvariables {

 PICT_XPOS(picture-point) : { non-fluent, real, default = 0.0 };
 PICT_YPOS(picture-point) : { non-fluent, real, default = 0.0 };
 PICT_VALUE(picture-point) : { non-fluent, real, default = 1.0 };
 PICT_ERROR_ALLOW(picture-point) : { non-fluent, real, default = 0.5 };

 xPos : { state-fluent, real, default = 0.0 };
 yPos : { state-fluent, real, default = 0.0 };
 time : { state-fluent, real, default = 0.0 };

 xMove : { action-fluent, real, default = 0.0 };
 yMove : { action-fluent, real, default = 0.0 };
 snapPicture : { action-fluent, bool, default = false };
 };

Constant
picture points,
bounding box

Rover position
(only one rover)

and time

Rover
actions

Question, how
to make multi-

rover?

Simple Mars Rover: Part II

 cpfs {

 // Noisy movement update
 xPos' = xPos + xMove + Normal(0.0, MOVE_VARIANCE_MULT*xMove);

 yPos' = yPos + yMove + Normal(0.0, MOVE_VARIANCE_MULT*yMove);

 // Time update
 time' = if (snapPicture)
 then DiracDelta(time + 0.25)
 else DiracDelta(time +
 [if (xMove > 0) then xMove else -xMove] +
 [if (yMove > 0) then yMove else -yMove]);

 };

Fixed time for picture

Time proportional to
distance moved

White noise, variance proportional
to distance moved

Simple Mars Rover: Part III

 // We get a reward for any picture taken within picture box error bounds
 // and the time limit.
 reward = if (snapPicture ^ (time <= MAX_TIME))
 then sum_{?p : picture-point} [
 if ((xPos >= PICT_XPOS(?p) - PICT_ERROR_ALLOW(?p))
 ^ (xPos <= PICT_XPOS(?p) + PICT_ERROR_ALLOW(?p))
 ^ (yPos >= PICT_YPOS(?p) - PICT_ERROR_ALLOW(?p))
 ^ (yPos <= PICT_YPOS(?p) + PICT_ERROR_ALLOW(?p)))
 then PICT_VALUE(?p)
 else 0.0]
 else 0.0;

 state-action-constraints {

 // Cannot snap a picture and move at the same time
 snapPicture => ((xMove == 0.0) ^ (yMove == 0.0));
 };

Reward for all pictures taken
within bounding box!

Cannot move and take
picture at same time.

RDDL Software

Open source & online at
http://code.google.com/p/rddlsim/

http://code.google.com/p/rddlsim/

RDDL Java Software Overview

• BNF grammar and parser

• Simulator

• Automatic translations
– LISP-like format (easier to parse)
– SPUDD & Symbolic Perseus (boolean subset)
– Ground PPDDL (boolean subset)

• Client / Server
– Evaluation scripts for log files

• Visualization
– DBN Visualization
– Domain Visualization – see how your planner is doing

RDDL vs. PPDDL (In)equivalance

• For a fixed domain instance and discrete noise
– RDDL and PPDDL are expressively equivalent
– Both convertible to Influence Diagram + DBN

• For lifted domain specification (no instance)

– There exist lifted models in RDDL that cannot
be expressed in lifted PPDDL
• SysAdmin

– transition probability function of state
– reward sum over all objects

• Traffic
– indefinite concurrent actions, constraints

• Simple Mars Rover
– Gaussian noise

Summary of Part 1: Modeling

• Many real-world problems naturally modeled
with continuous variables

• MDPs and POMDPs can formalize almost any
continuous problem

• RDDL (and to some extent PPDDL) allow very
compact lifted models of these domains

Tutorial Outline

1. Modeling Continuous Problems
a) Why continuous?

b) MDPs and POMDPs

c) (P)PDDL and RDDL

2. Solving Continuous Problems
a) Exact dynamic programming

• Data structures

b) Open problems

c) Survey of other solution methods

d) Connections to control and scheduling

Part 2a: Solutions

Exact dynamic
programming

Ra(~b; ~x) = x21 + x1x2

P (~b0;~x0j~b; ~x; a) =
Ã

nY

i=1

P (b0ij~b; ~x; a)
!

| {z }
discrete

0
@

mY

j=1

P (x0jj~b;~b0; ~x; a)

1
A

| {z }
continuous

Discrete and Continuous (DC-)MDPs

• Mixed discrete / continuous state

• Discrete action set aA

• DBN factored transition model

• Action-dependent reward

(~b; ~x) = (b1; : : : ; bn; x1; : : : ; xm)2 f0; 1gn £Rm

Exact Dynamic Programming for DC-MDPs

• Value of policy in state is expected sum of rewards

• Want optimal value Vh,* over horizons h0..H

– Implicitly provides optimal horizon-dependent policy

• Compute inductively via Value Iteration for h0..H

– Regression step:

– Maximization step:

Vh+1 = max
a2A

Qh+1
a (~b; ~x)

Qh+1
a (~b; ~x) = Ra(~b; ~x) + °¢

X

~b0

Z

~x0

0
@

nY

i=1

P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0

Exact Solutions to n-D DC-MDPs: Domain

• 2-D Navigation

• State: (x,y)

• Actions:
– move-x-2

• x’ = x + 2
• y’ = y

– move-y-2
• x’ = x
• y’ = y + 2

• Reward:

– R(x,y) = I[(x > 5) ^ (x < 10) ^ (y > 2) ^ (y < 5)]

x

y
Goal

R(x,y)

= 1

= 0

Assumptions:
1. Continuous transitions are deterministic

 and linear
2. Discrete transitions can be stochastic
3. Reward is piecewise rectilinear

Feng et al, UAI-04

2 R2

Exact Solutions to n-D DC-MDPs: Regression

• Continuous regression is just translation of “pieces”

x’

y’

V’(x’,y’)

= 1

= 0

Feng et al, UAI-04

x

y

Q(move-x-2,x,y)

x

y

Q(move-y-2,x,y)

Exact Solutions to n-D DC-MDPs: Maximization

• Q-value maximization yields piecewise rectilinear solution

Feng et al, UAI-04

x

y

Q(move-x-2,x,y)

x

y

Q(move-y-2,x,y)

x

y

maxa Q(a,x,y)

= 1

= 0

Previous Work Limitations I

• Exact regression when transitions nonlinear?

Action move-nonlin:

– x’ = x3y + y2

– y’ = y * log(x2y)

x’

y’

V’(x’,y’)

= 1

= 0

y

Q(move-nonlin,x,y)

?

x

How to compute
boundary in closed-

form?

Previous Work Limitations II

• max(.,.) when reward/value arbitrary piecewise?

x

y

Q(action-1,x,y)

x

y

Q(action-2,x,y)

max ,

x

y

V(x,y)

= 1

= 0

Closed-form
representation

for max?

Brief History of Exact DP for
Continuous MDPs

• Time-dependent MDPs (1-D)
– Fascinating solution by Boyan and Littman (NIPS-00)
– Recent extensions by Rachelson

• General n-D Solutions
– Bresina, Dearden, Meuleau, Ramkrishnan, Smith, Washington, R.

(UAI 2002) stress importance
– Feng, Dearden, Meuleau, Washington, (UAI 2004) introduce first

restricted exact solutions (hyperrectangular)
– Li and Littman (AAAI 2005), more expressive dynamics,

approximate solutions
– Sanner, Delgado, Barros (UAI 2011) extend to expressive domains
– Zamani, Sanner, Fang (AAAI 2012) extend to continuous actions

under some restrictions

Symbolic Dynamic
Programming (SDP)

A solution to previous limitations:

Ehsan Abbasnejad
Zahra Zamani

Karina Valdivia Delgado
Leliane Nunes de Barros

Cheng
Fang

Joint work with:

Symbolic Dynamic Programming
requires a Symbolic Representation

Piecewise Case Statement!

z = f(x; y) =

(
(x > 3) ^ (y · x) : x+ y

(x · 3) _ (y > x) : x2 + xy3

Piecewise Functions (Cases)

Quadratic
constraints and

value

Linear
constraints and

value

Linear
constraints,

constant value

Constraint Value

Partition

Case Operations: , 

(
Á1 : f1

Á2 : f2
©
(
Ã1 : g1

Ã2 : g2
= ?

(
Á1 : f1

Á2 : f2
©
(
Ã1 : g1

Ã2 : g2
=

8
>>><
>>>:

Á1 ^ Ã1 : f1 + g1

Á1 ^ Ã2 : f1 + g2

Á2 ^ Ã1 : f2 + g1

Á2 ^ Ã2 : f2 + g2

Case Operations: , 

• Similarly for 
– Expressions trivially closed under +, *

• What about max?
– max(f1, g1) not pure arithmetic expression 

max

Ã(
Á1 : f1

Á2 : f2
;

(
Ã1 : g1

Ã2 : g2

!
=

Case Operations: max

?

max

Ã(
Á1 : f1

Á2 : f2
;

(
Ã1 : g1

Ã2 : g2

!
=

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Á1 ^ Ã1 ^ f1 > g1 : f1

Á1 ^ Ã1 ^ f1 · g1 : g1

Á1 ^ Ã2 ^ f1 > g2 : f1

Á1 ^ Ã2 ^ f1 · g2 : g2

Á2 ^ Ã1 ^ f2 > g1 : f2

Á2 ^ Ã1 ^ f2 · g1 : g1

Á2 ^ Ã2 ^ f2 > g2 : f2

Á2 ^ Ã2 ^ f2 · g2 : g2

Case Operations: max

Key point: still in
case form!

Size blowup? We’ll
get to that…

All Case Ops for Dynamic Programming?

• Value Iteration for h0..H

– Regression step:

– Maximization step:

– Almost there: we need to define b’ and x’

Vh+1 = max
a2A

Qh+1
a (~b; ~x)

Qh+1
a (~b; ~x) = Ra(~b; ~x) + °¢

X

~b0

Z

~x0

0
@

nY

i=1

P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0

SDP Regression Step

• Binary variable 

– As done in SPUDD: Hoey et al, UAI-99

X

bi2f0;1g

f(~b; ~x) = f(~b; ~x)jbi=1 © f(~b; ~x)jbi=0

©=
X

b12f0;1g

8
><
>:

Á1 ^ b1 : f1

Á1 ^ :b1 : f2

:Á1 : f3

(
Á1 : f1

:Á1 : f3

(
Á1 : f2

:Á1 : f3

• Continuous variables xj

– triggers symbolic substitution

SDP Regression Step

– e.g.,

– If g is case: need conditional substitution
• see Sanner, Delgado, Barros (UAI 2011)

Z

x01

±[x01 ¡ (x21 + 1)]

Ã(
x01 < 2 : x01
x01 ¸ 2 : x021

!
dx01 =

(
x21 + 1 < 2 : x21 + 1

x21 + 1 ¸ 2 : (x21 + 1)2

Z

x0
j

±[x0j ¡ g(~x)]V 0dx0j = V 0fx0j=g(~x)g

Z

x

±[x¡ y]f(x)dx = f(y)

That’s SDP!

• Value Iteration for h0..H

– Regression step:

– Maximization step:

Vh+1 = max
a2A

Qh+1
a (~b; ~x)

Qh+1
a (~b; ~x) = Ra(~b; ~x) + °¢

X

~b0

Z

~x0

0
@

nY

i=1

P (b0ij~b; ~x; a)
mY

j=1

P (x0jj~b;~b0; ~x; a)

1
AV h(~b0; ~x0)d~x0

In theory

Exact for any
reward,

discrete noise
transition
dynamics!

Data Structures for
Continuous Planning

Case  XADD

SDP needs an efficient data structure for

• compact, minimal case representation

• efficient case operations

BDD / ADDs

Quick Introduction

Function Representation (Tables)

• How to represent
functions: Bn  R?

• How about a fully
enumerated table…

• …OK, but can we be
more compact?

a b c F(a,b,c)

0 0 0 0.00

0 0 1 0.00

0 1 0 0.00

0 1 1 1.00

1 0 0 0.00

1 0 1 1.00

1 1 0 0.00

1 1 1 1.00

Function Representation (Trees)

• How about a tree? Sure, can simplify.

a b c F(a,b,c)

0 0 0 0.00

0 0 1 0.00

0 1 0 0.00

0 1 1 1.00

1 0 0 0.00

1 0 1 1.00

1 1 0 0.00

1 1 1 1.00

a

b c

c 1 0

1 0

0

Context-specific
independence!

Algebraic
Decision
Diagram
(ADD)

Function Representation (ADDs)

• Why not a directed acyclic graph (DAG)?

a b c F(a,b,c)

0 0 0 0.00

0 0 1 0.00

0 1 0 0.00

0 1 1 1.00

1 0 0 0.00

1 0 1 1.00

1 1 0 0.00

1 1 1 1.00

a

b c

c 1 0

1 0

0

Think of BDDs as {0,1}
subset of ADD range

Binary Operations (ADDs)
• Why do we order variable tests?
• Enables us to do efficient binary operations…

a

b

1 0

c

a
a

0

0 2

c
b

c

2

Result: ADD
operations can
avoid state
enumeration

Case  XADD

Efficient XADD data structure for cases
• strict ordering of atomic inequality tests

 compact, minimal case representation
 efficient case operations

XADD = continuous variable extension
 of algebraic decision diagram

V =

8
>>>>>>>><
>>>>>>>>:

x1 + k > 100 ^ x2 + k > 100 : 0

x1 + k > 100 ^ x2 + k · 100 : x2

x1 + k · 100 ^ x2 + k > 100 : x1

x1 + x2 + k > 100 ^ x1 + k · 100 ^ x2 + k · 100 ^ x2 > x1 : x2

x1 + x2 + k > 100 ^ x1 + k · 100 ^ x2 + k · 100 ^ x2 · x1 : x1

x1 + x2 + k · 100 : x1 + x2

XADDs
• Extended ADD representation of case statements

XADD Maximization

y > 0

y

max(,) =

y > 0

x

x > 0 x > 0

x > y

y

x > 0

x x y

May introduce new
decision tests

Maintaining XADD Orderings I

• Max may get variables out of order

Decision
ordering
(rootleaf)

• x > y

• y > 0

• x > 0

y > 0

y

max(,) = x > 0

x x y

y > 0

x

x > 0 x > 0

x > y

y
Newly introduced

node is out of order!

Maintaining XADD Orderings II

• Substitution may get vars out of order

Decision
ordering
(rootleaf):

• x > y

• y > 0

• x > z

y > 0

x > z x > z

z x y x

=

={ z/y } y > 0

x > y x > y

y x y x

Substituted nodes are
now out of order!

Correcting XADD Ordering

• Obtain ordered XADD from unordered XADD

– key idea: binary operations maintain orderings

z

ID1 ID0

z is out of order


ID1
 z

1 0
ID0

 z

0 1

result will have z in order!

Inductively assume ID1
and ID0 are ordered.

All operands ordered, so
applying ,  produces

ordered result!

XADD Pruning

y > 0

x

x > 0

y

Node unreachable –
x + y < 0 always false if

x > 0 & y > 0

x + y < 0

x + y

y

y > 0

x > 0

x + y

If linear, can detect with
feasibility checker of LP

solver & prune

Similar to Penberthy & Weld, AAAI-94

Take-home point:
SDP impossible without XADD

How well does it work?

Results: XADD Pruning vs. No Pruning

Summary:

• without pruning: superlinear vs. horizon

• with pruning: linear vs. horizon

Worth the effort to prune!

Exact 3D Value Functions

Exact value functions in case form:

• linear & nonlinear piecewise boundaries!

• nonlinear function surfaces!

Knapsack Mars Rover Linear Mars Rover Nonlinear

Continuous Actions

• Inventory control
– Reorder based on stock,

future demand

– Action:

• Need max in Bellman backup

• Track maximizing  substitutions to recover

Vh+1 = max
a2A

max
~¢

Qh+1
a (~b; ~x; ~¢)

a(~¢); ~¢ 2 Rjaj

Max-out Case Operation

• maxx case(x) can be done partition-wise
– In a single case partition

…max w.r.t. critical points

• Derive LB, UB in case form

• Derivative Der0 in case form

• max(case(x/LB),
 case(x/UB),
 case(x/Der0))

– Can even track substitutions
to recover optimal policy

UBLB @Qh
a

@~¢
= 0

See AAAI 2012
(Zamni, Sanner, Fang)

for details

First exact solutions
to multivariate

inventory in 50 years!

Illustrative Value and Policy

Reward

x

y

V1

V2

Value (Policy)

Fully Stochastic DC-MDP

• Add continuous noise  to transitions
– x’ = x + 2 + 

• or x’ = x* + 2

–   N (; 0,2)
• or   N (; f1(x), f2(x))

– Introduce intermediate vars  for noise
• Must be integrated out

• Requires non- continuous integral 
– See AAAI-12 (Abbasnejad and Sanner) for  operation

– Unfortunately not closed-form for SDP in MDPs 

Partially Observable – Continuous

• POMDPs
– Standard discrete observation

solution enumerates
conditional policy trees

– Continuous observations…
•  policy trees!

• But in many cases…

– Policy only dependent upon
finite partitioning of
observation space

– SDP methods allow one to
derive this partitioning and
apply discrete solutions!
• If (temperature > 10)

 then …
 else …

a1

a1 a2

a1 a2 a1 a2

o1 o2

o1 o2 o1 o2

Policy 

V(b)

 = {-vectors}

P(b) b’

a

Summary: Exact Solutions

• Solutions to continuous state (PO)MDPs

– Discrete action MDPs

– Continuous action MDPs (incl. exact policy)

– Extensions to full continuous noise
• Initial work on required integration

– Discrete action, continuous observation POMDPs

Sanner et al, UAI-11

Zamani et al, AAAI-12

Sanner et al, AAAI-12

In progress

Part 2b: Solutions

Open problems
(some work in progress)

Nonlinearity and Continuous Actions

• Robotics

– Need nonlinear cos, sin

– Can use cubic spline

• General path planning

– Not obvious, but
requires bilinear
constraints for
obstacle specification

 x

y

h=1

h=2

Real-time Dynamic Programming (RTDP)

• Reachability and drawbacks of synch. DP (VI)

– Better to think of relevance to optimal policy

• How to do RT-SDP for continuous problems?
– HAO* (Meuleau et al, JAIR-09) provides some hints
– Or instead do HAO* using SDP for DP operation

S

F

Approximation

• Bounded (interval) approximation

– This XADD has > 1000 nodes!

– Should only require < 10 nodes!

Can use ADD to Maintain Bounds!

• Change leaf to represent range [L,U]

– Normal leaf is like [V,V]

– When merging leaves…

• keep track of min and max values contributing

How to
approximate
for XADDs –
expressions
in decisions
and leaves?

(X)ADDs vs. (X)AADDs
• Additive functions: i=1..n xi

Sanner &
McAllester
(IJCAI-05)

AADD: affine
transform on

edges

Exponential
savings!

Affine
XADDs?

Part 2c: Solutions

Survey of other methods

(Adaptive) Discretization

• Approximate by discretizing continuous variables
– Then apply discrete solution!
– Can often bound error, but O(ND)

– (Adaptively) discretize model:

• Still O(ND)
• Adaptivity is an artform

– Munos and Moore, MLJ 2002.
– Nouri, Weinstein, Littman, NIPS 2008.

Search – Bounded

• Deterministic
– Geometric reasoning
– KongMing

(Li, Williams,
 ICAPS 2008)

– COLIN
(Coles, Coles,
 Fox, Long,
 IJCAI 2009, JAIR 2012)

• Uncertainty
– HAO* - AO* search using dynamic programming

(extends previous DP methods to search!)

Search – Sampling

• UCT extremely effective for many MDPs
– Maintain a partial tree for visited states

– Treat each node in the tree as a bandit problem

• Hence UCB for trees – UCT
(Kocsis, Szepesvari, ECML 2006)

• Extensions of UCT for continuous actions
and state
– (Mansley, Weinstein, Littman, ICAPS 2012)

Direct Optimization

• Deterministic Planning
– Extend SAT compilation to continuous variables

– Use LP-SAT (SAT + linear constraints)

– TM-LPSAT (Shin, Davis, AIJ 2005)

• Uncertain (MDP)
– Approximate Bellman fixed point directly

– (Kveton, Hauskrecht, and Guestrin, JAIR 2006)

– Requires a priori knowledge of basis functions

Part 2d: Solutions

Connections to Control
and Scheduling

(very brief)

Control

• Overlap with (PO)MDPs for discrete time control
– Almost always have continuous actions in control

• E.g., servos
• But rarely discrete time

• Different problem for continuous time control

– Modeled as partial differential equations (PDEs)
• E.g., airplane stabilizer control

– Policy must be continuous time as well
• Not act and wait until next time step
• But apply continuous control signal as a function of

observation inputs
• Rely on specialized PDE solutions

Scheduling

• Cornerstone of scheduling is concurrency
– Deliveries

– Factory processes

• But importantly: asynchronous concurrency
– Processes start and end at different times

– Not well-modeled as synchronous, discrete time (PO)MDP

• If not stochastic, can view from constraints perspective
(Bartak’s tutorial)

• If stochastic, might consider Generalized Semi-(PO)MDPs
(Younes and Simmons, AAAI 2004)

Summary of Part 2: Solutions
• Express model in language of your choice (RDDL!)

– Compile to a factored (PO)MDP

• Exact dynamic programming for factored (PO)MDPs

– Important to say what optimal solution looks like!
– Many open problems for bounded / exact solutions

• Not all problems can be solved exactly

– Useful to take hints from heuristic / approximation literature
– Much work to be done in generalizing discrete MDP techniques

• In some cases (control and continuous time scheduling),

factored MDP and POMDP insufficient
– Need to extend or seek alternate models

Tutorial Summary

• Many real-world planning problems require
continuous models

– Need compact, expressive languages (e.g., RDDL)

• Need to understand exact solutions & limits

• Need to develop effective practical solutions

– Wide open area for research

