

FlowOpt: Bridging the Gap Between Optimization Technology and
Manufacturing Planners

Roman Barták1*, Milan Jaška1, Ladislav Novák1, Vladimír Rovenský1, Tomáš Skalický1,
Martin Cully2, Con Sheahan2, Dang Thanh-Tung2

1 Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, Praha, Czech Republic
2 Entellexi Ltd., National Technology Park, Limerick, Ireland

* bartak@ktiml.mff.cuni.cz (contact e-mail)

Abstract
FlowOpt is demonstration software showing how advanced
optimization technology can be put at the fingertips of
practitioners, who are not experienced in optimization.
FlowOpt is a unique combination of optimization technology
based on constraint satisfaction techniques with knowledge
engineering aspects of extracting formal problem models and
with interactive visualization that gives users full control over
the produced schedules. The system supports visual design of
production workflows with alternative processes, it generates
feasible schedules based on the workflows and specified
resources, it shows the schedules in the form of a Gantt view
with the possibility to manually modify the schedules, and
finally, it supports analysis of schedules to find new ways to
improve production.

Introduction
One of the biggest problems of today’s advanced
technology is its limited accessibility to users working in a
given domain, but not necessarily being experts in the used
technology. Apple’s iPhone is a great example how the
advanced technology can be made accessible to regular
users. With the tradeoff of slightly limited functionality, it
provides user interface to very advanced techniques such as
Q&A (question and answering) that anyone can
immediately use without the hassle of long training.
 Though there exists a vast amount of research in the area
of scheduling, there is still a large gap between practical
problems and research results especially in the area of
production optimization for small and medium enterprises
(SMEs). This gap is partly due to missing modeling and
visualization tools that would allow easy transformation of
real-life problems to optimization models and the results
back to customers (Barták et al. 2010) and partly due to
large distance of academic optimization algorithms from the
existing problems.

 Competition in the area of production is increasing due to
globalization of the production market and entrance of low-
wage economies to this area. Many large companies are
outsourcing or moving their production facilities to low-
wage countries as an easy way to decrease the production
costs. This approach is not applicable to small and medium
enterprises (SMEs) that are typically family-based and
connected to their area of origin. These companies can
survive in the market by providing high quality products
that are built-to-order or even engineered-to-order to fit
exactly the specific needs of the customers. Production of a
large variety of items in small quantities is very demanding
on work organization especially when deadlines are tight.
This is becoming a serious problem for SMEs where
production planning is frequently done manually using
Excel sheets. Existing production optimization tools are
built mainly for larger companies and the tools require
serious tuning to a particular production facility. Moreover,
such tools and related services are too expensive for SMEs.
Hence there is a need for an easy-to-use optimization tool
that bridges the gap between the real-world problems and
advanced optimization technology. The tool must be easily
customized to most production facilities and it must be
easy-to-use by people that are not experts in optimization.
 FlowOpt is a system that attempts to address the above
problem and bridges the gap between advanced optimization
technology developed at universities and practitioners from
production planning. FlowOpt is a software tool targeted to
discrete manufacturing SMEs. It is intended as a technology
demonstration showing how current optimization techniques
can be used in practice. The system is customizable to a
particular production facility. The users first need to
describe the production workflows for their products. Then
they tell the system what products should be manufactured
and when they should be finished, and the system generates

a feasible production plan/schedule. The plan is visualized
to the user, who can do any modification of the plan. This is
a critical feature, as the users need to have a full control
over the production plans. Based on the generated schedule,
the system can also analyze the company and recommend
how to change it to increase efficiency (for example by
buying a new machine). The human computer interaction is
done via intuitive graphical interface hiding the complexity
of the optimization process. FlowOpt is a student software
development project at Charles University in Prague. The
software itself is a collection of closely interconnected plug-
in modules to the enterprise performance optimization
system MAK€ from Entellexi Ltd. (Barták et al. 2012).
 This paper describes the capabilities and technology
behind the FlowOpt system. We will first introduce the core
modeling concepts, namely the nested workflows extended
by additional constraints. Then we will go through the
production planning process as it is realized in the FlowOpt
system. Finally, we will give more details about the AI
technology used inside the system. The paper is concluded
by the discussion of possible future extensions both from
the application and research perspectives.

Formal Background
FlowOpt is a production planning/scheduling system for
SMEs. Unlike many similar systems that were designed to
optimize production in particular factories, the initial design
concept behind the FlowOpt system was to support various
production facilities. Hence the system must allow the users
to describe the production environment. The FlowOpt
system is built around the concept of workflow that is an
organized collection of activities to achieve some goal. In
our case the goal is the production of certain item and there
are precedence and causal relations between the activities.
Using the idea of workflow gives us the flexibility to
describe virtually any production process and hence the
system can optimize any production facility that can be
modeled there. Note that though there exist other attempts to
generally describe production processes for example using
the traditional planning view via preconditions and effects
(Do et al. 2011). The structure of workflows has the
advantage of better organization of production activities that
is closer to the production view. The additional structural
information within the workflow can also be exploited in
the optimization procedure similarly to exploiting the
structure in hierarchical task networks (HTN). The idea of
exploiting the hierarchical structure of workflows was
independently explored in the JABBAH system where the
Business Process Models are directly translated to HTN
(González-Ferrer et al. 2009).

Nested Workflows
There exist many formal models of workflows such as
BPMN (Business Process Modeling Notation) or YAWL
(Yet Another Workflow Language)1. These are very generic
models that support repetition of parts of the workflow and
many specific constraints between the activities. In the
FlowOpt system we adapted the idea of Nested Temporal
Network with Alternatives (Barták and Čepek 2008).
Temporal Network with Alternatives (TNA) is a directed
acyclic graph with parallel and alternative splitting and
joining of processes that is also known as AND-split and
OR-split (and AND-join, OR-join) in traditional workflow
management systems (Bae et al. 2004). Hence TNA can
describe alternative processes in the style similar to
scheduling workflows with optional activities introduced in
(Beck and Fox 2000) and used also in Extended Resource
Constrained Project Scheduling Problems (Kuster et al.
2007). Nested TNA restricts the structure of TNA in such a
way that each split operation has a corresponding join
operation. This idea was informally described in (Beck and
Fox 2000) and formalized in (Barták and Čepek 2008) and it
seems that it is quite common in real-life workflows (Bae et
al. 2004). This restriction brings a hierarchical structure to
workflows very similar to hierarchical task networks leading

1 http://www.bpmn.org/, http://www.yawlfoundation.org/

Figure 1. Visualization of a nested workflow in the FlowOpt
Workflow Editor (from top to bottom there are parallel, serial, and
alternative decompositions)

to Temporal Planning Networks (TPN) (Kim et al. 2001).
From the manufacturing perspective, the hierarchical
structure resembles the concept of bill of materials.
 In the FlowOpt system we use a slightly modified view of
Nested TNA called a nested workflow. A nested workflow is
obtained from a root task by applying decomposition
operations that split the task into subtasks until primitive
tasks, corresponding to activities, are obtained. Three
decomposition operations are supported, namely parallel,
serial, and alternative decomposition. Figure 1 gives an
example of a nested workflow that shows how the tasks are
decomposed. The root task Chair is decomposed serially
into two tasks, where the second task is a primate task filled
by activity Assembly. The first task Create Parts
decomposes further to three parallel tasks Legs, Seat, and
Back Support. Back Support is the only example here of
alternative decomposition into two primitive tasks with Buy
and Welding activities (Welding is treated as an alternative
to Buy). Naturally, the nested workflow can be described as
a tree of tasks. This is similar to hierarchical task networks
though the nested workflows do not support repetition of
tasks and the number of tasks is fixed there.
 Formally, the nested workflow is a set Tasks of tasks, that
is a union of four disjoint sets: Parallel, Alternative, Serial,
and Primitive. For each task T (with the exception of the
root task), function parent(T) denotes the parent task in the
hierarchical structure. Similarly for each task T, we can
define the set subtasks(T) of its child nodes (subtasks(T) =
{C ∈ Tasks | parent(C) = T}). The tasks from sets Parallel,
Alternative, and Serial are called compound tasks and they
must decompose to some subtasks:
T ∈ (Parallel ∪ Alternative ∪ Serial) ⇒ subtasks(T) ≠ ∅,

while the primitive tasks do not decompose:
T ∈ Primitive ⇒ subtasks(T) = ∅.

The workflow defines one or more processes in the
following way. Process selected from the workflow is
defined as a subset P ⊆ Tasks in the workflow satisfying the
following properties:

 for each task T in the process, that is not a root task, its
parent task is also in the process,
T ∈ P ∧ T ≠ root ⇒ parent(T) ∈ P,

 for each compound task T in the process with a serial or
parallel decomposition, all its subtasks are also in the
process,
T ∈ P ∩ (Serial ∪ Parallel) ⇒ subtasks(T) ⊆ P,

 for each compound task T in the process with the
alternative decomposition, exactly one of its subtasks is
in the process,
T ∈ P ∩ Alternative ⇒ | subtasks(T) ∩ P | = 1.

So far we defined only the hierarchical structure of the
nested workflow, but as Figure 1 shows the nested structure
also defines several temporal constraints. These temporal

relations must hold for all tasks in a single process. Assume
that ST is the start time and ET is the completion time of task
T. The primitive tasks T are filled by activities and each
activity has some duration DT. Then for tasks in certain
process P the following relations hold:

T ∈ P ∩ Primitive ⇒ ST + DT = ET
T ∈ P ∩ (Parallel ∪ Alternative ∪ Serial) ⇒

ST = min{ SC | C ∈ P ∩ subtasks(T) }
ET = max{ EC | C ∈ P ∩ subtasks(T) }.

Notice that the duration of compound task is defined by the
time allocation of its subtasks while the durations of
primitive tasks are defined by the activities. Moreover, for
the serial decomposition we expect the subtasks to be
ordered, say T1, …, Tn, where n is the number of subtasks of
a given task. The following constraints must hold, if the
serial task is included in the process:

∀i = 1,…, n-1: Ei ≤ Si+1
A feasible process is a process where the time variables ST
and ET can be instantiated in such a way that they satisfy the
above constraints. It is easy to realize that if there are no
additional constraints then any process is feasible. The
process defines a partial order of tasks so their start and end
times can be easily set in the left-to-right order while
satisfying all the above constraints.

Extra Constraints
The core nested structure has the nice property that for each
task there exists a feasible process containing that task
(Barták and Čepek 2008). However, the nested structure
may not be flexible enough to describe naturally some
additional relations in real-life processes, for example when
the selected alternative for one task influences the selection
of alternatives in other tasks. Therefore in the FlowOpt we
support specification of extra binary constraints between the
tasks:
§ precedence constraints between any pair of tasks mean

that if both tasks are selected in the process then the
specified temporal ordering must hold,

§ temporal synchronization constraints describe that two
tasks start or end at the same time, or that one task
must start exactly when another task finishes,

§ logical constraints describe the causal relations
between the tasks beyond the nested structure; mutual
exclusion requires that both tasks cannot appear at a
single process, equivalence constraint requires that
either both tasks appear in the same process or none of
them, and implication constraint A ⇒ B requires that if
task A appears in the process then also task B must
appear in the same process.

These constraints must also be satisfied in the feasible
process. Let us now describe them formally for any two
tasks i and j:

 precedence constraint: i, j ∈ P ⇒ Ei ≤ Sj
 start-start synchronization: i, j ∈ P ⇒ Si = Sj
 start-end synchronization: i, j ∈ P ⇒ Si = Ej
 end-start synchronization: i, j ∈ P ⇒ Ei = Sj
 end-end synchronization: i, j ∈ P ⇒ Ei = Ej
 mutex constraint: i ∉ P ∨ j ∉ P
 equivalence constraint: i ∈ P ⇔ j ∈ P
 implication constraint: i ∈ P ⇒ j ∈ P

It is interesting that if these extra constraints are used then
the existence of a feasible process is no more obvious. In
fact, the problem of deciding whether a feasible process
exists for a nested workflow with extra constraints is NP
complete (Barták 2012). The consequence is that when extra
constraints are used then there is no guarantee that there is a
feasible process for each task in the workflow. There might
be such tasks than cannot be used in any feasible process;
for example, the extra precedence constraints may add a
cycle. Therefore, it is useful to verify the workflows and
report such cases to the user (Giro 2007), because the task
that cannot be used in any feasible process indicates a
serious design flaw.

Resources
In addition to duration, each activity is also accompanied by
a set of resources that it requires for processing. The
resource can be a machine, a tool, or a worker; we do not
use any particular restriction on the type of resource. The
activity must be allocated to all resources that it requires.
The FlowOpt system currently supports only so called unary
(disjunctive) resources. Unary resource is a resource that
can process at most one activity at any time. We assume the
activities to be non-interruptible, that is, when we start
processing the activity, we must continue until its finished.
Let res(T) be the set of resources required by a primitive
task T (activity inside it) and S be a set of tasks to be
scheduled. Then the limited capacity of the resource can be
described formally using the disjunctive constraint:
i, j ∈ S ∩ Primitive ∧ res(i) ∩ res(j) ≠ ∅ ⇒ Ei ≤ Sj ∨ Ej ≤ Si.
This constraint basically says that if two primitive tasks
share a resource then these tasks must be ordered somehow,
either i before j or vice versa. If these constraints are
satisfied by tasks from S then we say that S is resource
feasible. We use the set S instead of P because we now
assume a set of feasible processes selected from the
workflows to be allocated to shared resources. This is the
scheduling problem that the FlowOpt system solves: we
have a set of workflows at the input and the task is to select
a feasible process Pi for each workflow i such that the set
S = ∪i Pi is resource feasible. This problem is similar to
Resource Constrained Project Scheduling Problem (RCPSP)
with the extension that we need to select the tasks to be
scheduled from the workflows.

Objectives
Users are usually looking for good schedules not only for
feasible schedules. There exists many criteria to evaluate
quality of schedules; makespan is probably the most famous
one though not the most practically relevant. In the current
version of FlowOpt we use a criterion called on-time-in-full.
The user selects the set of workflows to be scheduled, the
start time, and the due date for the schedule. It is also
possible to specify whether the workflows can finish earlier
or later with respect to the due date and in such a case what
penalty cost is paid (per time unit). The task is to find a
resource feasible schedule with the minimal penalty.

FlowOpt Functionality
One of the primal tasks of the FlowOpt system is to simplify
problem modeling for the end users by hiding the
complexity of mathematical formalism while guiding the
users to design correct and complete models. The FlowOpt
system is a collection of five modules that are responsible
for individual steps in the process of production
optimization. The general purpose of the FlowOpt system is
to provide a streamlined feature-rich environment where the
user can do the following activities in a simple, efficient,
and user-friendly way:
1. specify how a particular product is manufactured, i.e.,

define a workflow describing the manufacturing of a
single product,

2. describe the work order from the customers – the work
order is specified by the products, their quantities, the
start time of production, and the desired due date,

3. generate a schedule for the order – the schedule is a
complete description of which tasks should be
performed, when they should be performed, and what
resources they should use; executing such a schedule
results in efficient fulfilling of the work order,

4. display the generated schedule in the form of a Gantt
chart and allow the user to modify it interactively,

5. analyze the generated schedule and suggest
opportunities for improvements of the factory.

FlowOpt is not a standalone product. It is built on top of the
commercial system MAK€ that is a performance prediction
and optimisation tool for SMEs (Barták et al., 2012). MAK€
already provides tools such as Workflow Editor, Optimizer,
and Gantt Viewer, and the goal of FlowOpt is to
demonstrate a new functionality for these modules. By
building the FlowOpt system on top of MAK€, we can
exploit some existing functionality such as the database for
storing workflows and schedules and the resource and
activity manager. Hence we assume that we already have a
set of primitive activities that the factory can process and a
set of available resources (people, machines, tools, etc.). In

this section we will describe the features of individual
FlowOpt modules from the user perspective.

Workflow Editor
Describing the workflow structure is the first step in
specifying how the factory works (after describing the
primitive production activities and resources that are taken
from the MAK€ system). Visual editing of workflows is not
a new idea, YAWL (van der Aalst and Hofstede 2005) and
MAK€ (Barták et al. 2012) already provide graphical editors
for describing workflows. These editors look like drawing
programs, where the user puts activities on a virtual board
and connects them via constraints that describe the flow of
material (precedence constraints) and other relations
between the activities. This is a very flexible process and
virtually any workflow can be drawn this way. However, the
tradeoff is that the user is also responsible for everything
starting from the arrangement of items on the board to make
the workflow visually acceptable and concluding with
ensuring that the internal structure of the workflow is
flawless. Though the verification can sometimes be done
automatically after the workflow is drawn, we believe that a
much better approach is guiding the user to draw as flawless
workflows as possible.
 As we mentioned at the beginning we decided to go in the
“iPhone” way with a slightly restricted flexibility but with
much higher user comfort in modeling the workflows. First,
rather that drawing any graph to describe the workflow and
then checking whether the graph corresponds to some
specific structure (such as the nested structure) we guide the
user to design the workflows only with the nested structure.
This can be done be constructing the workflow using the
decomposition operations described in the previous section.
Basically, when designing a new workflow, we start with a
root task and the user can apply any of the three
decomposition operations to this task and to the obtained
subtasks. It is also possible to drag an action from the list of
actions to the non-decomposed task to include the action in
the workflow. We expect that the list of actions with their
durations and required resources is given. Actually, we use
the set of actions from the underlying MAK€ system.

 The top-down approach is useful, if the users have
already quite an organized view of what they are doing. This
is not always the case in SMEs where they need first to
organize their processes into workflows. Hence, the
FlowOpt Workflow editor also supports a bottom-up
approach to building workflows that is closer to the
traditional workflow editors. The users put actions on the
board but rather than connecting them with lines, the users
are grouping them. Grouping is a reverse operation to
decomposing and the actions can be grouped to form a
sequence, to form a parallel task, or to form a set of
alternatives. This approach seems more appropriate when
describing existing processes, and it is a form of knowledge
extraction. This way the user is guided to describe some
structure of the workflow. The top-down and bottom-up
approaches can be used together; the workflow designed by
the bottom-up approach can be, for example, placed to an
existing task in the hierarchical structure by the drag-and-
drop operation. The only restriction is that at the end we
should obtain a single workflow that is inside the root task.
Whether the workflow is designed by the decomposition
operations or composed from the activities is up to the user.
The editor also takes care of the alignment of sub-tasks in
the tasks and of their spatial organization on the board. The
user only focuses on the structural organization of the
operations into tasks. Figure 1 shows how the workflow
looks like in the editor if the workflow is organized left-to-
right (top-down organization is also possible).
 All above decomposition and composition operations can
be done using intuitive drag-and-drop operations. The extra
binary constraints, described in the previous section, can
also be added using drag-and-drop operations. The user just
draws a line connecting one task with another task and
selects a particular type of the constraint. Adding these extra
constraints could introduce flaws into the workflow. The
editor can detect some of these flaws immediately and
forbid adding the constraint to the workflow. However, as
the problem of workflow verification is NP-complete
(Barták 2012) it is not possible to detect all flaws during the
workflow design. Therefore the editor includes a function
that can verify the workflow on demand. Though the
process of workflow verification is quite complex
(Rovenský 2011), we succeeded to hide this complexity
from the user, and the verification is as easy as pushing a
button in GUI (graphical user interface). If any flaws are
found, they are reported to the user and also highlighted in
the visual model of the workflow together with the textual
description of the flaw (Figure 2).
 As the FlowOpt Workflow Editor is build on top of the
MAK€ system, which has its own workflow editor, it is
possible to import existing workflows from MAK€ to the
FlowOpt system. This process requires the original
unstructured workflows to be converted to the nested
structure (Barták and Čepek 2008), which is not always

Figure 2. Highlighting the found flaws after workflow verification

possible, so only nested workflows can be imported. This
way we allow the customers to easily switch to the FlowOpt
system. JABBAH (González-Ferrer et al. 2009) provided
similar functionality with the more general BPM workflows
converted to the HTN formalism.

Order Manager and Optimizer
The workflows describe what products can be made in the
factory and how they are produced. In the AI planning
terminology, they describe the planning domain. To obtain
an actual production plan the user should select the items to
be produced and the time horizon when the production
should happen. Recall that each item corresponds to one
workflow, so the user basically selects the workflows and
specifies how many times each workflow appears in the
schedule (how many items will be produced). In the AI
planning terminology it corresponds to selecting the tasks to
be achieved. Additionally, the user describes the start time,
that is, the earliest time when any operation can start, and
specifies the due date when the production should be
finished. The due date can be set as a hard deadline that
cannot be exceeded or as a soft deadline where exceeding it
is penalized by some fix cost per time unit. In the second
case we are solving an optimization problem. These data are
then passed to the optimizer that produces a production
plan, where operations are selected from the workflows and
allocated to particular times and resources. This is a
scheduling problem with some planning component of
selecting alternatives from the workflows. The Optimizer is
basically trying to find some production plan, and then to
improve its quality based on the earliness and lateness cost.
The status of the planner is reported to the user using a
familiar progress bar indicating whether the Optimizer has
already found a solution and is improving it, or is still
looking for the first feasible production plan. The user can
interrupt the Optimizer at any time and obtain the best
production plan found so far (if any). This is an important
feature as the users can trade-off the plan quality for the
runtime.

Gantt Viewer
The generated schedule (production plan) can be visualized
in the Gantt Viewer. This module provides both traditional
views of the schedule, namely the task-oriented and
resource-oriented views. Gantt charts are a classical way
how to visualize schedules so let us focus on the unique
features of the FlowOpt Gantt Viewer. First, the Gantt
Viewer has full access to the workflow specification, not
only to the production plan outputted from the Optimizer.
Having this complete information, the Gantt Viewer can

visualize the alternatives that were not selected by the
Optimizer. It also allows users to modify any aspect of the
production plan using drag-and-drop techniques. The user
can move activities to different times and resources and
change their duration. It is even possible to select another
alternative than the one suggested by the Optimizer.
Because the Gantt Viewer is aware of all the constraints
originating from the workflow specification, it can also
highlight violation of any of these constraints. Obviously,
the production plan generated by the Optimizer is flaw-less
and no constraint is violated, but the user modifications may
introduce flaws such as breaking a precedence constraint or
exceeding the capacity of some resource. The Gantt Viewer
highlights these flaws so it is easy to spot them (Figure 3).
 Another unique feature of the Gantt Viewer is the
capability to repair the schedule. Currently the system
repairs the schedule by shifting activities in time while
trying to keep the production plan as close as possible to the
original plan (Barták and Skalický, 2009). Similar to
verification, this complex process of re-scheduling is hidden
from the user and it is initiated by pressing a single button in
GUI.

Analyzer
The final module is Analyzer that is responsible for
suggesting improvements of the production process. The
Analyzer takes an existing schedule and finds bottlenecks in
the schedule such as an activity that delays the delivery of
the final item. The bottlenecks are presented to the user who
may select some of them for further processing or even add
additional bottlenecks that were not identified automatically.
For each selected bottleneck, the analyzer suggests how to
resolve it – this could be for example by buying a new
resource or by decreasing the duration of certain activities
(for example by staff training). This is called an
improvement project and again the user can add them
manually. In the third step, the improvement projects are
evaluated using the Optimizer. The goal of evaluation is
finding the real value of the improvement project, that is,
how much it can improve the current schedule, and also
finding possible relations between the improvement
projects. For example, the system can detect that if two
improvement projects are applied together then the overall
improvement is much better than the sum of improvements
of the individual projects. After manual adding of cost to
each improvement project the system selects a subset of
improvement projects such that their combination brings the
best overall improvement of the production process under
the given constraints such as a limited budget to realize the
improvement projects.

 The FlowOpt Analyzer is a form of mixed-initiative
decision support system where the user can ask the system
to provide solutions as well as to evaluate proposals
suggested by the user. In each step of the improvement
process, the system generates some suggestions, such as the
improvement projects, the user can modify them or even
manually add new improvement projects, and ask the
system to evaluate only the selected projects and then build
a portfolio from them. It should be said that the Analyzer is
not improving the schedule based on the fixed problem
specification; this is the task of the Optimizer. The Analyzer
modifies the problem specification to obtain better
schedules, which is a unique feature not present in other
systems.

FlowOpt Technology at Glance
FlowOpt is a complex system that combines advanced user
interfaces with sophisticated optimization technology.
Surprisingly, the most complex algorithms are the least
visible components in the user interface. In some sense this
was the intention of the FlowOpt system that is supposed to
bring the advanced techniques to regular users.
 In this section we will focus on the technology that is
behind the FlowOpt system. First, it is important to say that
the FlowOpt system is a general production planning system
that is supposed to solve any particular problem formulated
in the provided formalism. Hence, it is not possible to use
ad-hoc scheduling algorithms and we need a more general
solving technology. We decided to use constraint
satisfaction as it can be used for any combinatorial
optimization problem while it can be customized for
particular problems by choosing the right constraint model.
In fact, the constraint satisfaction techniques are used in
every module of the FlowOpt system.

Workflow Verification
One of the tasks of the FlowOpt Workflow Editor is
verification of workflows, that is, checking that every task
can be used in some process selected from the workflow.
This is guaranteed for the nested workflows, but when the
extra constraints are added, the verification problem
becomes NP-complete (Barták, 2012). Hence there is a little
hope for the polynomial algorithm so we developed a
verification technique similar to one from (Bi and Zhao
2004) but using constraint satisfaction. Briefly speaking, we
model the problem of selecting a process from the workflow
as a constraint satisfaction problem. Each task is modeled
using a Boolean validity variable indicating whether the task
is selected to the process or not. There are also temporal
variables describing the start and end times of tasks
(resource constraints are not assumed during verification).
The constraints are derived directly from the description of
the workflow (see the formal model). Now the problem is to
find out if for each validity variable, there exists a solution
to the above-sketched CSP, where the validity variable is set
to value true. This corresponds to finding a valid process for
a given task. As we are using some specific temporal
consistency techniques, namely Incremental Full Path
Checking (Planken, 2008), and also a specific search
strategy that remembers, if any validity variable was set to
true, so there is no need to check it again, we decided to
implement the verification algorithm from scratch rather
than using an existing constraint solver (Rovenský 2011).

Scheduling
The Optimizer solves a scheduling problem with optional
activities, so it was again natural to use constraint
satisfaction. For the Optimizer we decided to use an existing
constraint satisfaction package, namely ILOG CP
Optimizer, because there is a strong support for scheduling
constraints (Laborie, 2009). Moreover, the CP Optimizer
already supports so-called optional activities and the

Figure 3. The task view of the FlowOpt Gantt Viewer with two highlighted constraints that are violated (exceeded capacity of resource Dave Good
and broken precedence constraint).

hierarchical structure of tasks (Laborie and Rogerie, 2008).
Hence we can fully exploit the existing constraints in the CP
Optimizer and its built-in search strategy; no special solving
algorithm was used. The result of scheduling is
identification of selected operations that are allocated to
precise time and required resources. Solving the
optimization problem is realized via the branch-and-bound
procedure where the initial feasible solution is generated
first and better solutions are generated next using the same
mechanism. The innovative part here is fully automated
generation of the constraint model from the description of
workflows, activities, and resources using the techniques
from (Barták et al. 2010).

Re-Scheduling
The Gantt Viewer also contains some form of scheduling
when we need to repair the violated constraints after manual
modification of the schedule. We extended the re-
scheduling algorithm proposed in (Barták and Skalický
2009) to cover all the constraints from the current problem.
Again, the technology is based on constraint satisfaction,
namely temporal consistency techniques are used (Planken
2008). Note that we start with an existing schedule, where
some constraints are violated. We first relax the assignment
of temporal variables, and simply by temporal propagation
we try to find a feasible schedule. This gives as temporal
windows showing where particular activities can be
allocated. We then try to allocate each activity to its original
time, if the time is inside the corresponding time window
(otherwise, the boundary value of the interval which is
closest to the original time is used). This may violate some
constraints, so we try to shift the activities in time to repair
locally these constraints. This second process of activity
shifting is identical to the algorithm in (Barták and Skalický
2009) but now the temporal constraints are assumed.

Analyzer
Finally, the Analyzer uses the ideas of critical path to
discover weak parts of the schedule. Briefly speaking, we
find the activities that are responsible for delay of some
process. For these activities, we try to decrease the delay,
which can be done by shortening the duration of the activity
or by adding a new resource where the activity can be
processed. Currently, we use ad-hoc rules to suggest the
improvements (overloaded resource → add a new resource).
The improvements are then applied to the scheduling model
and the Optimizer generates a new schedule, whose cost is
used to evaluate the improvement. Some interactions
between the possible improvements are also discovered
during this process. For example, we can find that if two
improvements are applied together then their effect is
annihilated. From the set of possible improvements, a subset
with the best overall cost is selected by using the techniques

of project portfolio optimization. Again, the problem is
modeled as a constraint satisfaction problem and ILOG CP
Optimizer is used to solve it. Briefly speaking Boolean
variables are used to describe whether an improvement is
selected and constraints describe the relations between the
improvements found during the evaluation stage. A standard
branch-and-bound procedure is used to do optimization.

Conclusions
The FlowOpt system is intended to demonstrate that non-
experts in optimization can use advanced optimization
technology. Hence a lot of effort was put in the design of an
intuitive user interface. One of its design principles is hiding
the formal modeling and algorithmic complexity from the
user while preserving the full flexibility. The most complex
algorithms such as workflow verification, scheduling, and
schedule repair are completely hidden from the user – we
call it a “press-button” approach. The user presses a button
in GUI and the system fully automatically solves the
problem. However, from our experience the users do not
like black-box solutions and they require a full control of
the system. This is exactly what we offer in the FlowOpt by
allowing the users to manually influence every step of the
production planning process starting with the design of
workflows and ending with the possibility to modify the
generated production plans. Hence despite automating many
routine tasks, the users still keep control of the system. In
summary the most innovative features of the FlowOpt
system includes:

 an editor of structured workflows with fully automated
verification,

 a generic scheduler based on constraint model that is
generated automatically from the problem specification

 an interactive Gantt Viewer connected to the problem
specification and supporting manual plan modification
with automated correction of violated constraints

 a novel concept of suggesting improvements of the
production environment based on schedule analysis.

The FlowOpt system is meant as a demonstration of novel
user-friendly approach to production scheduling. For
applicability in real life environments, it requires some
extensions especially in the modeling of resources. Though
unary resources are probably the most frequent in practice it
is still important to support resources with capacity greater
than one. Also, modeling availability of resources via
calendars seems very important for customers as well as
modeling interruptible activities. To support these features,
the Optimizer needs to be modified and in part also the
Gantt Viewer. The schedule repair is currently realized via
shifting activities in time, but there are other opportunities
like re-allocating them to a different resource or event trying
another alternative from the workflow. The current

Analyzer shows the first steps in automated analysis of the
enterprise and generating suggestions for improvement of
the production facility. This is still an open research area
with many opportunities. The final major challenge is on the
other side of the planning process – automated construction
of structured workflows from the description of primitive
operations (knowledge engineering).

Acknowledgments. The research and development is
supported by the Czech Science Foundation under the
contract P202/10/1188 and by EU Funding Scheme
Research for the benefit of SMEs: FP7-SME-2007-1 under
the project ValuePOLE (contract 222218). We thank the
reviewers for valuable comments and suggestions.

References
Bae, J.; Bae, H.; Kang, S.-H.; Kim, Z.; 2004. Automatic Control of
Workflow Processes Using ECA Rules. IEEE Transactions on Knowledge
and Data Engineering, 16(8), 1010-1023.
Barták, R.; 2012. On Complexity of Verifying Nested Workflows with
Extra Constraints. Proceedings of 4th International Conference on Agents
and Artificial Intelligence (ICAART 2012), Volume 1, pp. 346-354,
SciTePress.
Barták, R. and Čepek, O.; 2008. Nested Precedence Networks with
Alternatives: Recognition, Tractability, and Models. In Artificial
Intelligence: Methodology, Systems, and Applications (AIMSA 2008).
LNAI 5253, Springer Verlag, pp. 235-246.
Barták, R.; Little, J.; Manzano, O.; Sheahan, C.; 2010. From Enterprise
Models to Scheduling Models: Bridging the Gap. Journal of Intelligent
Manufacturing, 21(1), 121-132, Springer Verlag.
Barták, R.; Sheahan C.; Sheahan, A.; 2012. MAK€ – A System for
Modelling, Optimising, and Analyzing Production in Small and Medium
Enterprises. In Proceedings of 38th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM). LNCS
7147, Springer Verlag, pp. 600-611,
Barták, R. and Skalický, T.; 2009. A local approach to automated
correction of violated precedence and resource constraints in manually
altered schedules. In Proceedings of MISTA 2009: Fourth Multidisciplinary

International Scheduling Conference: Theory and Applications, Dublin,
Ireland, pp. 507-517.
Beck, J. Ch. and Fox, M.S.; 2000. Constraint-directed techniques for
scheduling alternative activities. Artificial Intelligence, 121, 211-250.
Bi, H. H.; Zhao, J. L.; 2004. Applying Propositional Logic to Workflow
Verification. Information Technology and Management, 5(3-4), 293-318.
Do, M.; Okajima, K.; Uckun, S.; Hasegawa, F.; Kawano, Y.; Tanaka, K.;
Crawford, L.; Zhang, Y.; Ohashi, A.; 2011. Online Planning for a Material
Control System for Liquid Crystal Display Manufacturing. Proceedings of
the Twenty-First International Conference on Automated Planning and
Scheduling (ICAPS) AAAI Press, pp. 50-57.
Giro, S.; 2007. Workflow Verification: A New Tower of Babel. In AIS-
CMS International Modeling and Simulation Multiconference, Buenos
Aires, Argentina.
González-Ferrer, A.; Fernández-Olivares, J.; Castillo, L.; 2009. JABBAH:
A Java Application Framework for the Translation Between Business
Process Models and HTN. Proceedings of the Third International
Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS). Thessaloniki, Greece, pp. 28-37.
Kim, P.; Williams, B.; Abramson, M.; 2001. Executing Reactive, Model-
based Programs through Graph-based Temporal Planning. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI), pp.
487-493.
Kuster, J.; Jannach, D.; Friedrich, G.; 2007. Handling Alternative Activities
in Resource-Constrained Project Scheduling Problems. In Proceedings of
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-
07), pp. 1960-1965.
Laborie, P.; 2009. IBM ILOG CP Optimizer for Detailed Scheduling
Illustrated on Three Problems. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-
AI-OR), LNCS 5546, Springer Verlag, pp. 148-162.
Laborie, P.; Rogerie, J.; 2008. Reasoning with Conditional Time-intervals.
In Proceedings of the Twenty-First International Florida AI Research
Society Conference (FLAIRS), AAAI Press, 2008, pp. 555-560.
Planken, L.R.; 2008. New Algorithms for the Simple Temporal Problem.
Master Thesis, Delft University ofTechnology.
Rovenský, V.; 2011. Workflow Modelling. Master Thesis, Charles
University in Prague.
van der Aalst, W.; Hofstede, A. H. M. t.; 2005. Yawl: Yet another
workflow language. Information Systems, 30(4), 245-275.

