
EUROPA: A Platform for AI Planning, Scheduling, Constraint Programming, and
Optimization

Javier Barreiro∗, Matthew Boyce∗, Minh Do∗, Jeremy Frank†, Michael Iatauro∗

Tatiana Kichkaylo‡, Paul Morris†, James Ong+, Emilio Remolina+, Tristan Smith∗, David Smith†
∗ SGT Inc., NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035

† NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035
+ Stottler Henke Associates, Inc., 951 Mariners Island Blvd., Suite 360, San Mateo, CA 94404

‡ Decision Systems, USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292

Abstract
EUROPA is a class library and tool set for building
and analyzing planners within a Constraint-based
Temporal Planning paradigm. This paradigm has
been successfully applied in a wide range of practi-
cal planning problems and has a legacy of success
in NASA applications. EUROPA offers capabilities
in 3 key areas of problem solving: (1) Representa-
tion; (2) Reasoning; and (3) Search. EUROPA is a
means to integrate advanced planning, scheduling
and constraint reasoning into an end-user applica-
tion and is designed to be open and extendable to
accommodate diverse and highly specialized prob-
lem solving techniques within a common design
framework and around a common technology core.
In this paper, we will outline the core capabilities
of this open-source planning & scheduling frame-
work. While EUROPA is the complete planning
and scheduling software suite, we will pay special
attention to the aspects that are relevant to knowl-
edge engineering: modeling support, embedding a
planner into an end-user application, and plan visu-
alization and analysis.

1 Introduction
EUROPA (Extensible Universal Remote Operations Planning
Architecture) is a class library and tool set for building plan-
ners within a Constraint-based Temporal Planning paradigm
[Frank and Jonsson, 2003]. Constraint-based Temporal Plan-
ning and Scheduling is a paradigm of planning based on an
explicit notion of time and a deep commitment to a constraint-
based formulation of planning problems. This paradigm has
been successfully applied in a wide range of practical plan-
ning problems and has a legacy of success in NASA applica-
tions including:

• Observation scheduling for the Hubble Telescope
[Muscettola et al., 1998]

• Autonomous control of DS-1 [Muscettola et al., 1997].

• Ground-based activity planning for MER [Ai-Chang et
al., 2004].

• Autonomous control of EO-1 [Tran et al., 2004].

EUROPA is now at version 2.6 and is the succes-
sor of the original EUROPA which in turn was based
upon HSTS [Muscettola et al., 1998]. It has been
made available under an open-source license. The source
code and extensive documents on EUROPA are available
at: http://code.google.com/p/europapso/. EUROPA’s major
strengths as an embeddable planning toolkit are: (1) flexi-
bility in integrating with client applications; (2) proven track
record; (3) open-source software license; and (4) online doc-
ument repository with detailed guidelines and a variety of ex-
amples in different domains. As a Planning & Scheduling
Knowledge Engineering tool, it has components to support
the modeling and plan analysis processes.

As a complete Planning & Scheduling platform, EUROPA
offers capabilities in 3 key areas of problem solving:

1. Representation: EUROPA allows a rich representation
for actions, states, resources and constraints that allows
concise declarative descriptions of problem domains and
powerful expressions of plan structure. This representa-
tion is supported with a high-level object-oriented mod-
eling language for describing problem domains and data
structures for instantiating and manipulating problem in-
stances.

2. Reasoning & Inference: Algorithms are provided
which exploit the formal structure of problem repre-
sentation to enforce domain rules and propagate conse-
quences as updates are made to the problem state. These
algorithms are based on logical inference and constraint-
processing. Specialized techniques for reasoning about
temporal constraints and resource included in EUROPA
are particularly useful to deal with real-life problem do-
mains.

3. Search: Problem solving in EUROPA requires search.
Effective problem solving typically requires heuristics
to make search tractable and to find good solutions. EU-
ROPA provides a framework for integrating heuristics
into a basic search algorithm and for developing new
search algorithms.

One of EUROPA’s key development goals is to streamline
the process of integrating advanced planning, scheduling and
constraint reasoning into an end-user application. EUROPA
is not a specific planner or scheduler. Rather it is a frame-
work for developing specific planners and schedulers. It is

designed to be open and extendable to accommodate diverse
and highly specialized problem solving techniques within a
common design framework and around a common technol-
ogy core.

EUROPA is unconventional in providing a separate Plan
Database (i.e., set of base components to represent a partial
or complete lifted partial order temporal plan) that can be in-
tegrated into a wide variety of applications. This reflects the
common needs for representation and manipulation of plan
data in different application contexts and different problem
solving approaches. Possible approaches include:

• A batch planning application where an initial state is in-
put and a final plan is output without any interaction with
other actors.

• A mixed-initiative planning application where human
users interact directly with a plan database but also em-
ploy an automated problem solver to work on parts of
the planning problem in an interleaved fashion.

• An autonomous execution system where the plan
database stores the plan data as it evolves in time, be-
ing updated from data in the environment, commitments
from the executive, and the accompanying automated
solver which plans ahead and fixes plans when they
break.

While EUROPA is a large and complex planning &
scheduling framework which provides many reasoning ca-
pabilities, in this paper we pay extra attention to knowledge
engineering for planning aspects such as: modeling support,
embedded planner invocation and configuration, and plan vi-
sualization and analysis. To emphasize its flexibility and ro-
bustness, we will include examples from different classes of
problems such as resource scheduling, simple planning do-
mains (BlocksWorld), realistic NASA applications (Plane-
tary Rovers and Crew Planning), and CSP benchmarks (N-
Queens). All those examples are included in the open-source
distribution of EUROPA.

For the rest of this paper, we will first provide in Section 2 a
brief background on EUROPA’s architecture and its modeling
and reasoning capabilities. We then provide a short guide in
Section 3 on how to use EUROPA in the most effective way.
Section 4 describes EUROPA’s knowledge engineering tools
and we illustrate its KE capabilities with a list of simple ex-
amples in Section 5. We then list the NASA and non-NASA
projects that have used EUROPA. We finish the paper with a
brief discussion of related work and discussion of our product
roadmap for future releases of EUROPA.

2 Technical Background
In this section, we will start with an introduction to EU-
ROPA’s main modeling language with concentration on its
modeling capabilities. We then follow with a brief descrip-
tion on EUROPA architecture and its key components. This
will set the stage for subsequent sections on knowledge engi-
neering tools that are provided as part of the EUROPA distri-
bution to assist with both early (modeling assistant) and late
(plan execution, visualization, and analysis) KE phases.

2.1 Modeling in NDDL
EUROPA’s main input modeling language is the New Do-
main Definition Language (NDDL) (pronounced ‘noodle’),
a domain description language for constraint-based plan-
ning and scheduling problems. NDDL can describe a num-
ber of concepts based on Variables and Constraints 1. The
NDDL representation includes state and activity descrip-
tions, as is common in planners using traditional modeling
languages like the Planning Domain Definition Language
(PDDL) [Gerevini et al., 2009; Hoffmann and Edelkamp,
2005]. However, unlike PDDL, NDDL uses a state variable-
value formalism. EUROPA thus takes its heritage from plan-
ning formalisms like IxTeT [Ghallab and Laruelle, 1994] and
SAS+ [Jonsson and Bäckström, 1998]. EUROPA state vari-
ables are called timelines, and the values of timelines are se-
quences of states. States are temporally extended predicates,
and consist of a proposition and a list of parameters, which by
default includes the start, end and duration times. Timelines
are totally ordered sequences of states; hence, a timeline can
be in only one state at any instant. The final component of a
NDDL model is a set of domain rules (also known as compat-
ibilities) that govern the legal arrangements of states on, and
across, timelines. These domain rues are logical implications
asserting that if a timeline is in a state, then other timelines
must be in one of a set of compatible states. Domain rules
can incorporate explicit constraints on the parameters of the
states. EUROPA provides a library of such constraints, and
this library can be extended if new constraints are needed.

There are several examples of NDDL for well known
planning and CSP domains such as Blocksworld, 8-Queens,
and RCPSP available at the EUROPA website.

The NDDL Transaction Language: NDDL includes
procedural extensions, referred to as the NDDL Transaction
Language, to operate on the partial plan and thus initialize or
modify a partial plan. A design goal of the NDDL transaction
language is to provide syntax and semantics closely related
to the use of NDDL elsewhere for class, predicate and
rule declaration. However, the NDDL transaction language
pertains exclusively to run-time data (as opposed to the
problem domain abstraction that is stated through other
NDDL elements). It is referred to as a transaction language
since a set of statements in this language form a procedurally
executed sequence of atomic operations on the plan database,
which stores an instance of a partial plan. Each statement
of the language is thus directly translated into one or more
operations available through EUROPA’s client interface. The
NDDL transaction language has many applications. The
most common one is the construction of an initial partial plan
as an input to a solver. A second important application is to
log transactions on the plan database for later replay. This
is useful for copying a database, and for reproducing a state

1A complete NDDL Reference guide with exam-
ples is available at: http://code.google.com/p/europa-
pso/wiki/NDDLReference and the NDDL grammar
guide is available at: http://code.google.com/p/europa-
pso/source/browse/PLASMA/trunk/src/PLASMA/NDDL/
base/antlr/NDDL3.g

class LightBulb extends Timeline
{

predicate On {}
predicate Off {}

}

class LightSwitch extends Timeline
{

LightBulb myBulb ;

LightSwitch(LightBulb b)
{

myBulb = b;
}

action turnOn { duration=1; }
action turnOff { duration=1; }

}

LightSwitch::turnOn
{

// Bulb must be Off to be turned On
met by(condition object.myBulb .Off);

// Must be turned on through the switch
meets(effect object.myBulb .On);

}

LightSwitch::turnOff
{

// Bulb must be On to be turned Off
met by(condition object.myBulb .On);

// Must be turned off through the switch
meets(effect object.myBulb .Off); }

Figure 1: LightBulb example NDDL model file

LightBulb bulb1 = new LightBulb();
LightSwitch switch1 = new LightSwitch(bulb1);

// At time 0, the bulb is on
fact(bulb1.On initialCondition);
eq(initialCondition.start,0);

// We want the bulb to be off by time 10
goal(bulb1.Off goal1);
lt(0,goal1.start);
lt(goal1.start,10);

Figure 2: LightBulb example NDDL problem instance: turn-
ing the light OFF

EUROPA Kernel

Rule	
Engine	 Solvers	 Plan	

Database	
Constraint	
Engine	

Client	 API	

Built-in Extensions

Temporal	
Network	

Resources	
Management	

Chronological	
Backtracking	

Solver	

Constraint	
Library	

Modeling	
Language	

ImplementaDon	
(NDDL,	 ANML)	

Client	
ApplicaDon	

Client	
ApplicaDon	

Client	
ApplicaDon	

Client	
ApplicaDon	

Model	
Interpreter	

EUROPA Framework

Figure 3: EUROPA Architecture

found through planning in a direct manner without having
to search. It is also a potentially very useful integration
mechanism for pushing updates to the plan database from
external systems.

2.2 EUROPA’s Architectural Components
Figure 3 shows EUROPA’s main architectural components.
Keeping in mind that EUROPA is a framework, not an appli-
cation, the components are arranged according to their rela-
tively static structural role, which is determined by their re-
sponsibilities as explained below. The runtime relationships
between this modules and how they interact in detail to assist
problem solving is beyond the scope of this paper, [Rajan et
al., 2012] covers these aspects in a good amount of detail

The deepest layer in Figure 3 depicts EUROPA’s ker-
nel, which offers fundamental representation, reasoning,
modeling and search capabilities that can be configured,
extended and customized to create planning and scheduling
applications.

Constraint Engine: is the nexus for consistency man-
agement. It provides a general-purpose component-based
architecture for handling dynamic constraint networks. It
deals in variables and constraints. It includes an open prop-
agation architecture making it straightforward to integrate
specialized forms of local and global constraint propagation.

Plan Database: adds higher levels of abstractions for tokens
and objects and the interactions between them. This is the
code embodiment of the EUROPA planning paradigm. It
supports all services for creation, deletion, modification
and inspection of partial plans. It maintains the dynamic
constraint network underlying a partial plan by delegation to
the Constraint Engine and leverages that propagation infras-

tructure to maintain relationships between tokens and objects.

Rules Engine: provides the implementation of domain rules
described in a problem model. As described above, domain
rules are relationships between predicates that represent
actions and states in a EUROPA plan. For instance, in the
Light model above, there are domain rules stated between
a LightSwtich::turnOn action and its corresponding Light-
Bulb::Off precondition and LightBulb::On effect. The Rules
Engine component ensures that when a LightSwitch::turnOn
action is added to the plan, a requirement is posted for the
plan to contain its precondition and effect in a way that
satisfies temporal and other constraints stated in the model.

Solvers module: provides abstractions to support search
in line with the EUROPA planning approach. It includes
a component-based architecture for Flaw Identification,
Resolution and heuristics2.

Model Interpreter: provides an implementation so that the
functionality in the other EUROPA kernel modules can be
exercised through a run-time interpreter. This interpreter
implementation can be used as a target for parsers of different
modeling languages such as NDDL and ANML.

The next layer in Figure 3 depicts important extension
modules that have been found to be useful in dealing
with real life domains and are therefore bundled with the
EUROPA distribution. These modules were built using the
exact same mechanisms that are available to all EUROPA
users for building their own specialized modules on top of
the EUROPA kernel. They are:

Temporal Network module: provides specialized algo-
rithms and data structures to support efficient propagation of
temporal constraints and detecting and maintaining temporal
consistency.

Resources Management module: provides specialized
algorithms and data structures to support metric resources
(e.g. battery, power bus, disk drive).

NDDL/ANML modules: provides parsers for the NDDL
and ANML [Smith et al., 2008] languages. These modules
define the mapping from the language to the data structures
provided by the Model Interpreter module and through it
interface to all of the modules in the EUROPA kernel (in
the next section, we will discuss Eclipse modeling tools
that support creating and debugging models using these
languages).

Client API : The client API exposes the functionality of the
EUROPA kernel and built-in modules in a concise and safe
manner so that client applications can be easily built in C++

2EUROPA main planning algorithm follows the lifted partial-
order planning framework and thus it has several main flaw types:
(1) open condition; (2) (temporal) threat; and (3) unbounded vari-
able.

and Java.

From an application developers view-point, the com-
ponents of the most interest are: Modeling Language
Implementation (especially NDDL), Client API to the
Solvers, and the UI & Eclipse tools (which we will explain
shortly). These components address modeling, access
to the problem solving mechanism and troubleshooting
respectively. Other modules will be explored in the context
of making customized extensions.

3 Using EUROPA

There are several different ways in which EUROPA can be
used to support solving a planning & scheduling or CSP
problem: (1) embed EUROPA within the client application;
(2) using PSDesktop, a Java Swing UI Framework; and (3)
utilizing the provided Eclipse plugins. For the rest of this
section, we will outline those three different approaches and
provide some examples.

Embed EUROPA in an Application: EUROPA provides a
script called makeproject that will generate C++ and Java ap-
plications that embed EUROPA, along with a simple NDDL
model and initial-state files that users can then modify for
their own purposes. This allows the users to perform the full
application cycle:

1. Initialize EUROPA

2. Load/Modify model and initial state descriptions

3. Invoke a solver

4. Extract plan results from the Plan Database

5. Repeat steps 2-4 as many times as needed

6. Shutdown EUROPA

The recommended way to use EUROPA in the steps de-
scribed above is to utilize the PSEngine C++ or Java inter-
face, which is the official interface for EUROPA clients. This
interface is very straightforward and allows the user to run
the entire application cycle described above. This abstraction
layer will isolate a user’s client code from most changes in the
internals of the EUROPA implementation, it is also designed
for easy mapping to other languages using SWIG.

While currently only C++ and Java bindings are bundled
with the EUROPA distribution, we have plans to add Python
and any other languages that are popular with the EUROPA
user community.

JAVA Swing UI Framework: PSDesktop is a Java applica-
tion that allows the user to drive EUROPA interactively and
visualize the progress by utilizing the PSEngine client inter-
face. It takes two arguments:

• Selection of either the Debug or Optimized version of
EUROPA to run.

int main(int argc, const char ** argv)
{

try {
const char* nddlFile = argv[1];
const char* plannerConfig = argv[2];

// Instantiate EUROPA engine
PSEngine* engine = PSEngine::makeInstance();
engine→start();

// Load nddl model and problem instance
engine→executeScript(”nddl”,nddlFile,true);

PSSolver* solver = engine→createSolver(plannerConfig);
int startHorizon=0, endHorizon=100;
solver→configure(startHorizon,endHorizon);

//Create a plan
int maxSteps=1000, maxDepth=1000;
solver→solve(maxSteps,maxDepth);

// Output resulting plan
std::cout� engine→planDatabaseToString()

� std::endl;

delete solver;
delete engine;
return 0;
}
catch (Error& e) {

std::cerr� “PSEngine failed:”
� e.getMsg()� std::endl;

return -1;
}
}

Figure 4: Example of embedding EUROPA in a C++ applica-
tion by utilizing the API through extending the code template
generated by the makeproject utility.

• bsh file (optional) : filename of the BeanShell file that is
executed upon starting3.

Utilizing the BeanShell console window user can type in
Java statements that allow driving EUROPA interactively
through its Java API.

Eclipse Plugin (SWT) for EUROPA: The Eclipse plugin has
two major components: (1) an editor and (2) an execution per-
spective. They provide the graphical interface to model, run,
and analyze plans within the Eclipse development environ-
ment. The main capabilities are: NDDL Editor, Solver View,
Statistics View, Open Decision View, Schema Browser View,
Schema Browser View, Gantt View, Details View, and the Run
NDDL model perspective that includes all of the above com-
ponents. We will describe them in more detail in the next
section dedicated to EUROPA’s KE capabilities.

4 EUROPA’s Knowledge Engineering Tools
In this section, we will outline the knowledge-engineering
tools associated with the EUROPA framework. We will di-
vide them into the following different categories: (1) mod-
eling support; (2) result visualization and analysis; and (3)
support for interactive planning process. As outlined in Sec-
tion 3, there are different ways to use EUROPA and thus for
each of the three categories, we will describe tools associated
with either the: (1) Java Swing UI Framework; or (2) Eclipse
Plugin.

4.1 Modeling Support through Eclipse Plugin
In this section, we will describe two different graphical model
editing supports for NDDL and ANML through Eclipse plu-
gins.
NDDL Graphical Model Editor: an Eclipse plugin registers
a file type for “.nddl” and a default editor for it. The editor
has syntax highlighting and an outline, which is updated
every time the model file is saved. If the parser detects
any errors, they are displayed as error markers in the editor.
Figure 5 shows the GUI for editing and checking NDDL files.

ANML Graphical Model Editor: (this is an preliminary
work-in-progress) Stottler Henke is currently under contract
to develop an Eclipse-based tool called PM/IDE to add sup-
port for the ANML [Smith et al., 2008] language, a new
modeling language that imports features from PDDL, IxTeT,
AML, and NDDL. ANML models can then be translated di-
rectly into NDDL and EUROPA can be invoked within the
tool to run on the translated model files. PM/IDE provides
text-based and graphical visualization to help modelers ana-
lyze relationships between actions, fluents, and objects. The
current main PM/IDE capabilities are:

• Text-based ANML Editor: an ANML text-based editor
with syntax highlighting and associated outline and ob-

3BeanShell is a small, free, embeddable Java source interpreter
with object scripting language features, written in Java. BeanShell
dynamically executes standard Java syntax and extends it with com-
mon scripting conveniences such as loose types, commands, and
method closures like those in Perl and JavaScript.

automatic error
detection model summary

Figure 5: NDDL Editor based on Eclipse Plugin

Figure 6: PM/IDE’s Text-based ANML Editor

Figure 7: PM/IDE’s three views on: (1) Action Timeline Summary; (2) Fluent Actions Timeline Summary; and (3) Action Variable Matrix

ject type hierarchy views. Figure 6 shows an example of
this view.

• Action Timeline Summary: For an action, this view sum-
marizes when the action reads or changes the value of
a variable/fluent. Horizontal bars show when a vari-
able is changed over a time period such as [all]. Mouse
actions (e.g., right-click, double-click) on items in this
view will automatically trigger highlight activities in the
text-based ANML editor.

• Fluent Actions Timeline Summary: For a fluent, this
view summarizes how actions in the model read or
change the given fluent. Symbols and horizontal bars
show when such actions read or change the fluent. This
is similar to the Action Timeline Summary, but it shows
all the actions related to the selected fluent rather than all
variables/fluents affected by one particular action. Also
similar to the Action Timeline Summary view, mouse
actions in this view trigger highlights of the correspond-
ing components in the text-based ANML editor.

• Action Variable Matrix: This matrix contains one row
per action and one column per global variable/fluent.
At each row-column position, up to three overlapping
symbols are drawn to indicate whether the action reads,
writes, and/or constrains the variable. This view lets
modelers quickly scan columns to see the actions that
read/write each fluent. Modelers can also scan rows
to see the fluents that are read/written by each action.
Moreover, there are additional capabilities associated
with this view such as highlight, group, and filter to as-
sist future model analysis. Figure 7 shows examples of
the three non-text views.

Currently, PM/IDE also supports limited ANML to NDDL
translation capability that can translate a subset of the ANML
language into NDDL and also the NDDL browsing and edit-
ing features to PM/IDE. Thus, for a subset of ANML, model-
ers can:

1. Use ANML text-oriented views and visualizations to en-
ter, edit, and review an ANML planning domain model
and problem,

2. Invoke the ANML → NDDL translator to translate the
ANML model and problem into NDDL,

3. Use NDDL views to review and edit (if necessary) the
automatically-generated NDDL,

PDDL: PDDL is the dominant modeling language used in the
planning research community. While it’s out of the scope of
this paper to discuss PDDL’s ability to model complex real-
world applications, the capability to support PDDL is a useful
feature of any KE tool or planning system. EUROPA cur-
rently does not come with any tool to support PDDL mod-
eling directly. However, there is promising work showing
that this can be done. Sara Bernardini and David Smith
have developed technique based on variable/value model
which allows translation of PDDL into either ANML or
NDDL [Bernardini and Smith, 2011].

4.2 Result Analysis
Java Swing UI Framework: The PSUI package contains
a number of components that make it easy to visualize the
partial/complete plan and interact with EUROPA :

• PSGantt : shows the tokens on a timeline as a gantt chart
• PSChart : shows resource profiles as charts
• ActionDetails and ActionViolation: enable easy display

of violation and detail information about actions in a
plan as the user mouses over actions in other compo-
nents (for instance a gantt chart)

Figure 8 shows an example of how different UI compo-
nents within the PSUI package can be activated to assist the
plan analysis. In the next section, we show additional exam-
ples of a diverse set of problems (all come with the EUROPA
distribution).
Eclipse Plugin: the EUROPA package provides the follow-
ing capabilities through Eclipse plugins

• Solver View: Start/stop the EUROPA engine, and con-
figure and run a solver.
• Statistics View: Graphs of solver stats.
• Open Decision View: View of open decisions at each

step of solving.
• Schema Browser View: View the schema for the active

NDDL model.
• Gantt View: Once a solution is found, view the plan.
• Details View: Click on a token in the Gantt View to see

it’s details in this view.

Alternatively, for the plan generated through the PM/IDE
Eclipse-plugin by first utilizing the ANML-to-NDDL transla-
tor and invoke EUROPA from within this tool on the resulting
NDDL models, PM/IDE also provides capabilities to visual-
ize the resulting plan (Figure 9).

4.3 Interacting with the Core Planning Engine
Java Swing UI Framework: In the BeanShell console, users
have access to:

• PSEngine: provides access to the EUROPA engine,
users can create a solver, query the plan database, ex-
ecute NDDL scripts, and in general perform any task
needed to drive EUROPA to load a model and create a
plan. Users can also use this interface to create their own
custom solvers.
• PSSolverDialog: allows the user to drive a solver inter-

actively and see its status as it tries to achieve the goals
specified for it
• PSDesktop: provides access to many utility methods to

create new desktop windows, display tables of tokens,
create a solver, etc.

Eclipse Plugin: Users can run EUROPA by directly invoking
the Run As action for a given NDDL file. This action shows
up both in the editor and in the Package Explorer pane. It
creates a launch configuration and switches the perspective
to NDDL model execution. The Run As action within the

Figure 8: PSUI components in the Resource Constrained Project Scheduling Problem (RCPSP)

Figure 9: PM/IDE’s plan-analysis view

Figure 10: Eclipse dedicated perspective on showing information about running EUROPA

NDDL model perspective is the Eclipse version of the JAVA
Swing PSDesktop user interface. The plugin can run multiple
NDDL sessions at the same time. Users can switch between
them using the pulldown list. EUROPA sessions are also vis-
ible in the Debug perspective and can be killed or restarted
from there. Figure 10 shows an example of this perspective
where different aspects of modeling and execution can be vi-
sually displayed.

5 Examples
In this section, we show several examples that demonstrate
the flexibility of EUROPA (both its core engine and its sup-
porting knowledge engineering tools) when solving different
types of planning, scheduling, and constraint satisfaction
problems. All examples covered in this section are included
in the EUROPA distribution and in this section they are
illustrated through the PSDesktop interface.

Light: A simple domain for EUROPA that describes
how a light switch can be used to control a light bulb.
Figure 11 shows an example output analyzing the final
plans. In this particular example, the intervals mean that
the action or state change could happen at any point in
the interval, so for instance, “lightSwitch1 is turned off
at time [0,8]” means that lightSwitch1 could be turned
off at time 0, or at time 1, ..., or at time 8. One can
modify the model or EUROPA’s configuration to generate
grounded plans (where all the values are points, instead of

intervals), if that’s what is desired for a particular application.

N-Queens: N-Queens is one of the CSP benchmark do-
mains. Figure 12 shows how EUROPA supports modeling
and solves this problem through PSDesktop. Users can click
on a chess board to move the the queens around and see the
constraint violations that EUROPA computes by moving
the mouse over each queen. It also provides a simple Tabu
Search solver which briefly illustrates how users can build
their own solvers on top of EUROPA.

Resource Constrained Project Scheduling Problem
(RCPSP): this is a well known problem in the OR com-
munity that consists of scheduling a set of activities with
temporal and resource constraints. Typically, the goal
is to minimize total project duration while respecting all
constraints (Figure 8). Like the previous example, this
example shows how users can build their own solvers on top
of EUROPA for a specific problem.

Shopping: a simple example discussed in Russell and
Norvig’s AI textbook, first Edition, Chapter 11 (Figure 13).

Blocksworld: this is one of the most well-known planning
domains. This version uses a robotic arm to build the stacks
and Figure 14 shows a UI where one can look at the partial
state of the arm and the stacks as the planner progresses
towards the stated goal. The PSDesktop UI allows users

to mouse over the green rectangles to see the actions over
each timeline; for example, one can see the arm operator
performing pick up and stack operations on the blocks. The
“BlockWorld History” window shows the evolution of the
stacks as the operator performs the actions from the plan,
until it arrives at the stated goal.

Planetary Rover: this is a more complex planning domain
that was inspired by NASA robotic missions and has also
been translated to PDDL to be used in recent IPCs. Figure 15
shows the UI for this domain. In this figure, red and blue
curves on the chart at the top-right corner bound the possible
battery charge. The difference between the two is due to
the flexibility in the plan regarding when navigation and
sampling may take place. The red curve shows the charge
when actions occur as soon as possible, and the blue curve
shows charge when all battery consuming actions are delayed
as long as possible. The bottom window displays a gantt
chart for the Rover, Navigator and Instrument timelines in
this problem. Hovering the mouse over any piece (green
rectangle) of the gantt chart shows details displayed in the
Details window. In this screenshot, the mouse was hovered
over the large box on the Navigator timeline, which is an At
predicate.

6 EUROPA-related Projects
EUROPA has been used for a variety of missions, mission-
oriented research, and demonstrations, including:

• DS1: RAX Remote Agent Experiment (original version
of EUROPA technology) controlling the Deep Space
One mission.

• SACE Support for optimization of the International
Space Station’s solar arrays

• Bedrest study at Johnson Space Center to minimize the
changes that occur to the body during space flight and
enable the return of normal body functions once back on
Earth.

• MER Tactical Activity Planning: EUROPA is the core
planning technology behind MAPGEN, a decision sup-
port tool for generating detailed activity plans on a daily
basis for the MER robotic mission to Mars.

• MSL mission: Support for planning and scheduling for
Mars Science Laboratory Science Operations

• Intelligent Distributed Execution Architecture (IDEA)

• On-board Planning and Plan Execution. EUROPA was
the core planning technolgoy for deliberative and reac-
tive planning on-board a variety of mobile robots. It has
been fielded in the Atacama Desert and was the corner-
stone of a 2005 milestone of human-robotic collabora-
tion for the Collaborative Decision Systems program.

• Crew Planning Research project on Planning and
Scheduling for space missions

• ATHLETE support for foot fall planning for a hexapod
lunar robot

• Integrated with On-board Planning and Plan Execution:
EUROPA was the core planning technolgoy for delib-
erative and reactive planning on-board a variety of mo-
bile robots. It has been fielded in the Atacama Desert
and was the cornerstone of a 2005 milestone of human-
robotic collaboration for the Collaborative Decision Sys-
tems program.

• Mission Simulation: EUROPA was used to simulate a
prospective robotic mission (LORAX) to the Antarctic
for the purposes of system design evaluation.

• Contingent Planning for ROVER operations (PiCO) for
K9 research rover.

• Personal Satellite Assistant (PSA)

• Spoken Interface Prototype for PSA (RIALIST)

Outside of NASA, it has also beed used at MBARI to
help control underwater autonomous vehicle [McGann et al.,
2008] and at Willow Garage for autonomous robot naviga-
tion [McGann et al., 2009]4.

7 Conclusion and Future Work
In this paper, we described EUROPA with concentration
on its modeling and plan analysis capabilities. The main
strengths of EUROPA are: (1) expressive; (2) flexible frame-
work; (3) strong support for integration with other applica-
tions; (4) open-source license; and (5) proven track record.

While EUROPA and its supporting tools have been going
through a long period of development, we still have a long
list of improvements that we want to make. The most im-
portant ones in our opinion are: significantly improve search
(especially heuristic guidance) and inference capabilities,
support the ANML and PDDL modeling languages, improve
the visualization and debugging tools and allow EUROPA
extensions to be written in other languages. Given that EU-
ROPA is open-source software, we welcome contributions
from planning and scheduling researchers and practitioners.

Acknowledgements: EUROPA is the result of many years
of research, development and deployment of constraint-based
planning technology.

• The precursor to EUROPA was HSTS, designed and de-
veloped by Nicola Muscettola. HSTS set out the initial
domain description language and essentials of the plan-
ning paradigm that became the starting point for EU-
ROPA.

• Ari Jonsson led the implemenation of the first version of
EUROPA. Ari’s team included Jeremy Frank, Paul Mor-
ris and Will Edgington, who all made valuable contribu-
tions.

• Conor McGann led the implementation of EUROPA 2,
which is a further evolution of this line of work, targeted
mainly at making the technology easier to use, more

4Surveying the EUROPA mailing list revealed some other
projects that EUROPA has been used for. However, there is no offi-
cially published work for those efforts that we can refer to.

Figure 11: UI example of the simple light-switch domain where the only action is to turn a light ON or OFF.

Figure 12: UI example of the representative Constraint Programming domain: NQueens

Figure 13: UI example of the text-book shopping planning example

Figure 14: UI example of the classical Blocksworld planning domain.

Figure 15: UI example of the Rovers planning domain.

efficient, easier to integrate and easier to extend. EU-
ROPA 2’s main contributors were Andrew Bachmann,
Tania Bedrax-Weiss, Matthew Boyce, Patrick Daley,
Will Edgington, Jeremy Frank, Michael Iatauro, Peter
Jarvis, Ari Jonsson, Paul Morris, Sailesh Ramakrishnan
and Will Taylor.

• Javier Barreiro took over as the EUROPA team lead
in the Fall of 2006 and has been working on it since
then, reshaping EUROPA’s architecture and improving
its technology and packaging. Javier’s main collabo-
rators at NASA Ames are Matthew Boyce, Minh Do,
Michael Iatauro, Paul Morris, Tristan Smith and David
Smith.

External contributors and collaborators include: Tatiana
Kichkaylo, Mark Roberts, and Tony Pratkanis. Funding
for this work has been provided by the NASA Intelligent
Systems and Collaborative Decision Systems Programs.

References
[Ai-Chang et al., 2004] M. Ai-Chang, J. Bresina, L. Charest,

J. Hsu, A. K. Jonsson, B. Kanefsky, P. Maldague, P. Morris,
K. Rajan, and J. Yglesias. Mapgen: Mixed-initiative activity
planning for the mars exploration rover mission. In System Demo
at ICAPS’04, 2004.

[Bernardini and Smith, 2011] Sara Bernardini and David Smith.
Finding mutual exclusion invariants in temporal planning do-
mains. In Proc. of 7th International Workshop on Planning and
Scheduling for Space (IWPSS), 2011.

[Frank and Jonsson, 2003] Jeremy Frank and Ari K. Jonsson.
Constraint-based attribute and interval planning. Journal of Con-
straints Special Issue on Constraints and Planning, 8(4), 2003.

[Gerevini et al., 2009] Alfonso Gerevini, Derek Long, Patrik
Haslum, Alessandro Saetti, and Yannis Dimopoulos. Determinis-
tic planning in the fifth international planning competition: Pddl3
and experimental evaluation of the planners. Artificial Intelli-
gence, 173:619–668, 2009.

[Ghallab and Laruelle, 1994] Malik Ghallab and Hervé Laruelle.
Representation and control in IxTeT, a temporal planner. In Pro-
ceedings of AIPS-94, pages 61–67, 1994.

[Hoffmann and Edelkamp, 2005] Jörg Hoffmann and Stefan
Edelkamp. The deterministic part of ipc-4: An overview.
Journal of Artificial Intelligence Research, 24:519–579, 2005.

[Jonsson and Bäckström, 1998] Peter Jonsson and Christer
Bäckström. State-variable planning under structural restric-
tions: Algorithms and complexity. Artificial Intelligence,
100(1-2)(4):125–176, 1998.

[McGann et al., 2008] C. McGann, F. Py, K. Rajan, H. Thomas,
R. Henthorn, and R. McEwen. A deliberative architecture for
auv control. In Proc. of Intnl. Conf. on Robotics and Automation
(ICRA), 2008.

[McGann et al., 2009] Conor McGann, Eric Berger, Jonathan
Bohren, Sachin Chitta, Brian Gerkey, Stuart Glaser, Bhaskara
Marthi, Wim Meeussen, Tony Pratkanis, Eitan Marder-Eppstein,
and Melonee Wise. Model-based, hierarchical control of a mobile
manipulation platform. In Proc. of ICAPS Workshop on Planning
and Plan Execution for Real-World Systems, 2009.

[Muscettola et al., 1997] Nicola Muscettola, Ben Smith, Chuck
Fry, Steve Chien, Kanna Rajan, Gregg Rabideau, and David Yan.
On-board planning for new millenniumdeep space one autonomy.
In Proc. of IEEE Aerospace Conference, 1997.

[Muscettola et al., 1998] Nicola Muscettola, Pandurang Nayak,
Barney Pell, and Brian Williams. Remote agent: To boldly
go where no ai system has gone before. Artificial Intelligence,
103:5–47, 1998.

[Rajan et al., 2012] Kanna Rajan, Frederic Py, and Javier Barreiro.
Towards deliberative control in marine robotics. Book Chapter
on Marine Robotic, 2012.

[Smith et al., 2008] David Smith, Jeremy Frank, and Will Cushing.
The anml language. In Proceedings of ICAPS-08, 2008.

[Tran et al., 2004] D. Tran, S. Chien, R. Sherwood, R. Castao,
B. Cichy, A. Davies, and G. Rabideau. The autonomous science-
craft experiment onboard the eo-1 spacecraft. In AAAI, 2004.

