
22nd International Conference
on Automated Planning and Scheduling
June 25-29, 2012, Atibaia – Sao Paulo – Brazil

Edited by
Simone Fratini and Adi Botea

System
Demonstrations
and Exhibits

Organization
Simone Fratini, ESA-ESOC, Germany
contact email: simone.fratini@esa.int
Adi Botea, IBM Research, Dublin, Ireland
contact email: adibotea@ie.ibm.com

Foreword

System demonstrations have a marked role in the series of annual ICAPS
conferences. The event is one of the incentives that ICAPS offers towards proving
the practical usefulness of planning and scheduling research. In 2012, the System
Demonstrations and Exhibits event features 9 demonstrations. For certain types of
submissions, providing an extended abstract was optional. This includes work also
presented in the main ICAPS track, and entries that also participate in the 4th

International Competition on Knowledge Engineering for Planning and Scheduling
(ICKEPS). As a consequence, the current set of proceedings contains 6 extended
abstracts and 3 shorter abstracts. We thank the authors for the impressive work
behind their on-site demonstrations.

Simone Fratini, Adi Botea
June 2012

Contents

DUKC Optimiser: Maximising Cargo Throughput at a Bulk Export Port…............1
Elena Kelareva

Planning-Based Composition of Stream Processing Applications…....................5
Mark D. Feblowitz, Anand Ranganathan, Anton V. Riabov, Octavian Udrea

FlowOpt: Bridging the Gap Between Optimization Technology and
Manufacturing Planners…...8
Roman Barták, Milan Jaška, Ladislav Novák, Vladimír Rovenský, Tomáš Skalický, Martin
Cully, Con Sheahan, Dang Thanh-Tung

itSIMPLE4.0: Enhancing the Modeling Experience of Planning Problems….......11
Tiago Vaquero, Rosimarci Tonaco, Gustavo Costa, Flavio Tonidandel, José Reinaldo Silva, J.
Christopher Beck

Inspect, Edit and Debug PDDL Documents: Simply and Efficiently with PDDL
Studio…...15
Tomas Plch, Miroslav Chomut, Cyril Brom, Roman Barták

New Developments in Real-Time Heuristic Search: A Demo…..........................19
Carlos Hernández, Jorge A. Baier, Tansel Uras, Sven Koenig

Integrating Vehicle Routing and Motion Planning…..23
Scott Kiesel, Ethan Burns, Christopher Wilt, Wheeler Ruml

EUROPA: A Platform for AI Planning, Scheduling, Constraint Programming, and
Optimization...….24
Javier Barreiro, Matthew Boyce, Minh Do, Jeremy Frank, Michael Iatauro, Tatiana Kichkaylo,
Paul Morris, James Ong, Emilio Remolina, Tristan Smith, David Smith

On Computing Conformant Plans Using Classical Planners: A Generate-And-
Complete Approach…..25
Khoi Nguyen, Vien Tran, Tran Cao Son, Enrico Pontelli

1

DUKC Optimiser: Maximising Cargo Throughput at a Bulk Export Port

Elena Kelareva
OMC International / ANU / NICTA

Melbourne, Australia
elena.kelareva@nicta.com.au

Abstract

This demo presents DUKC R© Optimiser – a system for max-
imising cargo throughput at a bulk export port by scheduling
sailing times and drafts for a set of ships. An earlier prototype
of the system underwent user testing in 2010 (Kelareva 2011),
and a number of improvements resulting from user feedback
have been incorporated in this updated version.
DUKC R© Optimiser is the first system for automatically
scheduling ship sailing times and drafts at a bulk export port
which takes into account time-varying draft restrictions that
take into account live environmental conditions. The system
uses the Dynamic Under-Keel Clearance (DUKC R©) software
developed by OMC International to calculate draft restric-
tions. These restrictions are then converted to a contraint
programming model, and solved using the G12 finite domain
solver, developed by NICTA.
The software is able to find optimal schedules for realistic
problem sizes, and is able to produce schedules which allow
ships to carry more cargo than would be permitted by tradi-
tional constant-draft or manual scheduling approaches.

1 Introduction
At a bulk export port, the port authority aims to maximise
cargo throughput at the port while maintaining safety. One
key aspect of safety is restrictions on ship draft. Draft is the
distance between the waterline and the bottom of the ship’s
keel, which increases as more cargo is loaded. Most ports
have restrictions on maximum draft for ships entering and
leaving the port, as loading a ship beyond the safe draft limit
may result in the ship running aground.

At most ports, draft restrictions vary over time, and de-
pend on the estimated under-keel clearance (UKC – amount
of water under the keel) which varies with tide, wave, cur-
rent and wind conditions. The Dynamic Under-Keel Clear-
ance (DUKC R©) software developed by OMC International
has been very effective at increasing both maximum draft
and safety by improving accuracy of UKC modelling at
ports, thus reducing the conservatism required to maintain
safety (OMC International 2009). Many ports worldwide
now use DUKC R© software to calculate draft restrictions, as
this enables more cargo to be loaded onto ships without com-
promising safety.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Scheduling ship sailing times and drafts at bulk export
ports is currently done manually or using simple tools such
as Microsoft Excel. When ports use static under-keel clear-
ance constraints that depend only on long-term tide fore-
casts, these constraints are same for all ships and don’t need
to be adjusted as enviro data is updated. However, with
DUKC R© software, the draft constraints vary between ships,
and may be updated as enviro predictions change. DUKC R©

predicts under-keel clearance more accurately, thus enabling
more cargo to be loaded onto ships, but it makes scheduling
more complex and may require changes to the schedule if
conditions change.

DUKC R© Optimiser is a new tool that aims to simplify
scheduling of ship sailing times and drafts for bulk export
ports that use DUKC R© software to calculate draft restric-
tions. DUKC R© Optimiser also aims to find optimal sched-
ules that allow ships to carry more cargo than schedules pro-
duced by human schedulers.

2 DUKC R© Optimiser Background
A command-line prototype of DUKC R© Optimiser was de-
veloped and tested by port schedulers in late 2010, and
demonstrated at ICAPS 2011 (Kelareva 2011). An updated
model containing improvements based on user feedback was
incorporated in a commercial system in 2012 (Kelareva et al.
2012a).

The major improvement to the model in this version was
the introduction of constraints on the availability of tugs –
small boats that are used to assist ships to enter or leave port.
User testing in late 2010 found that tug availability could
constrain the schedule, so schedules produced by the model
without tug constraints could be infeasible in practice. Tug
constraints therefore needed to be incorporated before the
system could be used in practice.

Another major improvement was improving the speed of
the model, as described in (Kelareva et al. 2012a) and (Ke-
lareva et al. 2012b).

The initial prototype was command-line based, which was
sufficient to gather initial user feedback on schedule quality,
but would have been inconvenient for operational use. The
scheduling system was therefore incorporated into a com-
mercial web-based dynamic under-keel clearance manage-
ment system - DUKC R© Series 5, developed by OMC Inter-
national.

2

Figure 1: DUKC R© Optimiser Result

3 Implementation

3.1 User Interface

To run a DUKC R© Optimiser calculation, the scheduler must
enter parameters such as length and beam for each ship that
are used to calculate under-keel clearance. Other inputs re-
quired to calculate a schedule include the earliest sailing
time for each ship, the number of tugs required for each ship,
the range of drafts to calculate, and a priority number that is
used to ensure fairness to different companies using the port.

Figure 1 shows an output schedule for a set of six ships
sailing on one tide. In the graph on the bottom half of the
screen, each bar represents a ship, with the height of the bar
corresponding to the draft that the ship is scheduled to sail
with, and the location of the bar along the x-axis indicating
the time at which the ship is scheduled to sail. Each ship is
scheduled with a time slot of 15 minutes, rather than a fixed
time point, as it is impractical to expect a large bulk carrier
to sail precisely at a given minute.

The blue curve indicates the minimum water depth along
the channel plus the height of the astronomical tide predic-
tion at that point in time. This does not take into account
wave response, squat, heel, safety factor, or variation from
the astronomical tide prediction, all of which can decrease
the amount of water available to the ship. This results in the
height of the blue curve being significantly above the height
of the bars indicating ship draft.

3.2 Other Features
The web-based DUKC R© Series 5 system includes a number
of additional features to assist port schedulers, pilots and
harbourmasters in making ship scheduling and sailing de-
cisions. Port administrators may limit user permissions to
only access schedules for ships belonging to their organisa-
tion, or to only access features that are required for their job.
The system can also display live environmental data, such as
measurements from wave buoys and tide gauges. The sys-
tem also includes the DUKC R© calculations used to provide
under-keel clearance advice to pilots and ship captains im-
mediately prior to sailing, and an in-transit monitoring tool
that tracks the locations of ships at the port.

3.3 System Architecture
When the scheduler selects a set of ships to be scheduled
in the web-based GUI, a query is sent to the DUKC R© Op-
timiser server. Upon receiving a schedule query, DUKC R©

Optimiser converts it into a set of queries to OMC’s
DUKC R© software. The DUKC R© software uses real-time
environmental forecasts and measurements to analyse each
ship’s motion, and thus to calculate the ship’s under-keel
clearance – the amount of water under the ship at each point
in the transit. This produces sailing windows for a range of
drafts for each ship.

DUKC R© Optimiser then converts the user inputs and the
results of the DUKC R© calculations into a Constraint Pro-
gramming (CP) model, implemented in the MiniZinc opti-

3

Figure 2: DUKC R© Optimiser System Architecture

misation language (Nethercote et al. 2007). This model is
then solved using the G12 finite domain solver (Stuckey et
al. 2005). The GUI then displays the resulting schedule.

3.4 Constraint Programming Model
The constraint programming model, including speed im-
provements from the older command-line version, is dis-
cussed in detail in (Kelareva et al. 2012a). The model is
only described briefly here.

Basic Model The decision variables in the Constraint Pro-
gramming model used to create schedules are the sailing
times for each ship. The maximum draft for each ship is a
function of time, specified at 5-minute intervals, as the max-
imum draft allowed by the DUKC R© may change rapidly.

The main constraints of the original model without tugs
are:

• Constraints on the earliest time when each ship may sail.
• Constraints on the availability of berths for incoming

ships.
• Constraints enforcing minimum separation time between

successive ships.

Tug Constraints Tug constraints proved to be very diffi-
cult to implement efficiently, as tug job durations depend on
both the ship the tug is working on, and the ship it will work
on next. After several unsuccessful attempts, we found an
implementation that was able to solve realistic problem sizes
within 5 minutes by splitting the sequence of ships into four
types of scenarios, as shown in Figure 3, and calculating tug
constraints separately for each scenario.

Objective Function The objective function may vary be-
tween ports – some ports may only maximise through-
put; other ports may prioritise fairness to competing clients
above maximising total throughput for the port. A port ob-
jective function may also need to take into account shipping
contracts used by shippers at the port, as these may affect
the cost and benefit to shippers of sailing with more or less
draft.

Figure 3: Scenarios for Tug Constraints

Figure 4: Dynamic Under-Keel Clearance Components

3.5 Dynamic Under-Keel Clearance
Figure 4 illustrates components of ship motion taken into
account by the DUKC R© software. These include:
• Draft: the distance from the waterline to the bottom of

the ship’s keel.
• Squat: a phenomenon which causes a ship travelling fast

through shallow water to sink deeper into the water than
a ship travelling slowly.

• Heel: the effect of a ship leaning towards one side, caused
by the centripetal force of turning, or the force of wind on
the side of the ship.

• Wave Response: motion resulting from the action of
waves on the ship. Only the vertical component of this
motion affects under-keel clearance.
Under-keel clearance is computed as follows:
UKC = Tide + Depth - Draft - Squat - Heel - Wave

Response
If the under-keel clearance is below the required safety

limit, then the DUKC R© software will advise the operator
not to sail. However, the final decision always rests with the
ship’s pilot or captain.

For a more detailed analysis of Dynamic Under-Keel
Clearance methodology, see (O’Brien 2002).

4 Benefits
Existing ship scheduling approaches either leave draft con-
straints entirely up to human schedulers (Fagerholt 2004),

4

or use simple constant draft constraints that do not vary with
time (Christiansen et al. 2011) (Song and Furman 2010).
Scheduling of ship sailing times at a port is usually done
manually by human schedulers following simple heuristic
rules such as scheduling the ship with the largest maximum
draft first, and scheduling each ship at the earliest time it can
sail (Kelareva et al. 2012a).

Both of these approaches can lead to suboptimal sched-
ules where ships carry less cargo than the maximum. An ex-
ample presented by (Kelareva et al. 2012a) shows that even
for a simple schedule with three ships, fixed-draft and man-
ual scheduling approaches can fail to find the optimal sched-
ule, resulting in 10cm less total draft. An average Capesize
iron ore carrier can transport 130 tonnes of iron ore per cen-
timetre of draft (Port Hedland Port Authority 2011), so this
results in around US$221,000 less iron ore being transported
on the three ships, at the January – October 2011 average
iron ore price of around US$170/tonne (Index Mundi 2011).

This small example clearly shows the financial benefit
of using accurate time-varying draft constraints and opti-
mal schedules. These are simple examples with only three
ships, all berths at the same location along the transit, and
no tug constraints taken into account. Real schedules would
be even more complex and difficult to optimise manually.

5 Conclusions
We have presented DUKC R© Optimiser – a web-based sys-
tem for maximising throughput at a bulk export port by
scheduling ship sailing times and drafts. It uses the Dy-
namic Under-Keel Clearance (DUKC R©) software developed
by OMC International to calculate constraints on allowable
drafts for each ship at each point in time, taking into account
the effects of tide, waves and current on ship motion.

DUKC R© Optimiser contains a constraint programming
(CP) model implemented in the MiniZinc optimisation pro-
gramming language, which is solved using the G12 finite
domain solver developed by NICTA. Major constraints in-
clude sequence-dependent separation times between ships
and constraints on the availability of tugs.

The system has undergone user testing in 2010 (Kelareva
2011), and user feedback has been incorporated into an up-
dated version (Kelareva et al. 2012a).

A comparison of optimal schedules produced by DUKC R©

Optimiser against constant-draft ship scheduling approaches
and schedules produced by simple heuristics used in practice
at ports has demonstrated that DUKC R© Optimiser is able
to find optimal schedules which allow ships to load more
cargo than either fixed-draft or naive manual scheduling ap-
proaches (Kelareva et al. 2012a). This shows that DUKC R©

Optimiser may provide a large benefit to industry, as every
centimetre of extra draft allows more cargo to be carried on
the same set of ships, thus reducing transportation costs.

6 Acknowledgements
DUKC R© Optimiser is developed by OMC International.
The author would like to acknowledge the contribution
of other OMC engineers involved in the development of
DUKC R© Optimiser, particularly Gordon Lindsay, Giles
Lesser, Gregory Hibbert and Kalvin Ananda. The author

would also like to acknowledge the input from her PhD su-
pervisors Philip Kilby, Sylvie Thiébaux and Mark Wallace,
and the support of ANU and NICTA at which she is a PhD
student. NICTA is funded by the Australian Government as
represented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References
Christiansen, M.; Fagerholt, K.; Flatberg, T.; Haugen, Ø.;
Kloster, O.; and Lunda, E. 2011. Maritime inventory routing
with multiple products: A case study from the cement indus-
try. European Journal of Operational Research 208(1):86–
94.
Fagerholt, K. 2004. A computer-based decision support
system for vessel fleet scheduling - experience and future
research. Decision Support Systems 37(1):35–47.
Index Mundi. 2011. Iron ore monthly price.
http://www.indexmundi.com/commodities/?commodity=iron-
ore.
Kelareva, E.; Brand, S.; Kilby, P.; Thiébaux, S.; and Wal-
lace, M. 2012a. CP and MIP methods for ship schedul-
ing with time-varying draft. In Proceedings of the Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS’12).
Kelareva, E.; Kilby, P.; Thiébaux, S.; and Wallace, M.
2012b. Ship scheduling with time-varying draft. In Fifth
International Workshop on Freight Transportation and Lo-
gistics (ODYSSEUS’12).
Kelareva, E. 2011. The “DUKC Optimiser” ship schedul-
ing system. In 2011 International Conference on Automated
Planning and Scheduling: System Demonstration.
Nethercote, N.; Stuckey, P.; Becket, R.; Brand, S.; Duck, G.;
and Tack, G. 2007. MiniZinc: Towards a standard CP mod-
elling language. In Bessière, C., ed., Principles and Prac-
tice of Constraint Programming - CP 2007, volume 4741 of
Lecture Notes in Computer Science. Springer Berlin / Hei-
delberg. 529–543.
O’Brien, T. 2002. Experience using dynamic underkeel
clearance systems. In Proceedings of the PIANC 30th In-
ternational Navigational Congress, 1793–1804.
OMC International. 2009. DUKC helps Port Hed-
land set ship loading record. http://www.omc-
international.com/images/stories/press/omc-20090810-
news-in-wa.pdf.
Port Hedland Port Authority. 2011.
Dynamic under keel clearance system.
http://www.phpa.com.au/dukc information.asp.
Song, J.-H., and Furman, K. 2010. A maritime inventory
routing problem: Practical approach. Computers & Opera-
tions Research.
Stuckey, P.; de la Banda, M.; Maher, M.; Marriott, K.;
Slaney, J.; Somogyi, Z.; Wallace, M.; and Walsh, T. 2005.
The G12 project: Mapping solver independent models to
efficient solutions. In Gabbrielli, M., and Gupta, G., eds.,
Logic Programming, volume 3668 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg. 9–13.

5

Planning-Based Composition of Stream Processing Applications

Mark D. Feblowitz, Anand Ranganathan, Anton V. Riabov, and Octavian Udrea
IBM T. J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA

Abstract

In this demonstration we present our planning-based
tools for software composition, and in particular, for
composition of distributed stream processing applica-
tions. The applications composed by our tools are de-
ployed on IBM InfoSphere Streams distributed stream
processing middleware. The applications are used to
process large data volumes in real time on large clus-
ters of commodity servers. Our tools include MARIO,
the goal-driven planning-based application composition
tool for business users, and an Eclipse-based integrated
development environment (IDE) for developing plan-
ning domain descriptions.

Overview
Distributed stream processing middleware, such as IBM In-
foSphere Streams (IBM InfoSphere Streams), allows soft-
ware developers to apply the full computational power of
numerous commodity servers toward large-scale real-time
analysis of streaming data. Recently, applications that place
high demands on the rate and volume of input data have
emerged in telecommunications, finance, health care, and
other industries. Stream processing applications are devel-
oped by specifying, in a programming language, the data
flows between inputs and outputs of stream processing op-
erators.

To significantly shorten the development cycle and make
applications more flexible and responsive to changing busi-
ness needs, we have developed a planning-based approach
that gives business users the ability to assemble stream pro-
cessing applications for their needs on the fly, without pro-
gramming or using drag-and-drop interfaces. Similarly to
planning-based approaches that were proposed for Web Ser-
vice composition, e.g. (Traverso and Pistore 2004), we have
extended AI planning formulations and techniques to ad-
dress the problem of composing stream processing applica-
tions.

To further simplify the goal-driven composition process,
we have developed an iterative goal refinement approach
that gives business users the ability to express their goals
and explore alternative compositions by choosing from a set
of business-relevant terms. The built-in optimization engine

helps assemble the best match even for ambiguous goals
given by the end users. Developers, on the other hand, can
easily describe and publish new operators and data sources
for use in new compositions. Our tools, including the web-
based goal-driven application composition tool (MARIO),
and the planning domain development environment (IDE),
have been used in a customer pilot since 2009.

MARIO: A Goal-Driven Application
Composition Tool

We have developed MARIO (Bouillet et al. 2008) as a
framework for automated composition of analysis flows,
with the primary motivation to compose stream processing
applications. We have further generalized MARIO to com-
pose and deploy analysis flows on a variety of other plat-
forms, including Web Services, Enterprise Service Bus, and
others. MARIO can be extended to support new platforms
by adding new plug-ins that generate code and deploy com-
posed flows.

An overview of MARIO and its interactions with business
users and other systems is shown graphically in Figure 1.
MARIO interacts with the business users via a Web-based
interface to receive and refine goals, generates and deploys
application code for user-specified goals, and presents the
results of execution back to the user.

In MARIO, composition goals are specified as sets of
business-relevant keywords (i.e., tags). For example, a finan-
cial analyst may request an application that identifies stocks
sold below volume-weighted average price (VWAP), and
therefore constituting a bargain, by selecting tags “VWAP,
BargainIndex” as a goal.

A unique feature of MARIO is interactive goal refine-
ment. Possible refinements of the specified goal are gener-
ated by the MARIO planner together with the optimal plan,
based on the analysis of alternative plans. For example, the
planner may suggest LinearIndex and ExponentialIndex as
possible refinements of “VWAP, BargainIndex”, if there are
alternative plans matching to those tags. The users are al-
lowed to specify ambigous goals, allowing the planner to
make remaining decisions based on its optimality criteria.
On the other hand, the users can also refine goals until there
are no more refinements.

6

Figure 1: MARIO Overview

In general, goal tags match tags used by the developers in
describing inputs and outputs of stream processing operators
and data sources. The developers can define sub-tag relation-
ships between tags, allowing MARIO to use reasoning dur-
ing planning, and match specific annotation tags to general
goal tags. For example, tags LinearIndex and ExponentialIn-
dex can be declared to be sub-tags of BargainIndex, and, as
a result, the plans that match either tag will also match any
goal that includes BargainIndex.

In addition to composing applications, which we consider
its primary functionality, MARIO Web server includes sup-
porting functions. For business users, it is the primary con-
sole for managing and deploying stream processing applica-
tions, providing the user interface and server-side function-
ality for managing long-running applications in a multi-user
environment.

Planning Approach
To respond to composition requests efficiently, MARIO
relies on a fast special-purpose optimizing planner that
solves planning problems described in SPPL domain de-
scription language (Riabov and Liu 2006). SPPL descrip-
tions are automatically generated from user-specified goals
and developer-defined application composition domains.

In MARIO, tags are used for describing the semantics
of analytics and data sources, as well as for specifying the
goals. In the past we have implemented a more general
OWL-based model (Liu, Ranganathan, and Riabov 2007).

However, the OWL-based model was difficult to use in
practice, since few stream processing application develop-
ers were familiar with OWL. Our current tag-based model is
designed to be easier to understand and use, while preserv-
ing a few basic reasoning capabilities, such as the sub-tag
relationship.

The developers use the Cascade language (Ranganathan,
Riabov, and Udrea 2009) to describe application composi-
tion domains. For example, the output of a stream processing
operator computing exponential index can be tagged with
ExponentialIndex, and the operator itself can be placed, as
one of the possible choices, within a Cascade composition
pattern flow graph.

The goals specified by the business users as tags are au-
tomatically translated to SPPL problem descriptions. Since
goal refinement is the only method for specifying goals, only
valid goals can be specified, and only known tags can be
included in goals, making this translation simple. Cascade
composition patterns and tag relationships are also compiled
into SPPL domain descriptions for planning.

MARIO finds an optimal plan and analyzes alternatives
every time a user adds or removes a goal tag. This allows
users to explore the space of possible plans. However, to
make goal refinement process truly interactive, and to serve
multiple users simultaneously, planning must be efficient.
Our SPPL planner (Riabov and Liu 2006) implements multi-
ple performance optimizations, and achieves planning times
of a few seconds for most practical applications.

7

Goal Tags Planning Time (seconds)
∅ 0.11
VWAP 0.16
VWAP, BargainIndex 0.09
VWAP, BargainIndex, ExponentialIndex 0.10
VWAP, BargainIndex, ExponentialIndex, TableView 0.09
VWAP, BargainIndex, ExponentialIndex, TableView, TcpSource 0.09
TcpSource 0.12
TcpSource, TableView 0.08

Table 1: SPPL planner response times, for a sample domain.

Table 1 illustrates the performance of our SPPL planner
in MARIO domains. We have measured planning times for
several selected goals within a sample application domain
(i.e., stock price analysis). Typically, the users will refine
goals by selecting one tag a time from possible refinements,
starting with an empty goal. In Table 1 we show planning
times for two refinement sessions. The SPPL planner was
running on a 64-bit Linux node with a quad-core 2.93Ghz
Intel Xeon processor with 32GB RAM, however only a sin-
gle core was used, and the memory usage was below 2GB.

Cascade IDE: A Development Environment
for Composition Domains

Cascade IDE is a set of Eclipse (Eclipse Foundation) plug-
ins that developers can use to create and maintain Cas-
cade descriptions of application composition domains for
MARIO. The IDE can also import existing stream process-
ing code and generate Cascade descriptions. For example, a
stream processing operator invocation implementing expo-
nential bargain index computation can be imported, and its
output can be annotated with ExponentialIndex tag.

The integration with Eclipse has made it possible to de-
velop a full-featured Cascade editor with syntax highlight-
ing, auto-completion and refactoring. Refactoring allows,
for example, to rename a tag, In addition to the editor for
Cascade, the IDE includes editors for Web UI configuration
and tag relationships.

The planning domains described in Cascade can be de-
ployed directly from the IDE to a MARIO server. Then,
double-clicking on a server entry in the IDE launches a
browser showing the Web interface. This automation signifi-
cantly reduces the time spent on routine tasks during the de-
velopment and testing of application composition domains.

Among many challenges associated with making auto-
mated software composition practical, perhaps the most sig-
nificant is the need to create tools that help developers si-
multaneously debug a large family of applications gener-
ated from a single Cascade project. To address this prob-
lem, we have integrated automated test generation and ex-
ecution techniques with our Cascade IDE (Winbladh and
Ranganathan 2011).

Conclusion
We have developed MARIO, a goal-driven tool for auto-
mated composition of stream processing applications. This
tool allows business users to create applications for their

goals without programming. We have also built an Eclipse-
based IDE for developers, which allows to describe com-
posable components, such as stream processing operators
and data sources, as well as composition patterns, and to
make these components and patterns available for applica-
tion composition by the business users. Our tools have been
used in a customer pilot since 2009, and are currently be-
ing extended to support other target platforms in addition to
IBM InfoSphere Streams.

Acknowledgements and Credits
This work, which has begun eight years ago, would not be
possible without the support of our customers, and the con-
tributions from our colleagues and interns at IBM Research.
Our former colleagues and team members Zhen Liu, Eric
Bouillet, and Hanhua Feng have each contributed to MARIO
very significantly. The authors also thank Kristina Winbladh,
Shirin Sohrabi and Genady Grabarnik for their contribu-
tions. We thank Nagui Halim for continued discussions and
valuable feedback. Finally, we thank the anonymous review-
ers of our papers who helped improve our work.

References
Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2008. A tag-based approach for the design
and composition of information processing applications. In
OOPSLA, 585–602.
Eclipse Foundation. Eclipse Project. http://eclipse.org.
IBM InfoSphere Streams. http://www.ibm.com
/software/data/infosphere/streams/.

Liu, Z.; Ranganathan, A.; and Riabov, A. 2007. A planning
approach for message-oriented semantic web service com-
position. In AAAI, 1389–1394.
Ranganathan, A.; Riabov, A.; and Udrea, O. 2009. Mashup-
based information retrieval for domain experts. In CIKM,
711–720.
Riabov, A., and Liu, Z. 2006. Scalable planning for dis-
tributed stream processing systems. In ICAPS.
Traverso, P., and Pistore, M. 2004. Automated composi-
tion of semantic web services into executable processes. In
ISWC04.
Winbladh, K., and Ranganathan, A. 2011. Evaluating test
selection strategies for end-user specified flow-based appli-
cations. In ASE, 400–403.

8

FlowOpt: Bridging the Gap Between Optimization Technology and
Manufacturing Planners

Roman Barták1*, Milan Jaška1, Ladislav Novák1, Vladimír Rovenský1, Tomáš Skalický1,
Martin Cully2, Con Sheahan2, Dang Thanh-Tung2

1 Charles University, Faculty of Mathematics and Physics, Malostranské nám. 25, Praha, Czech Republic
2 Entellexi Ltd., National Technology Park, Limerick, Ireland

* bartak@ktiml.mff.cuni.cz (contact e-mail)

Abstract
FlowOpt is an integrated collection of tools for workflow
optimization in production environments. It was developed as
a demonstration of advancements in the areas of modeling
and optimization with the focus on simplifying the usage of
the technology for end customers. The system consists of
several interconnected modules. First, the user visually
models a workflow describing the production of some item.
Then the user specifies which items and how many of them
should be produced (order management) and the system
automatically generates a production schedule. This schedule
is then visualized in the form of a Gantt chart where the user
can arbitrarily modify the schedule. Finally, the system can
analyze the schedule and suggest some improvements such as
buying a new machine. Constraint satisfaction technology is
the solving engine behind these modules.

Introduction
One of the biggest problems of today`s advanced
technology is its limited accessibility to users working in a
given domain but not necessarily being experts in the used
technology. Apple’s iPhone is a great example how
advanced technology can be made accessible to regular
users. With the tradeoff of slightly limited functionality, it
provides a user interface to very advanced techniques such
as Q&A (question and answering) that anyone can
immediately use without the hassle of long training.
 FlowOpt is a system that attempts to address the above
problem and bridges the gap between advanced optimization
technology developed at universities and practitioners from
production planning. In particular FlowOpt is targeted to
production planning in Small and Medium Enterprises. It
covers modeling, optimizing, visualizing, and analyzing
production processes in a streamlined feature-rich
environment. FlowOpt is a student software development
project at Charles University in Prague (Czech Republic).
The software itself is a collection of closely interconnected
modules that are plugged into the enterprise performance
optimization system MAK€ from Entellexi Ltd. (Ireland).

FlowOpt Functionality
FlowOpt covers almost the complete production-planning
cycle. It allows users to describe visually and interactively
the process of producing any item in the form of a nested
workflow with alternatives. After specifying what and how
many items should be produced, the system generates a
production plan taking in account the existing resources in
the factory. The plan is visualized in the form of a Gantt
chart that uses information about workflows and allows
users to arbitrarily modify the plan by selecting alternative

Figure 1. Visualization of a nested workflow in the FlowOpt
Workflow Editor (from top to down there are parallel, serial, and
alternative decompositions)

9

processes or allocating activities to different times or
resources. Finally, the schedule can be analyzed, the
bottleneck parts are highlighted and some improvements are
suggested to the user. We will now introduce the
functionality of individual modules.
 Workflow Editor allows users to create and modify
workflows in a visual way. We use the concept of nested
workflows that are built by decomposing the top task until
the primitive tasks are obtained (Barták and Čepek 2008).
Three types of decompositions are supported: either the task
is decomposed into a sequence of sub-tasks which forms a
serial decomposition or the task is decomposed into a set of
sub-tasks that can run in parallel – a parallel decomposition
– or finally, the task is decomposed into a set of alternative
sub-tasks such that exactly one sub-task will be processed to
realize the top task – an alternative decomposition (Figure
1). The final primitive tasks are then filled with activities
defined in the MAK€ system (Barták, Sheahan, Sheahan
2012); each activity has a given duration and a set of unary
resources necessary for its processing. The workflow can be
built in the top-down way by decomposing the tasks or in
the bottom-up way by composing the tasks. In practice the
user can combine both approaches by decomposing any task
or composing a collection of tasks to a form a new task that
is then placed to the hierarchical structure of the root task.
In addition to the core nested structure, the user can also
specify extra binary constraints between the tasks such as
precedence relations, temporal synchronizations (start-start,
end-start, end-end), or causal relations (mutex, equivalence,
and implication). Everything is done using an intuitive drag-
and-drop approach. The system also supports import of
foreign workflows and it has the function of fully automated
verification of workflows (Rovenský 2011). The goal of
verification is to find structural problems, namely to find
tasks that cannot be part of any valid process due to
workflow constraints. Figure 2 gives an example of output
of workflow verification with highlighted flaws.
 After defining the workflows for all items, this is the
modeling stage, it is possible to start generating production
plans. This is as easy as selecting the required items
(workflows) in the Order Manager, specifying their

quantities and required delivery date and starting the
Optimizer by pressing a single button in GUI. The data
about workflows, activities, and resources are automatically
converted to the scheduling model and the system produces
a schedule that is a selection of tasks from the workflows (if
there are alternatives) and their allocation to resources and
time. The Optimizer attempts to optimize both earliness and
lateness costs that are derived from the delivery dates.
Currently, the Optimizer supports only unary resources.
 The generated schedule (production plan) can by
visualized in the Gantt Viewer. This module provides both
traditional views of the schedule, namely the task-oriented
and resource-oriented views. Because the Gantt Viewer has
full access to the workflow specification, it can also
visualize the alternatives that were not selected by the
Optimizer. The Gantt Viewer allows users to modify any
aspect of the production plan using the drag-and-drop
techniques. The user can move activities to different times
and resources and change their duration. It is even possible
to select another alternative than that one suggested by the
Optimizer. Because the Gantt Viewer is aware about all the
constraints originating from the workflow specification, it
can also highlight violation of any of these constraints
(Figure 3). Even more, the Gantt Viewer can automatically
repair all flaws that were introduced to the schedule by the
user’s modifications (Barták and Skalický 2009).
 The final module is Analyzer that is responsible for
suggesting improvements of the production process. The
Analyzer first finds bottlenecks in a given schedule, for
example an overloaded resource. For each bottleneck, the
analyzer suggests how to resolve it – this could be by
buying a new resource or by decreasing the duration of
certain activities (for example by staff training). The
Optimizer then evaluates each such improvement and finds
possible relations between the improvements, for example
that applying two improvements together has more benefits
than the sum of contributions of individual improvements.
Finally the system selects a set of improvements such that
their combination brings the best overall improvement of
the production process under given constraints such as a
limited budged to realize the improvements.

Technology Inside
The FlowOpt system is unique combination of modeling
and optimization techniques. It is build around the concept
of Nested Temporal Networks with Alternatives (Barták and
Čepek 2008) that were suggested as a model of production
workflows with hierarchical structure and alternative
processes. In FlowOpt this concept was slightly modified
and extended with additional constraints. These constraints
may introduce flaws to the nested structure (for example a
cycle) and hence novel verification techniques for

Figure 2. Highlighting the found flaws after workflow verification.
The system shows all tasks that cannot be part of valid processes.

10

workflows were proposed and implemented (Rovenský
2011). The general verification technique is based on
modeling the problem as a constraint satisfaction problem
and using advanced temporal reasoning techniques, namely
IFPC algorithm (Planken 2008) to validate that there exists
a feasible process for each task in the workflow. The
information about workflows is combined with data about
activities and resources to automatically build a scheduling
model (Barták et al. 2010). Again, we use constraint
satisfaction techniques to solve the scheduling problem; in
particular, ILOG CP Optimizer is used to generate optimal
schedules (Laborie 2009). The schedule is visualized in the
form of a Gantt chart where the user can modify it. The
Gantt viewer highlights constraints violated by user
intervention, but it can also automatically repair these
constraints using a technique of shifting activities locally in
time (Barták and Skalický 2009). Again, constraint
satisfaction techniques and IFPC algorithm (Planken 2008)
are used in background. Finally, the Analyzer uses the idea
of critical paths to discover weak parts of the schedule.
Currently it uses ad-hoc rules to suggest some
improvements (overloaded resource → buy a new resource).
The improvements are then applied to the scheduling model
and the Optimizer generates a new schedule whose cost is
used to evaluate the improvement. Some interactions
between the possible improvements are also discovered
during this process. For example, the Analyzer can find that
one improvement strengthens another improvement. From
the set of possible improvements, a subset with the best
overall cost is selected by using the techniques of project
portfolio optimization. Again, the problem is modeled as a
constraint satisfaction problem and ILOG CP Optimizer is
used to solve it.

Demonstration Description
The complete process of generating a production plan will
be demonstrated. First, we will present the design process of
modeling nested workflows using decomposition and

composition of tasks. We will also add extra constraints that
introduce flaws to the workflow and then we will
demonstrate the workflow verification procedure and its
outputs. The schedule will be generated in real time and
then the visualization capabilities of the Gantt Viewer will
be presented. In particular we will show how the schedule
can be modified and how the system can automatically
repair the violated constraints. Finally, we will present the
Analyzer, namely finding the bottlenecks, proposing and
evaluating improvements, and selecting the best subset of
improvements.

Acknowledgments. The research and development of the
FlowOpt system was supported by the Czech Science
Foundation under the contract P202/10/1188 and by EU
Funding Scheme Research for the benefit of SMEs under
the project ValuePOLE (contract 222218).

References
Barták, R. and Čepek, O.; 2008. Nested Precedence Networks with
Alternatives: Recognition, Tractability, and Models. In Artificial
Intelligence: Methodology, Systems, and Applications (AIMSA 2008).
LNAI 5253, Springer Verlag, pp. 235-246.
Barták, R.; Little, J.; Manzano, O.; Sheahan, C.; 2010. From Enterprise
Models to Scheduling Models: Bridging the Gap. Journal of Intelligent
Manufacturing, 21(1), 121-132, Springer Verlag.
Barták, R.; Sheahan C.; Sheahan, A.; 2012. MAK€ – A System for
Modelling, Optimising, and Analyzing Production in Small and Medium
Enterprises. In Proceedings of 38th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM). LNCS
7147, Springer Verlag, pp. 600-611,
Barták, R. and Skalický, T.; 2009. A local approach to automated
correction of violated precedence and resource constraints in manually
altered schedules. In Proceedings of MISTA 2009: Fourth Multidisciplinary
International Scheduling Conference: Theory and Applications, Dublin,
Ireland, pp. 507-517.
Laborie, P.; 2009. IBM ILOG CP Optimizer for Detailed Scheduling
Illustrated on Three Problems. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-
AI-OR), LNCS 5546, Springer Verlag, pp. 148-162.
Planken, L.R.; 2008. New Algorithms for the Simple Temporal Problem.
Master Thesis, Delft University of Technology.
Rovenský, V.; 2011. Workflow Modeling. Master Thesis, Charles
University in Prague, 2011.

Figure 3. The task view of the FlowOpt Gantt Viewer with two highlighted constraints that are violated (exceeded capacity of resource Dave Good
and broken precedence constraint).

11

itSIMPLE4.0: Enhancing the Modeling Experience of Planning Problems

Tiago Vaquero1 and Rosimarci Tonaco2 and Gustavo Costa2

Flavio Tonidandel3 and José Reinaldo Silva2 and J. Christopher Beck1

1Department of Mechanical & Industrial Engineering, University of Toronto, Canada
2Department of Mechatronics Engineering, University of São Paulo, Brazil
3IAAA Lab, University Center of FEI - São Bernardo do Campo, Brazil

{tvaquero,jcb}@mie.utoronto.ca, {rosimarci, gustavorochacosta, reinaldo}@usp.br, flaviot@fei.edu.br

Introduction

The itSIMPLE project (Vaquero et al. 2007; 2009) is a re-
search effort to develop a reliable knowledge engineering
(KE) environment to support the design of AI planning ap-
plications. Unlike other KE tools for AI planning, itSIMPLE
focuses on the initial phases of a disciplined design cycle,
facilitating the transition of requirements to formal spec-
ifications. Requirements are gathered and modeled using
Unified Modeling Language (UML) (OMG 2005) to spec-
ify, visualize, modify, construct and document domains or
artifacts, in an object-oriented approach. A second repre-
sentation, Petri Nets (PN) (Rozemberg and Engelfriet 1998;
Murata 1989), is automatically generated from the UML
model and used to analyze dynamic aspects of the require-
ments such as deadlocks and invariants. A third repre-
sentation, Planning Domain Description Language (PDDL)
(Gerevini and Long 2006), is also automatically generated
in order to input the planning domain and instance into an
automated planner.

itSIMPLE’s framework and translators reduce the gap be-
tween real planning applications which are seldom repre-
sented directly in PDDL and state-of-the-art AI planners. it-
SIMPLE is an open-source, Java-based system that has been
applied to several real planning applications since 2005,
including petroleum supply port management (Sette et al.
2008), project management (Udo et al. 2008), advanced
manufacturing (Vaquero et al. 2006), information systems,
and intelligent logistics systems.

In this paper we describe the new features implemented in
version 4.0 of the itSIMPLE system. These new features aim
to enhance the modeling experience and provide designers
with extra tools to facilitate the model creation process, from
knowledge acquisition and modeling to plan generation and
analysis.

In what follows, we give a brief overview of the design
environment of itSIMPLE, sketching each available phase
of a design process, and the framework that integrates a set
of languages and formalisms used during the design process.
Next, we describe the new features of the tool (version 4.0)
and some future directions.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The Design Environment: Towards a
Disciplined Modeling Process for Planning

A completely formal design process is not possible since it
starts, by definition, with non-formalized, and perhaps tacit,
knowledge. itSIMPLE is divided into four primary phases,
which may be re-entered multiple times in an iterative fash-
ion and that define a design process which aims to capture
the essence of non-formalized knowledge and transform it
into a formal description of the planning domain. Each
phase is described below.

Requirements Elicitation and Modeling

Any planning system is embedded in a real environment,
that is, a myriad of “non-system” tools, objects, people, and
processes with which it must interact. It is necessary to have
a detailed model of this domain environment and it is im-
portant that this model be developed independently of the
planning system (McDermott 1981) based on the concept of
a work domain from Cognitive Design (Naikar, Hopcroft,
and Moylan 2005).

In itSIMPLE, requirements and knowledge are gathered
and modeled in an object-oriented fashion using a suite of
UML diagrams: class, state-machine, timing, and object di-
agrams. The UML diagrams are used to represent the main
aspects of the domain objects in the work domain and plan-
ning problem such as static information (objects and agents,
defined by classes and relations), dynamic information (state
transitions and features changed by actions) and problem
instance description (snapshots of objects and relationships
describing the initial state, goal state and desirable interme-
diate states for instance).

Domain Analysis

The Domain Analysis phase is based on static information
analysis and validation of dynamics using a state-transition
approach. Static analysis is performed by creating snapshots
and possible scenarios (using object diagrams) based on the
class diagrams and all constraints defined on them (Vaquero
et al. 2007). Dynamic analysis is performed by simulation
of Petri Nets created from UML models.

12

Plan Development
After modeling and analyzing the domain, itSIMPLE uses
PDDL to communicate the model to solvers, including
Metric-FF, FF, SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp,
SATPlan, Plan-A, Blackbox, MaxPlan, LPRPG, POPF, and
Marvin. Designers can run these planners and obtain the re-
sulting plans to be analyzed, all in the same environment.
This feature gives itSIMPLE a significant flexibility to ex-
ploit recent advances in solver technology.

Plan Analysis
itSIMPLE provides some functionality for plan analysis, in-
cluding plan visualization and plan simulation. A plan visu-
alization and simulation is provided by a functionality called
“Movie Maker” (Vaquero et al. 2007). This functionality
captures the model of a domain and the plan specification
in PDDL and shows the simulation of interactions between
the plan and the domain through a sequence of object dia-
grams. Another important functionality is to be able to an-
alyze plans according to domain variables, called “Variable
Tracking”.

Language Framework
The language framework of itSIMPLE was designed to be
flexible and open, allowing different languages to be added.
In order to integrate the languages and phases noted above,
the environment uses extensible markup language (XML)
(Bray et al. 2004) as a core meta-language. More details
about the translation processes can be found in (Vaquero et
al. 2009).

The New Features and Improvements
In this section we describe the new developed features in
itSIMPLE4.0.

PDDL from Start to End, If Needed
In order to support planning experts, we have expanded it-
SIMPLE’s framework to allow the creation of PDDL models
from scratch. We have designed an initial PDDL editor so
that user can load, edit and save PDDL files with domain
and problems descriptions.

PDDL files from IPC or others sources can be easily
loaded in itSIMPLE. The tool imports and automatically
separates the elements of domain and problems contained
in the file. The user can directly edit the domain model and
problem description in the itSIMPLE interface. The PDDL
editor in itSIMPLE also allows the user incorporate new ac-
tions, predicates, goals, initial states and many others PDDL
components by using templates. The editor has a syntax
highlighting that differentiates language elements by color.
After editing, users can use any planner integrated with the
itSIMPLE tool and analyze the generated plan.

Using Modeling Patterns
In domain-independent planning, some researchers have in-
vestigated the identification of common structures in the do-
main model in order to trigger a more appropriated plan-
ning strategy (Long and Fox 2000; Clark 2001). Long &

Fox (2000) studied the detection of patterns (model sym-
metry and generic types) in the knowledge model, focusing
on enhancing the performance of automated planners (e.g.,
STAN) by exploiting specialized techniques when particular
structures are identified. Patterns have been found in several
planning problems that have transportation (Long and Fox
2000) or construction (Clark 2001) characteristics. In (Long
and Fox 2000), the authors characterize the main types exist-
ing in transportation problems, including, for instance, mo-
bile (types of objects that move on a map), location, portable
(type of object that are carried by mobiles on a map) and a
hierarchy of other mobile-related generic types (Long and
Fox 2000). Simpson et al. (2002) have made these pat-
terns (generic types) available in the modeling tool GIPO
for domain knowledge designers. Their work has provided
an initial pattern language for AI planning problems for the
mobile-related patterns. To our knowledge, however, none
of this work has provided a definition, description format or
catalog of design patterns for AI planning. Our work in this
direction can be seen as a continuation of the work done by
Simpson et al. (2002). However, our long-term goal is to (1)
provide such a definition and description format of design
patterns for AI Planning in a object-oriented fashion and (2)
propose an initial design patterns catalog.

As a step toward our goal to provide modeling patterns
to users, we have designed an initial (small) set of patterns
and made them available for the user in UML. We provide
a description of the intention of the pattern, scenarios, ap-
plicability, and the model representation using UML. We
followed a simple approach on this version of the system
in which users can import a pattern as a predefined set of
UML diagrams (classes, constraints and action definitions).
Based on previous work and analysis of benchmark and real
planning problems we provide the following initial set of
patterns:

• Move & Reach: a basic pattern that can be used to rep-
resent objects that can move and must reach certain po-
sitions or locations on a map. The pattern encapsulates
the behavior of two classes of objects (roles): Mobile
(agent) and Location. The common behavior of mobile
types has already been observed and defined in (Long and
Fox 2000). Here we are representing them in a object-
oriented fashion with UML.

• Transportation: a pattern that represents agent objects
(carriers) that can carry cargo items (portables) between
locations on a map. The pattern encapsulates the behav-
ior of the classes Carrier (agent), Cargo and Location. The
common behavior of carriers and portable types has also
been observed and defined in (Long and Fox 2000).

• Stack & Place: a pattern that can be used to represent an
agent object that can pile up, fit and organize item objects
on a surface or in a container. The pattern encapsulates the
behavior of the classes Stacker (agent), Item and Surface
(e.g., grid).

• Assembling: a pattern representing agent objects that must
compose or decompose parts to create structures or other
composed parts. Such (dis)assembling process has to fol-

13

low an order. The pattern encapsulates the behavior of the
classes Assembler (agent) and Part.

Time-based Models
We have recently (since version 3.5) added features to it-
SIMPLE to allow the representation of some time con-
straints. The tool provides timing diagrams to describe how
(boolean) properties of objects change during the execution
of an action, i.e., defining if a property becomes true at the
beginning or at the end of a durative action. These diagrams
are used to translate the conditions and effects of the ac-
tions to PDDL while assigning the right temporal operator
to them (e.g., at start, at end, over all) (Fox and Long 2003).
However, the tool did not cover the spectrum of timing con-
straints expressible in PDDL. In the new version of itSIM-
PLE, we have refined the way users input time constraints.
When using a timing diagram, users are now able to specify
whether the diagram represents the effect or the precondi-
tion of the action (the system then translates the conditions
to PDDL with the right temporal operator). The use of tim-
ing diagrams in the tool is still restricted to an action hori-
zon (as opposed to multiple actions or a series of actions)
and to boolean properties. However, we have made another
extension to overcome the latter problem and to open ways
to a more elaborated definition of time constraints in the ac-
tions’ conditions and effects. Since users define pre- and
post-conditions with the Object Constraint Language (OCL)
(OMG 2003) in itSIMPLE, we let them index, or annotate,
their OCL sentences with the desired temporal interval (e.g.,
[t1,t2] or (t1,t2]). For example, users can annotate a precon-
dition sentence such as ‘truck.at = loc and pkg.in = truck’
with the temporal interval [0,10], meaning that the condi-
tion must be true from time point 0 to 10 after an action has
started. It is also possible to use reserved words such as start
and end in the interval (e.g., [start,start] or [start,end] or
[end,end]) to annotate any sentence in the precondition and
effect (note that a precondition annotated with (start,end) or
[start,end] would be translated to PDDL using the over all
temporal operator). This extension is just one more step to
translating timing constraints to PDDL. We are working on
other approaches, such as timelines, to provide more model-
ing capabilities for time-based models.

Wizards for State Creation
We have been designing features to facilitate the task of cre-
ating large scale problem instances using UML object dia-
grams. We have developed wizards that can reduce the time
spent creating the initial state, goal state, or any intermediary
preferable state as snapshots. In many cases, users have to
specify and input several pieces of data, for example about
the distance between locations. Depending on the number of
locations the model contains, it can be time consuming to put
this information in the model. itSIMPLE allows the user to
import this information from a file or even link the file in the
model so the tool can use it when translating to PDDL and
sending the model to a planner. The file format is currently
limited to text files with each record in each line. However,
we plan to expand this idea to cover input data from other
types of files and chiefly from databases: users provide the

queries and the database access so the tool can take care of
retrieving the information from the database.

Creating associations among several objects in a diagram
can also be tedious. We have designed a wizard that allows
users to select a group of objects and associate them in dif-
ferent ways. For example, users can associate all of them,
associate just the neighbors, just the object in the right, just
in the left, and so forth. We have also designed wizards that
can create a predefined network of objects. For example,
users can create grids of locations or places by providing the
size of the grid, the class that represents the nodes in the
grid, the association that defines the edges of the network,
and the list of names of the generated objects (if necessary).
In addition, when selecting more the one object of the same
type it is possible to set their attribute values once, without
having to define them individually.

Exchanging and Sharing Experimental Setups
As described in previous sections, itSIMPLE is integrated
with several automated planners. Users can set up experi-
ments with the available planners, simulating what is done
in IPC. In previous versions of the system, designers were
able to select their favorite planners and run them over a
set of planning problem instances or even over several in-
stances of different domains. In the current version, users
are able to store the setup of an experiment in a XML file
and share it with others. A stored experimental setup can
be used to run the same experiment in different machines.
For example, one can design his/her experiment on a laptop,
export the setup and run it on a server later. It can also be ex-
changed and reused among researches and designers. Such
a setup stores the information about what planners must be
executed, in which order, what needs to be recorded (e.g.,
runtime, metrics), and the timeouts. Initially, users need to
have itSIMPLE installed in the machines that the experiment
will run.

Future Directions
In the itSIMPLE project, we aim to provide the ultimate
tool for modeling, testing, analyzing and deploying AI plan-
ning domain models. itSIMPLE will be extended to deal
with semantic analysis of UML and PDDL models, cross-
validation among model components and model dynamic
simulation through Petri Nets in the future. Many items
that lead the tool to encompass all of these features have
been implemented, but there are many more to develop. it-
SIMPLE must be improved with a more complete and ac-
curate time-based modeling, as well as allowing the user
to model HTN domains and domains with probabilistic fea-
tures. HTN domains can be easily modeled by using activity
diagrams which are native to UML. Probabilistic features
demand an extension of UML: a more detailed analysis of
the viability of this direction is needed.

Since itSIMPLE works with UML, it is natural to think
that it can deal with design patterns to help the user to model
domains by capturing some past solutions to improve the
current model. Initial design patterns have been already in-
corporated in itSIMPLE tool. However, much work is still

14

needed to reach a full use of design patterns in UML plan-
ning models.

itSIMPLE has been remodeled to become more feasible
and useful. Some new ways to model and manipulate the
planning environment and applications in UML, PDDL or
Petri Nets have changed and will be changing more in the
near future. All of these modifications aim to provide a tool
with more usability and user-friendly features.

Conclusion
itSIMPLE has been developed since 2004 and presented
since the first ICKEPS competition in 2005. Since then, we
have been working on eliminating remaining gaps between
practical applications and planning systems. Many features
have been implemented over the last eight years and itSIM-
PLE is finally becoming a tool that can allow researchers,
industrial users, students and other stakeholders to take ad-
vantage of recent planning development. The new features
described in this paper show that itSIMPLE has reached a
mature level with a stable version of UML modeling, do-
main analysis and planning simulations. It is a user-friendly
tool not only for beginners, students and non-planning ex-
perts, but also for planning experts.

References
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.; and
Yergeau, F. 2004. Extensible Markup Language (XML) 1.0
(Third Edition). Technical report.
Clark, M. 2001. Construction domains: A generic type
solved. In Proceedings of the 20th U.K. Planning and
Scheduling Workshop.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft con-
straints in pddl3. In Gerevini, A., and Long, D., eds., Pro-
ceedings of ICAPS workshop on Planning with Preferences
and Soft Constraints, 46–53.
Long, D., and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. In Artificial Intelligence Plan-
ning and Scheduling AIPS-00, 196–205. Breckenridge, CO:
AAAI Press.
McDermott, J. 1981. Domain knowledge and the design
process. In DAC ’81: Proceedings of the 18th conference on
Design automation, 580–588. Piscataway, NJ, USA: IEEE
Press.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
Naikar, N.; Hopcroft, R.; and Moylan, A. 2005. Work
domain analysis: Theoretical Concepts and Methodology.
Technical report.
OMG. 2003. UML 2.0 OCL Specification m Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, m Version 2.0.

Rozemberg, G., and Engelfriet, J. 1998. Elementary net
systems. Lecture Notes in Computer Science 1491:12–121.
Springer.
Sette, F. M.; Vaquero, T. S.; Park, S. W.; and Silva, J. R.
2008. Are automated planners up to solve real problems? In
Proceedings of the 17th World Congress The International
Federation of Automatic Control (IFAC’08), Seoul, Korea,
15817–15824.
Udo, M.; Vaquero, T. S.; Silva, J. R.; and Tonidandel, F.
2008. Lean software development domain. In Proceedings
of ICAPS 2008 Scheduling and Planning Application work-
shop. Sydney, Australia.
Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva, J. R.
2006. On the use of uml.p for modeling a real application
as a planning problem. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 434–437.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From requirements and analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third ICK-
EPS, ICAPS 2009, Thessaloniki, Greece.

15

Inspect, Edit and Debug PDDL Documents:
Simply and Efficiently with PDDL Studio

Tomas Plch1, Miroslav Chomut2, Cyril Brom3, Roman Barták4

Faculty of Mathematics and Physics, Charles University in Prague
1tomas.plch@gmail.com 2chmirko@gmail. com 3brom@ksvi.mff.cuni.cz 4bartak@ktiml.mff.cuni.cz

Abstract
The Planning Domain Definition Language (PDDL)
represents a standard for definitions of planning domains
and problems. Researchers and designers often make
semantic and syntax errors due to the language’s
complexity. At the same time, it is hard to read and work
with larger documents in PDDL. We have developed a tool
called PDDL Studio, which is aimed at aiding in creation
and inspection of PDDL documents. The editor’s main
features are: 1) PDDL parser capable of localizing syntax
and semantic errors, 2) PDDL syntax highlighting, 3)
context sensitive code completion and hints - similar to
Microsoft’s IntelliSense for declarative languages, 4) code
collapsing, 5) PDDL document management, and 6) planner
integration. Our PDDL Editor also features a PDDL Parser
tool, which can be used as a standalone parser for other
projects.

Introduction
The Planning Domain Definition Language (PDDL)
(McDermott et al. 1998) represents a standard for creating
definitions of planning domains and problems and is
utilized as input for various planners e.g. JSHOP, JSHOP2
(Nau et al. 1999), BlackBox (Kautz and Selman 1998),
Metric-FF (Hoffman 2003).

The current practice is to create PDDL documents either
by hand via simple editing tools e.g. Notepad++, or via
tools and languages for domain knowledge and
characteristics specification (i.e. knowledge engineering).
To name a few of such tools: itSimple (Vaquero et al.
2009) utilizes the combination of graphical UML
specification and XML, GIPO IV (Simpson 2007) uses
custom diagram notation, and ViTAPlan (Vrakas and
Vlahavas 2003) for domain and problem visualization. An
extensive study of the various tools and approaches can be
found in (Vaquero et al. 2011). It is noteworthy that there
is a multitude of tools aimed at verification of PDDL like
the VAL tool (Howey et al. 2004) or PDver (Raimondi et
al. 2009).

At some point during the process of knowledge
engineering for planning and scheduling, the need for
directly inspecting and editing of PDDL documents often
occurs. Regardless of whether these documents are created
automatically or manually, they often are large and
complex, thus being hard to inspect.

The imperative programming language community (i.e.
utilizing languages like C++ and Java) has a wide range of
Integrated Development Environments (IDEs) e.g. Visual
Studio 2010 (VS10), NetBeans, and Eclipse. Various
functionalities (e.g. syntax highlighting, on the fly syntax
checking, code completion and contextual hints), help
programmers to develop in a faster and more convenient
manner. The planning community lacks such an integrated
tool (i.e. editor) for PDDL. With this motivation in mind,
we created our PDDL Studio application, which is aimed at
bringing the imperative programming culture of editing
source code to the planning community. In this paper we
overview main features of PDDL Studio.

PDDL Studio
Our project, PDDL Studio (Figure 1), is focused on
providing a simple editing IDE. The application itself is
written in C++ and is designed with portability in mind,
utilizing portable technologies like the Flex Lexical Parser
(Paxson 2008), Bison parser generator (GNU 2011) and
the Qt framework (Qt Project 1992) for visual
representation.

We identified a broad range of necessary capabilities,
which are present in most of applications like VS10,
NetBeans, Eclipse and can be applied to the PDDL
language:
• Project management – creation and management of

documents
• Syntax error detection – interactive localization and

identification of PDDL syntax errors
• Syntax highlighting – coloration of language elements

16

• Semantic error detection – detection of simple semantic
errors

• Context sensitive code completion – providing hints to
the user what to write based on the current context in the
document’s input

• Code collapsing – portions of the code can be collapsed
to provide better readability

• XML import/export – creating an XML variant of the
PDDL document

• Planner integration – the ability to execute a planner
with the PDDL documents as input

• Common Editor Features – line numbering and bracket
matching

Figure 1: PDDL Editor window with Editing Window (A)
having highlighted syntax, Interactive Error Report (C) and
Project Manager (B) with additional information about file
status (number of errors, save status etc.)

The remainder of this section is focused on describing
the realization of the outlined capabilities in PDDL Studio.
The main aim of the realization is to provide intuitive and
easy to use features that would facilitate the task of
creating PDDL encodings.

Project management
Presently, the Project Management in PDDL Studio is
rather simplistic, providing only the capability to create
projects, add and remove files from the project. The
Project Manager also provides additional information on
project files (e.g. present error counts, change status etc.).

Syntax error detection
Syntax error detection is one of the most important features
of the PDDL Studio. We created our own dedicated PDDL
parser build upon Flex and Bison (presently supporting
PDDL 1.7), making the project more portable. The parser
is designed to be used independently from the PDDL
Studio’s code as a library or C++ code. The parsing
process creates a tree-like representation of the PDDL

document’s elements. Our testing domains of 1000 lines
can be parsed below 100 ms on a standard Dual Core
notebook processor at 1.8GHz utilizing one core.

The error detection mechanism is executed on the fly
during editing of the PDDL document. If the user only
views the file, the detection mechanism is suspended. If the
user inserts or removes text, the detection mechanism is
prepared for execution after a predefined period of
inactivity – i.e. the user stopped typing. The parsing
mechanism can be further suspended if the user resumes
typing. This allows providing smoother error detection,
avoid over-consuming resources, and avoid bothering the
user with false positives on syntax errors.

The error detection module provides a list of errors
presented as an interactive error table and underlines the
found errors in the document. It can be seen in Figure 1
(C). When accessed (e.g. double click on an error’s row),
the editor points directly to the detected error. In respect to
the PDDL specification, we can localize misspelled or
missing keywords. When a mandatory keyword is missing,
we also identify which keyword is missing, thus providing
a hint to the user.

Syntax Highlighting
Based on our experience with various programming IDEs,
we perceive the syntax highlighting as one of the most
important aids when inspecting any code. It is a key feature
included in every usable IDE tool since colored fonts were
available. It vastly improves the ability for the developer to
read code and distinguish language elements – i.e.
variables, types, functions, predicates.

We use the tree-like structure provided by our parser to
identify language elements and assign colors to the
resulting editable text. The result can be seen in
Figure 1 (A). The user can set his preferred colors for the
edited text and the following language constructs:
• problem and domain names
• variable names
• detected errors – these are underlined for better display

and this color overrides the color of any other element
• PDDL keywords – e.g. requirements, predicates etc.
• predicate names
• type names
• highlighted brackets – pairs of brackets are highlighted

when the user points the editing cursor at one of them

Semantic error detection
The PDDL Studio is also capable of detecting semantic
errors in respect to the language specification and the
provided requirements (e.g. Disjunctive-Preconditions).
The parsed tree-like structure is used to determine where
these errors are located in the PDDL documents and what

17

their nature is. This information is provided within the
error table (Figure 1(C)). We can detect the following
semantic errors:
• Use of non-existent types – when the user misspells a

type which is not present in the type declaration. This is
checked based on the typed requirement.

• Use of non-existent predicates – when a predicate is
misspelled or not defined correctly.

• Inconsistent use of predicates parameters – when a
predicate is used with wrong parameter types.

• Inconsistent use in respect to domain requirements.

Context sensitive code completion
Code completion is an important feature currently included
in every major IDE. The basic idea is to provide the user
with hints based on the current scope (e.g. available
functions, keywords etc.) while editing the document. This
feature takes the burden of the user to avoid errors i.e.
typing errors and syntactic and semantic errors. It also
provides a speed-up for development.

Our code completion is context sensitive – based on the
current edited portion of the PDDL document as can be
seen in Figure 2.

Figure 2: Context sensitive auto completion – a hint is
given for a subsection of the Action element

We can provide completion hints in the following areas:
• language keywords – basic PDDL language elements
• domain specification for problems on known domains in

the project
• predicates for problem initialization on known

predicates in the project
• content for the requirements specification
• defined variables and parameters
• defined predicates

Code collapsing
The code collapsing feature is important for better code
readability. Parts of the code – code blocks – can be
hidden, because the reader does not need to read them at
the moment.

Our project provides possibility to collapse
automatically detected portions of code (e.g. actions,
predicates etc.). The PDDL language is based on Lisp
notation, therefore is full of code blocks. We presently
support only high level code collapsing (Figure 3) – i.e. at
the level of whole actions, predicates etc. We are working
on a method to specify how deep the code collapsing
should be allowed to maintain readability and limit the
amount of collapse points. This context sensitive code
collapsing feature is currently under development.

Figure 3: Code collapsing of an action pick-up block. The
‘-’ sign is used to indicate collapse points, the ‘+’ sign is
used to indicate expansion points.

XML export and import
On one hand the PDDL language is hard to read and on the
other hand it is hard to parse. We created our XML
equivalent of the PDDL Language notation. The
PDDL Studio can export and import this format for use by
other applications or for better readability by other
developers.

Planner integration
PDDL Studio provides the capability to integrate any
planner which can be executed from a system command
line – i.e. console prompt. We provide the user with our
execution console which allows for project specific simple
scripts (Figure 4).

These scripts are parsed and the result is executed via
the system console. Various parameters can be used, e.g.
current project directory, file names of PDDL files etc.

18

Figure 4: Planner integration using simple scripts executed
in trough the system command line

Common Editor Features
The PDDL Editor also incorporates common editor
features like line numbering and bracket matching. Line
numbering is represented in the left portion of the screen.
Bracket matching is used to identify bracket pairs by
coloring them. It allows the user to detect missing brackets.

Conclusion and Future work
The PDDL Studio is a simple but powerful tool for
creation and management of PDDL projects. We created it
to mimic the behavior of the commonly and widely utilized
IDEs like Visual Studio 2010 or Eclipse (in respect to code
editing). The main features of this tool are the capability to
locate and identify syntax and semantic errors in the PDDL
document and provide semantic hints on code completion.
The tool also provides features like syntax highlighting and
code collapsing, which allow the user to read and inspect
the code easily.

In the next version, we intend to integrate a more
complex and capable project management system similar
to the one present in VS10. We intend to extend our PDDL
parser to be used with the newest version of PDDL. We
also work on extending our semantic error detection and
work on integrating our tool with a plan visualization and
inspection tool and our own planner.

We also intend to provide the user with the capability to
create custom templates for various purposes – e.g. action
skeletons filled based on given or guessed parameters. We
also want to provide automated on the fly indentation of
documents. The user might request a view-only custom
indentation of the displayed documents to suit his
reading/writing style. We also want to incorporate a simple
mechanism to invoke various actions (e.g. commenting of
selected text portions, inserting custom text templates etc.)
via user defined key combinations (e.g. Ctrl + Shift + F1).

Acknowledgement: This work was partially supported by
a student grant GA UK No. 0449/2010/A-INF/MFF, by
project P103/10/1287 (GA ČR) and GA UK No.
655012/2012/A-INF/MFF.

The application can be downloaded at:
http://amis.mff.cuni.cz/PDDLStudio.

References
GNU Project. 2001. GNU Bison.
http://www.gnu.org/software/bison (ver. 2.5 2011).

Hoffmann, J. 2003. The Metric-FF Planning System: Translating
''Ignoring Delete Lists'' to Numeric State Variables. Journal of
Artificial Intelligence Research, Volume 20, pages 291 - 341.

Howey, R., Long, D., Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning
using PDDL. Tools with Artificial Intelligence, ICTAI 2004

Kautz, H., Selman, B. 1998. BLACKBOX: A New Approach to
the Application of Theorem Proving to Problem Solving.
Working notes of the Workshop on Planning as Combinatorial
Search, held in conjunction with AIPS-98, Pittsburgh, PA.

McDermott D., Ghallab M., Howe A., Knoblock C., Ram A.,
Veloso M.; Weld D., Wilkins D. 1998. PDDL – The Planning
Domain Definition Language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control, New Haven, CT.

Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H. 1999. SHOP:
Simple Hierarchical Ordered Planner. In IJCAI-99, pp. 968-973.

Paxson, V. 1987. Flex Lexical Analyzer.
http://flex.sourceforge.net (ver. 2.5.35 2008).

Qt Project. 1992. Qt. http://www.qt-project.org (ver. 4.8.0 2011).

Raimondi, F., Pecheur, C., Brat , G. 2009. PDVer, a tool to verify
PDDL planning domains. In Proceedings of ICAPS’09
Verification and Validation of Planning and Scheduling Systems.

Simpson, R. M. 2007. Structural Domain Definition using GIPO
IV. In Proceedings of the Second International Competition on
Knowledge Engineering for Planning and Scheduling

Vaquero, T., S., Silva, J., R., Beck, J., C. 2011. A Brief Review of
Tools and Methods for Knowledge Engineering for Planning &
Scheduling. In: Proceedings of the Knowledge Engineering for
Planning and Scheduling (KEPS) workshop. The 21th
International Conference on Automated Planning & Scheduling
(ICAPS 2011). Freiburg. Germany.

Vaquero, T. S., Silva, J. R., Ferreira, M., Tonidandel, F., Beck, J.
C. 2009. From Requirements and Analysis to PDDL in
itSIMPLE3.0. In Proceedings of the Third International
Competition on Knowledge Engineering for Planning and
Scheduling, ICAPS 2009, 54–61.

Vrakas, D. and Vlahavas, I. 2003. ViTAPlan: A Visual Tool for
Adaptive Planning, In Proceedings of the 9th Panhellenic
Conference on Informatics, Thessaloniki, Greece, pp. 167-177.

19

Demonstration Abstract: New Developments in Real-Time Heuristic Search

Carlos Hernández
Depto. de Ingenierı́a Informática

Univ. Católica de la Ssma. Concepción
Concepción, Chile
chernan@ucsc.cl

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Univ. Católica de Chile
Santiago, Chile

jabaier@ing.puc.cl

Tansel Uras Sven Koenig
Department of Computer Science
University of Southern California

Los Angeles, USA
{turas,skoenig}@usc.edu

Abstract

Our demonstration consists of a poster, videos and inter-
active simulations of real-time heuristic search algorithms
for goal-directed navigation on a priori completely or par-
tially unknown grids. It provides a brief introduction to
real-time heuristic search by describing LSS-LRTA* and
RTAA*. It then illustrates a performance issue of LSS-
LRTA* and RTAA* due to depressions in the h-value surface.
It describes the real-time heuristic search algorithms aLSS-
LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*—which
address this issue—and summarizes their properties. Our
demonstration also illustrates a performance issue of LSS-
LRTA* and RTAA* due to performing repeated A* searches
around the current cells of the agent. It describes RTBA*
and TBAA*, two real-time heuristic search algorithms that
address this issue, and summarizes their properties.

Motivation
Many applications require agents to act quickly in a priori
completely or partially unknown environments. Examples
range from autonomous cars to video games, where compa-
nies impose time limits on the order of 1 millisecond (ms)
for path planning (Bulitko et al. 2011). Such time limits
are insufficient for finding complete paths, and an agent thus
needs to move before it has found a complete path. We use
goal-directed navigation on a priori completely or partially
unknown grids with blocked and unblocked cells as running
example. The agent always observes the blockage status of
its eight neighboring cells and has to move from a given
start cell to a given goal cell by repeatedly moving to an un-
blocked neighboring cell. Performance is measured by the
number of moves before the agent reaches the goal cell. We
study an agent that uses real-time heuristic search algorithms
(Korf 1990) to determine its moves. Real-time heuristic
search algorithms interleave A* searches (Hart, Nilsson, and
Raphael 1968) with moves. We assume that the reader is fa-
miliar with A* and the associated terminology and give two
examples of real-time heuristic search algorithms for goal-
directed navigation on a priori completely or partially un-
known grids in the following, both of which are variants of
LRTA* (Korf 1990):

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• LSS-LRTA* (Koenig and Sun 2009) assumes that cells
with unknown blockage status are unblocked (Zelinsky
1992; Koenig, Tovey, and Smirnov 2003). This free-space
assumption allows LSS-LRTA* to perform an A* search
from the current cell of the agent to the goal cell until the
goal cell is about to be expanded, the open list becomes
empty or a given number of cells have been expanded. If
the open list becomes empty, the agent stops unsuccess-
fully. The states in the closed list form the local search
space (LSS). LSS-LRTA* sets the h-values of all states in
the closed list to the largest possible h-values that main-
tain the consistency of all h-values. The agent then moves
along the shortest path from its current cell to a cell with
the smallest f-value found by the A* search and remem-
bers all blocked cells that it observes. If it reaches the goal
cell, it stops successfully. If it observes a blocked cell on
the current path or reaches the end of the path, it repeats
the process.

• RTAA* (Koenig and Likhachev 2006b) is almost identi-
cal to LSS-LRTA*; the difference is that it updates the
h-values faster than LSS-LRTA*. RTAA* often outper-
forms LSS-LRTA* even though the h-values of RTAA*
are typically not as informed as the ones of LSS-LRTA*.
However, this is often compensated for by RTAA* be-
ing able to expand more cells within a given time limit
(Koenig and Likhachev 2006b; Hernández and Baier
2012).

In the following, we discuss new developments in real-
time heuristic search that address two drawbacks of existing
real-time heuristic search algorithms such as LSS-LRTA*
and RTAA*, namely poor performance due to depressions
in the h-value surface and due to performing repeated A*
searches around the current cells of the agent. We explain
these problems, sketch new real-time heuristic search algo-
rithms that address them and describe their properties.

Heuristic Depressions
LSS-LRTA* and RTAA* have a performance issue due to
heuristic depressions, that is, valleys in the h-value surface
(Ishida 1992). We focus on cost-sensitive heuristic depres-
sions (Hernández and Baier 2012), that is, connected cells in
a set D that are completely and immediately surrounded by
cells in a set F such that h(s) < d(s, s′) +h(s′) for all cells

20

10,000

100,000

500,000

1,000,000

 0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Time per Planning Episode in msec

LSS-LRTA* Variants: Cost vs Time per Episode (Games)

LSS-LRTA*

aLSS-LRTA*

daLSS-LRTA*

10,000

100,000

500,000

1,000,000

 0 0.02 0.04 0.06 0.08 0.1 0.12

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Time per Planning Episode in msec

RTAA* Variants: Cost vs Time per Episode (Games)

RTAA*

aRTAA*

daRTAA*

Figure 1: Evaluation of aLSS-LRTA*/daLSS-LRTA* and aRTAA*/daRTAA* on A Priori Completely Unknown Grids

s ∈ D and s′ ∈ F , where d(s, s′) is the distance from s to
s′ and h(s) and h(s′) are the h-values of s and s′, respec-
tively. When an agent enters such a heuristic depression,
it often executes many moves before it leaves the heuristic
depression again. We describe real-time heuristic search al-
gorithms for goal-directed navigation in a priori completely
or partially unknown grids that address this issue by mov-
ing the agent to avoid heuristic depressions, namely aLSS-
LRTA*, daLSS-LRTA*, aRTAA* and daRTAA*:

• daLSS-LRTA* (Hernández and Baier 2012) is almost
identical to LSS-LRTA* and daRTAA* (Hernández and
Baier 2012) is almost identical to RTAA*; the only differ-
ence is that daLSS-LRTA* and daRTAA* find a shortest
path from the current cell of the agent to a cell with the
smallest f-value among all cells for which the h-values
have changed the least (rather than to a cell with the small-
est f-value). This moves the agent to avoid heuristic de-
pressions for the following reason: Let ∆(s) be the dif-
ference between the length of the shortest path from cell
s to the goal cell and the initial h-value of s. If s is a cell
close to the border of depression D and s′ is a cell more
in the interior of D, ∆(s′) ≥ ∆(s).

• aLSS-LRTA* (Hernández and Baier 2012) is almost iden-
tical to LSS-LRTA* and aRTAA* (Hernández and Baier
2012) is almost identical to RTAA*; the only difference is
that aLSS-LRTA* and aRTAA* find a shortest path from
the current cell of the agent to a cell with the smallest
f-value among all cells for which the h-values have not
changed. If such cells do not exist, aLSS-LRTA* and
aRTAA* find a shortest path from the current cell of the
agent to a cell with the smallest f-value, like LSS-LRTA*
and RTAA*. This is a simpler way of moving the agent to
avoid heuristic depressions.

We compared aLSS-LRTA*, daLSS-LRTA*, aRTAA*
and daRTAA* with the real-time search algorithms LSS-
LRTA* and RTAA*. Our results, shown in Figure 1, indicate
that daLSS-LRTA* and daRTAA* outperform LSS-LRTA*

and RTAA*, respectively, by one order of magnitude when
the time per planning episode is small. Details are given in
(Hernández and Baier 2012).

Local Searches
LSS-LRTA* and RTAA* have a performance issue due to
performing local searches, that is, repeated A* searches
around the current cells of the agent. We describe RTBA*
and TBAA*, two real-time heuristic search algorithms for
goal-directed navigation in a priori completely or partially
unknown grids that address this issue in the context of the
game time model. The game time model partitions time into
time intervals of a given length of time. During each time in-
terval, the agent is allowed to search for the given length of
time and then execute a single move (or pass on the move).
Performance is measured by the number of time intervals
before the agent reaches the goal cell. This performance
measure is more realistic for video games than the number
of moves before the agent reaches the goal cell since agents
in video games are not allowed to execute moves at arbitrar-
ily high speeds.

TBA* (Björnsson, Bulitko, and Sturtevant 2009) is a real-
time heuristic search algorithm for goal-directed navigation
on a priori known grids that performs one global search, that
is, an A* search around the start cell. It performs an A*
search from the start cell to the goal cell until the goal cell
is about to be expanded or the open list becomes empty. If
the open list becomes empty, the agent stops unsuccessfully.
At the end of each time interval, the agent makes one move
along a path from its current cell to the cell with the small-
est f-value found by the A* search, by either following the
shortest path from the start cell to a cell with the smallest
f-value (if its current cell is on this path) or by moving to the
parent of its current cell in the A* search tree. If it reaches
the goal cell, it stops successfully. TBA* often outperforms
LSS-LRTA* and RTAA* since a global search increases the
chances that the agent follows a short path from the start
cell to the goal cell (Hernández et al. 2012). We describe

21

RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite
Length of Time # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves
Intervals (ms) Intervals Intervals Intervals Intervals Intervals Intervals Intervals

0.3 3,245 3,244 2,879 2,878 4,613 4,604 2,290 2,286 7,155 2,004 3,230 2,010 2,203 2,027
0.6 2,598 2,597 2,472 2,471 3,368 3,360 2,147 2,144 4,487 2,004 2,572 2,010 2,090 2,027
0.9 2,451 2,450 2,418 2,417 2,918 2,910 2,101 2,099 3,611 2,004 2,361 2,010 2,062 2,027
1.2 2,310 2,309 2,305 2,304 2,695 2,688 2,086 2,083 3,178 2,004 2,260 2,010 2,051 2,027
1.5 2,281 2,280 2,272 2,271 2,560 2,553 2,070 2,068 2,920 2,004 2,202 2,010 2,045 2,027

Table 1: Evaluation of RTBA* and TBAA* on A Priori Completely Unknown Grids

RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite
Length of Time # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves # Time # Moves
Intervals (ms) Intervals Intervals Intervals Intervals Intervals Intervals Intervals

0.3 2,694 2,693 2,460 2,459 2,734 2,730 1,505 1,504 6,324 1,409 2,430 1,399 1,659 1,418
0.6 2,039 2,038 1,863 1,862 2,037 2,034 1,442 1,441 3,812 1,409 1,875 1,399 1,532 1,418
0.9 1,840 1,839 1,779 1,778 1,860 1,857 1,431 1,430 2,979 1,409 1,695 1,399 1,490 1,418
1.2 1,707 1,706 1,643 1,642 1,726 1,724 1,421 1,420 2,564 1,409 1,608 1,399 1,470 1,418
1.5 1,620 1,619 1,642 1,641 1,668 1,666 1,415 1,414 2,316 1,409 1,556 1,399 1,458 1,418

Table 2: Evaluation of RTBA* and TBAA* on A Priori Partially Unknown Grids

two variants of TBA* for goal-directed navigation on a pri-
ori completely or partially unknown grids:

• RTBA* (Hernández et al. 2012) is almost identical to
TBA*, the only difference is that, if the agent observes
a blocked cell on the path from its current cell to the cell
with the smallest f-value, RTBA* starts a new A* search
from the current cell of the agent to the goal cell.

• TBAA* (Hernández et al. 2012) is almost identical to
RTBA*, the only difference is that, like RTAA*, it sets
the h-values of all states in the closed list to the largest
possible h-values that maintain the consistency of all h-
values before it starts a new A* search. To be precise,
it actually defers an h-value update until the time when
the h-value is needed during a future A* search to avoid
computing those h-values that are not needed later. The h-
value updates make the h-values more informed and thus
focus future A* searches better.

We compared RTBA* and TBAA* with the real-time
heuristic search algorithms RTAA* and daRTAA* as well
as the heuristic search algorithms Repeated A*, Adaptive
A* and D* Lite (using a different experimental setup from
the previous section). Repeated A* performs a complete A*
search from the current cell of the agent to the goal cell
until the goal cell is about to be expanded or the open list
becomes empty. If the open list becomes empty, the agent
stops unsuccessfully. The agent then moves along the short-
est path from its current cell to the goal cell and remembers
all blocked cells that it observes. If it reaches the goal cell, it
stops successfully. If it observes a blocked cell on the path, it
repeats the process. Incremental heuristic search algorithms,
such as Adaptive A* (Koenig and Likhachev 2006a) and D*
Lite (Koenig and Likhachev 2002), are almost identical to
Repeated A*, the difference is that they speed up the A*
searches by using their experience with prior A* searches to
speed up future ones. Adaptive A* performs A* searches
from the current cell of the agent to the goal cell, while D*
Lite performs searches in the opposite direction. Our results,

shown in Tables 1 and 2, indicate that TBAA* has a slight
performance advantage over D* Lite in a priori partially un-
known grids and vice versa in a priori completely unknown
grids, although the differences might not be statistically sig-
nificant. In both cases, TBAA* has the advantage over D*
Lite that the agent starts to move right away. Details are
given in (Hernández et al. 2012).

Objectives of the Demonstration
Our demonstration consists of a poster, videos and interac-
tive simulations of real-time heuristic search algorithms. It
has the following objectives:

1. Our demonstration provides a brief introduction to real-
time heuristic search by describing LSS-LRTA* and
RTAA*.

2. Our demonstration illustrates a performance issue of LSS-
LRTA* and RTAA* due to depressions in the h-value sur-
face. It describes aLSS-LRTA*, daLSS-LRTA*, two real-
time heuristic search algorithms that address this issue,
and summarizes their properties described in (Hernández
and Baier 2012).

3. Our demonstration illustrates a performance issue of
LSS-LRTA* and RTAA* due to performing repeated A*
searches around the current cells of the agent. It describes
real-time heuristic search algorithms that address this is-
sue, namely RTBA* and TBAA*, and summarizes their
properties described in (Hernández et al. 2012).

Acknowledgments
This material is based upon research supported by NSF
(while Sven Koenig was serving at NSF). It is also
based upon research supported by ARL/ARO under con-
tract/grant number W911NF-08-1-0468 and ONR in form
of a MURI under contract/grant number N00014-09-1-1031.
Jorge Baier was partly funded by Fondecyt grant number

22

11110321. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies or the U.S.
government.

References
Björnsson, Y.; Bulitko, V.; and Sturtevant, N. 2009. TBA*:
Time-bounded A*. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI), 431–
436.
Bulitko, V.; Björnsson, Y.; Sturtevant, N.; and Lawrence,
R. 2011. Real-time Heuristic Search for Game Pathfind-
ing. Applied Research in Artificial Intelligence for Com-
puter Games. Springer.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimal cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2).
Hernández, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research 43:523–570.
Hernández, C.; Baier, J. A.; Uras, T.; and Koenig, S. 2012.
Time-Bounded Adaptive A*. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).
Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the 10th National Conference on Artificial
Intelligence (AAAI), 525–532.
Koenig, S., and Likhachev, M. 2002. D* Lite. In Pro-
ceedings of the 18th National Conference on Artificial Intel-
ligence (AAAI), 476–483.
Koenig, S., and Likhachev, M. 2006a. A new principle
for incremental heuristic search: Theoretical results. In Pro-
ceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), 402–405.
Koenig, S., and Likhachev, M. 2006b. Real-Time Adaptive
A*. In Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
281–288.
Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313–341.
Koenig, S.; Tovey, C.; and Smirnov, Y. 2003. Performance
bounds for planning in unknown terrain. Artificial Intelli-
gence 147(1-2):253–279.
Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3):189–211.
Zelinsky, A. 1992. A mobile robot exploration algorithm.
IEEE Transactions on Robotics and Automation 8(6):707–
717.

23

Integrating Vehicle Routing and Motion Planning

Scott Kiesel, Ethan Burns, Christopher Wilt and Wheeler Ruml
Department of Computer Science

University of New Hampshire

Abstract 1

There has been much interest in recent years in problems that combine high-level task planning with low-level motion
planning. In this paper, we present a problem of this kind that arises in multi-vehicle routing. It tightly integrates task
allocation and scheduling, who will do what when, with path planning, how each task will actually be performed. It
extends classic vehicle routing in that the cost of executing a set of high-level tasks can vary significantly in time and
cost according to the low-level paths selected. It extends classic motion planning in that each path must minimize cost
while also respecting temporal constraints, including those imposed by the agent's other tasks and the tasks assigned to
other agents. Furthermore, the planner is part of an interactive system and must operate within soft real-time constraints.
We present an approach based on a combination of tabu search, linear programming, and heuristic search. We evaluate
our system on representative problem instances and find that its performance meets the demanding requirements of the
application. Our work demonstrates how integrating multiple diverse techniques can successfully solve challenging
real-world planning problems that are beyond the reach of any single method.

1 Abstract reproduced from the article accepted in the main technical track at ICAPS 2012.

24

EUROPA: A Platform for AI Planning, Scheduling, Constraint
Programming, and Optimization

Javier Barreiro∗, Matthew Boyce∗, Minh Do∗, Jeremy Frank†, Michael Iatauro∗,
Tatiana Kichkaylo ‡, Paul Morris†, James Ong+, Emilio Remolina+, Tristan Smith∗,

David Smith†

∗SGT Inc., NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035
† NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035

+ Stottler Henke Associates, Inc., 951 Mariners Island Blvd., Suite 360, San Mateo, CA 94404
‡ Decision Systems, USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292

Abstract 1

EUROPA is a class library and tool set for building and analyzing planners within a Constraint-based Temporal
Planning paradigm. This paradigm has been successfully applied in a wide range of practical planning problems and has
a legacy of success in NASA applications. EUROPA offers capabilities in 3 key areas of problem solving: (1)
Representation; (2) Reasoning; and (3) Search. EUROPA is a means to integrate advanced planning, scheduling and
constraint reasoning into an end-user application and is designed to be open and extendable to accommodate diverse and
highly specialized problem solving techniques within a common design framework and around a common technology
core. In this paper, we will outline the core capabilities of this open-source planning & scheduling framework. While
EUROPA is the complete planning and scheduling software suite, we will pay special attention to the aspects that are
relevant to knowledge engineering: modeling support, embedding a planner into an end-user application, and plan
visualization and analysis.

1 Abstract reproduced from the paper submitted to ICKEPS.

25

On Computing Conformant Plans Using Classical Planners: A
Generate-And-Complete Approach

Khoi Nguyen, Vien Tran, Tran Cao Son, Enrico Pontelli
Computer Science Department

New Mexico State University, Las Cruces, NM 88003

Abstract 1

Generate-and-complete is an approach to conformant planning that generates a possible plan for one possible world and
completes the conformant plan by inserting more actions into the possible plan. They key idea is to exploit the
interaction of actions in a plan with different possible worlds. The completion method is based on maintaining
executability and effects of actions in different possible worlds while achieving goals. The approach also employs the
one-of technique to reduce the number of possible worlds. We develop a system, called GC[LAMA], based on this
approach and a classical planner, LAMA 2008. GC[LAMA] shows excellent coverage and performance compared to
state-of-the-art conformant planners. The results verify that generate-and-complete is a very strong alternative to belief
state space search approach.

1 This demonstration corresponds to a paper presented in the main technical track at ICAPS 2012.

