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Abstract 
FlowOpt is demonstration software showing how advanced 
optimization technology can be put at the fingertips of 
practitioners, who are not experienced in optimization. 
FlowOpt is a unique combination of optimization technology 
based on constraint satisfaction techniques with knowledge 
engineering aspects of extracting formal problem models and 
with interactive visualization that gives users full control over 
the produced schedules. The system supports visual design of 
production workflows with alternative processes, it generates 
feasible schedules based on the workflows and specified 
resources, it shows the schedules in the form of a Gantt view 
with the possibility to manually modify the schedules, and 
finally, it supports analysis of schedules to find new ways to 
improve production.  

Introduction 
One of the biggest problems of today’s advanced 
technology is its limited accessibility to users working in a 
given domain, but not necessarily being experts in the used 
technology. Apple’s iPhone is a great example how the 
advanced technology can be made accessible to regular 
users. With the tradeoff of slightly limited functionality, it 
provides user interface to very advanced techniques such as 
Q&A (question and answering) that anyone can 
immediately use without the hassle of long training. 
 Though there exists a vast amount of research in the area 
of scheduling, there is still a large gap between practical 
problems and research results especially in the area of 
production optimization for small and medium enterprises 
(SMEs). This gap is partly due to missing modeling and 
visualization tools that would allow easy transformation of 
real-life problems to optimization models and the results 
back to customers (Barták et al. 2010) and partly due to 
large distance of academic optimization algorithms from the 
existing problems. 

 Competition in the area of production is increasing due to 
globalization of the production market and entrance of low-
wage economies to this area. Many large companies are 
outsourcing or moving their production facilities to low-
wage countries as an easy way to decrease the production 
costs. This approach is not applicable to small and medium 
enterprises (SMEs) that are typically family-based and 
connected to their area of origin. These companies can 
survive in the market by providing high quality products 
that are built-to-order or even engineered-to-order to fit 
exactly the specific needs of the customers. Production of a 
large variety of items in small quantities is very demanding 
on work organization especially when deadlines are tight. 
This is becoming a serious problem for SMEs where 
production planning is frequently done manually using 
Excel sheets. Existing production optimization tools are 
built mainly for larger companies and the tools require 
serious tuning to a particular production facility. Moreover, 
such tools and related services are too expensive for SMEs. 
Hence there is a need for an easy-to-use optimization tool 
that bridges the gap between the real-world problems and 
advanced optimization technology. The tool must be easily 
customized to most production facilities and it must be 
easy-to-use by people that are not experts in optimization. 
 FlowOpt is a system that attempts to address the above 
problem and bridges the gap between advanced optimization 
technology developed at universities and practitioners from 
production planning. FlowOpt is a software tool targeted to 
discrete manufacturing SMEs. It is intended as a technology 
demonstration showing how current optimization techniques 
can be used in practice. The system is customizable to a 
particular production facility. The users first need to 
describe the production workflows for their products. Then 
they tell the system what products should be manufactured 
and when they should be finished, and the system generates 



a feasible production plan/schedule. The plan is visualized 
to the user, who can do any modification of the plan. This is 
a critical feature, as the users need to have a full control 
over the production plans. Based on the generated schedule, 
the system can also analyze the company and recommend 
how to change it to increase efficiency (for example by 
buying a new machine). The human computer interaction is 
done via intuitive graphical interface hiding the complexity 
of the optimization process. FlowOpt is a student software 
development project at Charles University in Prague. The 
software itself is a collection of closely interconnected plug-
in modules to the enterprise performance optimization 
system MAK€ from Entellexi Ltd. (Barták et al. 2012). 
 This paper describes the capabilities and technology 
behind the FlowOpt system. We will first introduce the core 
modeling concepts, namely the nested workflows extended 
by additional constraints. Then we will go through the 
production planning process as it is realized in the FlowOpt 
system. Finally, we will give more details about the AI 
technology used inside the system. The paper is concluded 
by the discussion of possible future extensions both from 
the application and research perspectives. 

Formal Background 
FlowOpt is a production planning/scheduling system for 
SMEs. Unlike many similar systems that were designed to 
optimize production in particular factories, the initial design 
concept behind the FlowOpt system was to support various 
production facilities. Hence the system must allow the users 
to describe the production environment. The FlowOpt 
system is built around the concept of workflow that is an 
organized collection of activities to achieve some goal. In 
our case the goal is the production of certain item and there 
are precedence and causal relations between the activities. 
Using the idea of workflow gives us the flexibility to 
describe virtually any production process and hence the 
system can optimize any production facility that can be 
modeled there. Note that though there exist other attempts to 
generally describe production processes for example using 
the traditional planning view via preconditions and effects 
(Do et al. 2011). The structure of workflows has the 
advantage of better organization of production activities that 
is closer to the production view. The additional structural 
information within the workflow can also be exploited in 
the optimization procedure similarly to exploiting the 
structure in hierarchical task networks (HTN). The idea of 
exploiting the hierarchical structure of workflows was 
independently explored in the JABBAH system where the 
Business Process Models are directly translated to HTN 
(González-Ferrer et al. 2009). 

Nested Workflows 
There exist many formal models of workflows such as 
BPMN (Business Process Modeling Notation) or YAWL 
(Yet Another Workflow Language)1. These are very generic 
models that support repetition of parts of the workflow and 
many specific constraints between the activities. In the 
FlowOpt system we adapted the idea of Nested Temporal 
Network with Alternatives (Barták and Čepek 2008). 
Temporal Network with Alternatives (TNA) is a directed 
acyclic graph with parallel and alternative splitting and 
joining of processes that is also known as AND-split and 
OR-split (and AND-join, OR-join) in traditional workflow 
management systems (Bae et al. 2004). Hence TNA can 
describe alternative processes in the style similar to 
scheduling workflows with optional activities introduced in 
(Beck and Fox 2000) and used also in Extended Resource 
Constrained Project Scheduling Problems (Kuster et al. 
2007). Nested TNA restricts the structure of TNA in such a 
way that each split operation has a corresponding join 
operation. This idea was informally described in (Beck and 
Fox 2000) and formalized in (Barták and Čepek 2008) and it 
seems that it is quite common in real-life workflows (Bae et 
al. 2004). This restriction brings a hierarchical structure to 
workflows very similar to hierarchical task networks leading 

                                                
1 http://www.bpmn.org/, http://www.yawlfoundation.org/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 1. Visualization of a nested workflow in the FlowOpt 
Workflow Editor (from top to bottom there are parallel, serial, and 
alternative decompositions) 



to Temporal Planning Networks (TPN) (Kim et al. 2001). 
From the manufacturing perspective, the hierarchical 
structure resembles the concept of bill of materials. 
 In the FlowOpt system we use a slightly modified view of 
Nested TNA called a nested workflow. A nested workflow is 
obtained from a root task by applying decomposition 
operations that split the task into subtasks until primitive 
tasks, corresponding to activities, are obtained. Three 
decomposition operations are supported, namely parallel, 
serial, and alternative decomposition. Figure 1 gives an 
example of a nested workflow that shows how the tasks are 
decomposed. The root task Chair is decomposed serially 
into two tasks, where the second task is a primate task filled 
by activity Assembly. The first task Create Parts 
decomposes further to three parallel tasks Legs, Seat, and 
Back Support. Back Support is the only example here of 
alternative decomposition into two primitive tasks with Buy 
and Welding activities (Welding is treated as an alternative 
to Buy). Naturally, the nested workflow can be described as 
a tree of tasks. This is similar to hierarchical task networks 
though the nested workflows do not support repetition of 
tasks and the number of tasks is fixed there. 
 Formally, the nested workflow is a set Tasks of tasks, that 
is a union of four disjoint sets: Parallel, Alternative, Serial, 
and Primitive. For each task T (with the exception of the 
root task), function parent(T) denotes the parent task in the 
hierarchical structure. Similarly for each task T, we can 
define the set subtasks(T) of its child nodes (subtasks(T) = 
{C ∈ Tasks | parent(C) = T}). The tasks from sets Parallel, 
Alternative, and Serial are called compound tasks and they 
must decompose to some subtasks: 
T ∈ (Parallel ∪ Alternative ∪ Serial) ⇒ subtasks(T) ≠ ∅, 

while the primitive tasks do not decompose: 
T ∈ Primitive ⇒ subtasks(T) = ∅. 

The workflow defines one or more processes in the 
following way. Process selected from the workflow is 
defined as a subset P ⊆ Tasks in the workflow satisfying the 
following properties: 

 for each task T in the process, that is not a root task, its 
parent task is also in the process, 
T ∈ P ∧ T ≠ root ⇒ parent(T) ∈ P, 

 for each compound task T in the process with a serial or 
parallel decomposition, all its subtasks are also in the 
process, 
T ∈ P ∩ (Serial ∪ Parallel) ⇒ subtasks(T) ⊆ P, 

 for each compound task T in the process with the 
alternative decomposition, exactly one of its subtasks is 
in the process, 
T ∈ P ∩ Alternative ⇒ | subtasks(T) ∩ P | = 1. 

So far we defined only the hierarchical structure of the 
nested workflow, but as Figure 1 shows the nested structure 
also defines several temporal constraints. These temporal 

relations must hold for all tasks in a single process. Assume 
that ST is the start time and ET is the completion time of task 
T. The primitive tasks T are filled by activities and each 
activity has some duration DT. Then for tasks in certain 
process P the following relations hold: 

T ∈ P ∩ Primitive ⇒ ST + DT = ET 
T ∈ P ∩  (Parallel ∪ Alternative ∪ Serial) ⇒ 

ST = min{ SC | C ∈ P ∩ subtasks(T) } 
ET = max{ EC | C ∈ P ∩ subtasks(T) }. 

Notice that the duration of compound task is defined by the 
time allocation of its subtasks while the durations of 
primitive tasks are defined by the activities. Moreover, for 
the serial decomposition we expect the subtasks to be 
ordered, say T1, …, Tn, where n is the number of subtasks of 
a given task. The following constraints must hold, if the 
serial task is included in the process: 

∀i = 1,…, n-1: Ei ≤ Si+1 
A feasible process is a process where the time variables ST 
and ET can be instantiated in such a way that they satisfy the 
above constraints. It is easy to realize that if there are no 
additional constraints then any process is feasible. The 
process defines a partial order of tasks so their start and end 
times can be easily set in the left-to-right order while 
satisfying all the above constraints. 

Extra Constraints 
The core nested structure has the nice property that for each 
task there exists a feasible process containing that task 
(Barták and Čepek 2008). However, the nested structure 
may not be flexible enough to describe naturally some 
additional relations in real-life processes, for example when 
the selected alternative for one task influences the selection 
of alternatives in other tasks. Therefore in the FlowOpt we 
support specification of extra binary constraints between the 
tasks: 
§ precedence constraints between any pair of tasks mean 

that if both tasks are selected in the process then the 
specified temporal ordering must hold, 

§ temporal synchronization constraints describe that two 
tasks start or end at the same time, or that one task 
must start exactly when another task finishes, 

§ logical constraints describe the causal relations 
between the tasks beyond the nested structure; mutual 
exclusion requires that both tasks cannot appear at a 
single process, equivalence constraint requires that 
either both tasks appear in the same process or none of 
them, and implication constraint A ⇒ B requires that if 
task A appears in the process then also task B must 
appear in the same process. 

These constraints must also be satisfied in the feasible 
process. Let us now describe them formally for any two 
tasks i and j: 



 precedence constraint: i, j ∈ P ⇒ Ei ≤ Sj 
 start-start synchronization:  i, j ∈ P  ⇒ Si = Sj 
 start-end synchronization:  i, j ∈ P  ⇒ Si = Ej 
 end-start synchronization:  i, j ∈ P  ⇒ Ei = Sj 
 end-end synchronization:  i, j ∈ P  ⇒ Ei = Ej 
 mutex constraint:  i ∉ P ∨ j ∉ P 
 equivalence constraint: i ∈ P ⇔ j ∈ P 
 implication constraint: i ∈ P  ⇒ j ∈ P 

It is interesting that if these extra constraints are used then 
the existence of a feasible process is no more obvious. In 
fact, the problem of deciding whether a feasible process 
exists for a nested workflow with extra constraints is NP 
complete (Barták 2012). The consequence is that when extra 
constraints are used then there is no guarantee that there is a 
feasible process for each task in the workflow. There might 
be such tasks than cannot be used in any feasible process; 
for example, the extra precedence constraints may add a 
cycle. Therefore, it is useful to verify the workflows and 
report such cases to the user (Giro 2007), because the task 
that cannot be used in any feasible process indicates a 
serious design flaw. 

Resources 
In addition to duration, each activity is also accompanied by 
a set of resources that it requires for processing. The 
resource can be a machine, a tool, or a worker; we do not 
use any particular restriction on the type of resource. The 
activity must be allocated to all resources that it requires. 
The FlowOpt system currently supports only so called unary 
(disjunctive) resources. Unary resource is a resource that 
can process at most one activity at any time. We assume the 
activities to be non-interruptible, that is, when we start 
processing the activity, we must continue until its finished. 
Let res(T) be the set of resources required by a primitive 
task T (activity inside it) and S be a set of tasks to be 
scheduled. Then the limited capacity of the resource can be 
described formally using the disjunctive constraint: 
i, j ∈ S ∩ Primitive ∧ res(i) ∩ res(j) ≠ ∅ ⇒ Ei ≤ Sj ∨ Ej ≤ Si. 
This constraint basically says that if two primitive tasks 
share a resource then these tasks must be ordered somehow, 
either i before j or vice versa. If these constraints are 
satisfied by tasks from S then we say that S is resource 
feasible. We use the set S instead of P because we now 
assume a set of feasible processes selected from the 
workflows to be allocated to shared resources. This is the 
scheduling problem that the FlowOpt system solves: we 
have a set of workflows at the input and the task is to select 
a feasible process Pi for each workflow i such that the set 
S = ∪i Pi is resource feasible. This problem is similar to 
Resource Constrained Project Scheduling Problem (RCPSP) 
with the extension that we need to select the tasks to be 
scheduled from the workflows. 

Objectives 
Users are usually looking for good schedules not only for 
feasible schedules. There exists many criteria to evaluate 
quality of schedules; makespan is probably the most famous 
one though not the most practically relevant. In the current 
version of FlowOpt we use a criterion called on-time-in-full. 
The user selects the set of workflows to be scheduled, the 
start time, and the due date for the schedule. It is also 
possible to specify whether the workflows can finish earlier 
or later with respect to the due date and in such a case what 
penalty cost is paid (per time unit). The task is to find a 
resource feasible schedule with the minimal penalty. 

FlowOpt Functionality 
One of the primal tasks of the FlowOpt system is to simplify 
problem modeling for the end users by hiding the 
complexity of mathematical formalism while guiding the 
users to design correct and complete models. The FlowOpt 
system is a collection of five modules that are responsible 
for individual steps in the process of production 
optimization. The general purpose of the FlowOpt system is 
to provide a streamlined feature-rich environment where the 
user can do the following activities in a simple, efficient, 
and user-friendly way: 
1. specify how a particular product is manufactured, i.e., 

define a workflow describing the manufacturing of a 
single product, 

2. describe the work order from the customers – the work 
order is specified by the products, their quantities, the 
start time of production, and the desired due date, 

3. generate a schedule for the order – the schedule is a 
complete description of which tasks should be 
performed, when they should be performed, and what 
resources they should use; executing such a schedule 
results in efficient fulfilling of the work order, 

4. display the generated schedule in the form of a Gantt 
chart and allow the user to modify it interactively, 

5. analyze the generated schedule and suggest 
opportunities for improvements of the factory. 

FlowOpt is not a standalone product. It is built on top of the 
commercial system MAK€ that is a performance prediction 
and optimisation tool for SMEs (Barták et al., 2012). MAK€ 
already provides tools such as Workflow Editor, Optimizer, 
and Gantt Viewer, and the goal of FlowOpt is to 
demonstrate a new functionality for these modules. By 
building the FlowOpt system on top of MAK€, we can 
exploit some existing functionality such as the database for 
storing workflows and schedules and the resource and 
activity manager. Hence we assume that we already have a 
set of primitive activities that the factory can process and a 
set of available resources (people, machines, tools, etc.). In 



this section we will describe the features of individual 
FlowOpt modules from the user perspective. 

Workflow Editor 
Describing the workflow structure is the first step in 
specifying how the factory works (after describing the 
primitive production activities and resources that are taken 
from the MAK€ system). Visual editing of workflows is not 
a new idea, YAWL (van der Aalst and Hofstede 2005) and 
MAK€ (Barták et al. 2012) already provide graphical editors 
for describing workflows. These editors look like drawing 
programs, where the user puts activities on a virtual board 
and connects them via constraints that describe the flow of 
material (precedence constraints) and other relations 
between the activities. This is a very flexible process and 
virtually any workflow can be drawn this way. However, the 
tradeoff is that the user is also responsible for everything 
starting from the arrangement of items on the board to make 
the workflow visually acceptable and concluding with 
ensuring that the internal structure of the workflow is 
flawless. Though the verification can sometimes be done 
automatically after the workflow is drawn, we believe that a 
much better approach is guiding the user to draw as flawless 
workflows as possible. 
 As we mentioned at the beginning we decided to go in the 
“iPhone” way with a slightly restricted flexibility but with 
much higher user comfort in modeling the workflows. First, 
rather that drawing any graph to describe the workflow and 
then checking whether the graph corresponds to some 
specific structure (such as the nested structure) we guide the 
user to design the workflows only with the nested structure. 
This can be done be constructing the workflow using the 
decomposition operations described in the previous section. 
Basically, when designing a new workflow, we start with a 
root task and the user can apply any of the three 
decomposition operations to this task and to the obtained 
subtasks. It is also possible to drag an action from the list of 
actions to the non-decomposed task to include the action in 
the workflow. We expect that the list of actions with their 
durations and required resources is given. Actually, we use 
the set of actions from the underlying MAK€ system. 

 The top-down approach is useful, if the users have 
already quite an organized view of what they are doing. This 
is not always the case in SMEs where they need first to 
organize their processes into workflows. Hence, the 
FlowOpt Workflow editor also supports a bottom-up 
approach to building workflows that is closer to the 
traditional workflow editors. The users put actions on the 
board but rather than connecting them with lines, the users 
are grouping them. Grouping is a reverse operation to 
decomposing and the actions can be grouped to form a 
sequence, to form a parallel task, or to form a set of 
alternatives. This approach seems more appropriate when 
describing existing processes, and it is a form of knowledge 
extraction. This way the user is guided to describe some 
structure of the workflow. The top-down and bottom-up 
approaches can be used together; the workflow designed by 
the bottom-up approach can be, for example, placed to an 
existing task in the hierarchical structure by the drag-and-
drop operation. The only restriction is that at the end we 
should obtain a single workflow that is inside the root task. 
Whether the workflow is designed by the decomposition 
operations or composed from the activities is up to the user. 
The editor also takes care of the alignment of sub-tasks in 
the tasks and of their spatial organization on the board. The 
user only focuses on the structural organization of the 
operations into tasks. Figure 1 shows how the workflow 
looks like in the editor if the workflow is organized left-to-
right (top-down organization is also possible). 
 All above decomposition and composition operations can 
be done using intuitive drag-and-drop operations. The extra 
binary constraints, described in the previous section, can 
also be added using drag-and-drop operations. The user just 
draws a line connecting one task with another task and 
selects a particular type of the constraint. Adding these extra 
constraints could introduce flaws into the workflow. The 
editor can detect some of these flaws immediately and 
forbid adding the constraint to the workflow. However, as 
the problem of workflow verification is NP-complete 
(Barták 2012) it is not possible to detect all flaws during the 
workflow design. Therefore the editor includes a function 
that can verify the workflow on demand. Though the 
process of workflow verification is quite complex 
(Rovenský 2011), we succeeded to hide this complexity 
from the user, and the verification is as easy as pushing a 
button in GUI (graphical user interface). If any flaws are 
found, they are reported to the user and also highlighted in 
the visual model of the workflow together with the textual 
description of the flaw (Figure 2). 
 As the FlowOpt Workflow Editor is build on top of the 
MAK€ system, which has its own workflow editor, it is 
possible to import existing workflows from MAK€ to the 
FlowOpt system. This process requires the original 
unstructured workflows to be converted to the nested 
structure (Barták and Čepek 2008), which is not always 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure 2. Highlighting the found flaws after workflow verification 



possible, so only nested workflows can be imported. This 
way we allow the customers to easily switch to the FlowOpt 
system. JABBAH (González-Ferrer et al. 2009) provided 
similar functionality with the more general BPM workflows 
converted to the HTN formalism. 

Order Manager and Optimizer 
The workflows describe what products can be made in the 
factory and how they are produced. In the AI planning 
terminology, they describe the planning domain. To obtain 
an actual production plan the user should select the items to 
be produced and the time horizon when the production 
should happen. Recall that each item corresponds to one 
workflow, so the user basically selects the workflows and 
specifies how many times each workflow appears in the 
schedule (how many items will be produced). In the AI 
planning terminology it corresponds to selecting the tasks to 
be achieved. Additionally, the user describes the start time, 
that is, the earliest time when any operation can start, and 
specifies the due date when the production should be 
finished. The due date can be set as a hard deadline that 
cannot be exceeded or as a soft deadline where exceeding it 
is penalized by some fix cost per time unit. In the second 
case we are solving an optimization problem. These data are 
then passed to the optimizer that produces a production 
plan, where operations are selected from the workflows and 
allocated to particular times and resources. This is a 
scheduling problem with some planning component of 
selecting alternatives from the workflows. The Optimizer is 
basically trying to find some production plan, and then to 
improve its quality based on the earliness and lateness cost. 
The status of the planner is reported to the user using a 
familiar progress bar indicating whether the Optimizer has 
already found a solution and is improving it, or is still 
looking for the first feasible production plan. The user can 
interrupt the Optimizer at any time and obtain the best 
production plan found so far (if any). This is an important 
feature as the users can trade-off the plan quality for the 
runtime. 

Gantt Viewer 
The generated schedule (production plan) can be visualized 
in the Gantt Viewer. This module provides both traditional 
views of the schedule, namely the task-oriented and 
resource-oriented views.  Gantt charts are a classical way 
how to visualize schedules so let us focus on the unique 
features of the FlowOpt Gantt Viewer. First, the Gantt 
Viewer has full access to the workflow specification, not 
only to the production plan outputted from the Optimizer. 
Having this complete information, the Gantt Viewer can 

visualize the alternatives that were not selected by the 
Optimizer. It also allows users to modify any aspect of the 
production plan using drag-and-drop techniques. The user 
can move activities to different times and resources and 
change their duration. It is even possible to select another 
alternative than the one suggested by the Optimizer. 
Because the Gantt Viewer is aware of all the constraints 
originating from the workflow specification, it can also 
highlight violation of any of these constraints. Obviously, 
the production plan generated by the Optimizer is flaw-less 
and no constraint is violated, but the user modifications may 
introduce flaws such as breaking a precedence constraint or 
exceeding the capacity of some resource. The Gantt Viewer 
highlights these flaws so it is easy to spot them (Figure 3). 
 Another unique feature of the Gantt Viewer is the 
capability to repair the schedule. Currently the system 
repairs the schedule by shifting activities in time while 
trying to keep the production plan as close as possible to the 
original plan (Barták and Skalický, 2009). Similar to 
verification, this complex process of re-scheduling is hidden 
from the user and it is initiated by pressing a single button in 
GUI. 

Analyzer 
The final module is Analyzer that is responsible for 
suggesting improvements of the production process. The 
Analyzer takes an existing schedule and finds bottlenecks in 
the schedule such as an activity that delays the delivery of 
the final item. The bottlenecks are presented to the user who 
may select some of them for further processing or even add 
additional bottlenecks that were not identified automatically. 
For each selected bottleneck, the analyzer suggests how to 
resolve it – this could be for example by buying a new 
resource or by decreasing the duration of certain activities 
(for example by staff training). This is called an 
improvement project and again the user can add them 
manually. In the third step, the improvement projects are 
evaluated using the Optimizer. The goal of evaluation is 
finding the real value of the improvement project, that is, 
how much it can improve the current schedule, and also 
finding possible relations between the improvement 
projects. For example, the system can detect that if two 
improvement projects are applied together then the overall 
improvement is much better than the sum of improvements 
of the individual projects. After manual adding of cost to 
each improvement project the system selects a subset of 
improvement projects such that their combination brings the 
best overall improvement of the production process under 
the given constraints such as a limited budget to realize the 
improvement projects. 



 The FlowOpt Analyzer is a form of mixed-initiative 
decision support system where the user can ask the system 
to provide solutions as well as to evaluate proposals 
suggested by the user. In each step of the improvement 
process, the system generates some suggestions, such as the 
improvement projects, the user can modify them or even 
manually add new improvement projects, and ask the 
system to evaluate only the selected projects and then build 
a portfolio from them. It should be said that the Analyzer is 
not improving the schedule based on the fixed problem 
specification; this is the task of the Optimizer. The Analyzer 
modifies the problem specification to obtain better 
schedules, which is a unique feature not present in other 
systems. 

FlowOpt Technology at Glance 
FlowOpt is a complex system that combines advanced user 
interfaces with sophisticated optimization technology. 
Surprisingly, the most complex algorithms are the least 
visible components in the user interface. In some sense this 
was the intention of the FlowOpt system that is supposed to 
bring the advanced techniques to regular users. 
 In this section we will focus on the technology that is 
behind the FlowOpt system. First, it is important to say that 
the FlowOpt system is a general production planning system 
that is supposed to solve any particular problem formulated 
in the provided formalism. Hence, it is not possible to use 
ad-hoc scheduling algorithms and we need a more general 
solving technology. We decided to use constraint 
satisfaction as it can be used for any combinatorial 
optimization problem while it can be customized for 
particular problems by choosing the right constraint model. 
In fact, the constraint satisfaction techniques are used in 
every module of the FlowOpt system. 

Workflow Verification 
One of the tasks of the FlowOpt Workflow Editor is 
verification of workflows, that is, checking that every task 
can be used in some process selected from the workflow. 
This is guaranteed for the nested workflows, but when the 
extra constraints are added, the verification problem 
becomes NP-complete (Barták, 2012). Hence there is a little 
hope for the polynomial algorithm so we developed a 
verification technique similar to one from (Bi and Zhao 
2004) but using constraint satisfaction. Briefly speaking, we 
model the problem of selecting a process from the workflow 
as a constraint satisfaction problem. Each task is modeled 
using a Boolean validity variable indicating whether the task 
is selected to the process or not. There are also temporal 
variables describing the start and end times of tasks 
(resource constraints are not assumed during verification). 
The constraints are derived directly from the description of 
the workflow (see the formal model). Now the problem is to 
find out if for each validity variable, there exists a solution 
to the above-sketched CSP, where the validity variable is set 
to value true. This corresponds to finding a valid process for 
a given task. As we are using some specific temporal 
consistency techniques, namely Incremental Full Path 
Checking (Planken, 2008), and also a specific search 
strategy that remembers, if any validity variable was set to 
true, so there is no need to check it again, we decided to 
implement the verification algorithm from scratch rather 
than using an existing constraint solver (Rovenský 2011). 

Scheduling 
The Optimizer solves a scheduling problem with optional 
activities, so it was again natural to use constraint 
satisfaction. For the Optimizer we decided to use an existing 
constraint satisfaction package, namely ILOG CP 
Optimizer, because there is a strong support for scheduling 
constraints (Laborie, 2009). Moreover, the CP Optimizer 
already supports so-called optional activities and the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.   The task view of the FlowOpt Gantt Viewer with two highlighted constraints that are violated (exceeded capacity of resource Dave Good 
and broken precedence constraint). 



hierarchical structure of tasks (Laborie and Rogerie, 2008). 
Hence we can fully exploit the existing constraints in the CP 
Optimizer and its built-in search strategy; no special solving 
algorithm was used. The result of scheduling is 
identification of selected operations that are allocated to 
precise time and required resources. Solving the 
optimization problem is realized via the branch-and-bound 
procedure where the initial feasible solution is generated 
first and better solutions are generated next using the same 
mechanism. The innovative part here is fully automated 
generation of the constraint model from the description of 
workflows, activities, and resources using the techniques 
from (Barták et al. 2010). 

Re-Scheduling 
The Gantt Viewer also contains some form of scheduling 
when we need to repair the violated constraints after manual 
modification of the schedule. We extended the re-
scheduling algorithm proposed in (Barták and Skalický 
2009) to cover all the constraints from the current problem. 
Again, the technology is based on constraint satisfaction, 
namely temporal consistency techniques are used (Planken 
2008). Note that we start with an existing schedule, where 
some constraints are violated. We first relax the assignment 
of temporal variables, and simply by temporal propagation 
we try to find a feasible schedule. This gives as temporal 
windows showing where particular activities can be 
allocated. We then try to allocate each activity to its original 
time, if the time is inside the corresponding time window 
(otherwise, the boundary value of the interval which is 
closest to the original time is used). This may violate some 
constraints, so we try to shift the activities in time to repair 
locally these constraints. This second process of activity 
shifting is identical to the algorithm in (Barták and Skalický 
2009) but now the temporal constraints are assumed. 

Analyzer 
Finally, the Analyzer uses the ideas of critical path to 
discover weak parts of the schedule. Briefly speaking, we 
find the activities that are responsible for delay of some 
process. For these activities, we try to decrease the delay, 
which can be done by shortening the duration of the activity 
or by adding a new resource where the activity can be 
processed. Currently, we use ad-hoc rules to suggest the 
improvements (overloaded resource → add a new resource). 
The improvements are then applied to the scheduling model 
and the Optimizer generates a new schedule, whose cost is 
used to evaluate the improvement. Some interactions 
between the possible improvements are also discovered 
during this process. For example, we can find that if two 
improvements are applied together then their effect is 
annihilated. From the set of possible improvements, a subset 
with the best overall cost is selected by using the techniques 

of project portfolio optimization. Again, the problem is 
modeled as a constraint satisfaction problem and ILOG CP 
Optimizer is used to solve it. Briefly speaking Boolean 
variables are used to describe whether an improvement is 
selected and constraints describe the relations between the 
improvements found during the evaluation stage. A standard 
branch-and-bound procedure is used to do optimization. 

Conclusions 
The FlowOpt system is intended to demonstrate that non-
experts in optimization can use advanced optimization 
technology. Hence a lot of effort was put in the design of an 
intuitive user interface. One of its design principles is hiding 
the formal modeling and algorithmic complexity from the 
user while preserving the full flexibility. The most complex 
algorithms such as workflow verification, scheduling, and 
schedule repair are completely hidden from the user – we 
call it a “press-button” approach. The user presses a button 
in GUI and the system fully automatically solves the 
problem. However, from our experience the users do not 
like black-box solutions and they require a full control of 
the system. This is exactly what we offer in the FlowOpt by 
allowing the users to manually influence every step of the 
production planning process starting with the design of 
workflows and ending with the possibility to modify the 
generated production plans. Hence despite automating many 
routine tasks, the users still keep control of the system. In 
summary the most innovative features of the FlowOpt 
system includes: 

 an editor of structured workflows with fully automated 
verification, 

 a generic scheduler based on constraint model that is 
generated automatically from the problem specification 

 an interactive Gantt Viewer connected to the problem 
specification and supporting manual plan modification 
with automated correction of violated constraints 

 a novel concept of suggesting improvements of the 
production environment based on schedule analysis. 

The FlowOpt system is meant as a demonstration of novel 
user-friendly approach to production scheduling. For 
applicability in real life environments, it requires some 
extensions especially in the modeling of resources. Though 
unary resources are probably the most frequent in practice it 
is still important to support resources with capacity greater 
than one. Also, modeling availability of resources via 
calendars seems very important for customers as well as 
modeling interruptible activities. To support these features, 
the Optimizer needs to be modified and in part also the 
Gantt Viewer. The schedule repair is currently realized via 
shifting activities in time, but there are other opportunities 
like re-allocating them to a different resource or event trying 
another alternative from the workflow. The current 



Analyzer shows the first steps in automated analysis of the 
enterprise and generating suggestions for improvement of 
the production facility. This is still an open research area 
with many opportunities. The final major challenge is on the 
other side of the planning process – automated construction 
of structured workflows from the description of primitive 
operations (knowledge engineering). 
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