
itSIMPLE4.0: Enhancing the Modeling Experience of Planning Problems

Tiago Vaquero1 and Rosimarci Tonaco2 and Gustavo Costa2

Flavio Tonidandel3 and José Reinaldo Silva2 and J. Christopher Beck1

1Department of Mechanical & Industrial Engineering, University of Toronto, Canada
2Department of Mechatronics Engineering, University of São Paulo, Brazil
3IAAA Lab, University Center of FEI - São Bernardo do Campo, Brazil

{tvaquero,jcb}@mie.utoronto.ca, {rosimarci, gustavorochacosta, reinaldo}@usp.br, flaviot@fei.edu.br

Introduction

The itSIMPLE project (Vaquero et al. 2007; 2009) is a re-
search effort to develop a reliable knowledge engineering
(KE) environment to support the design of AI planning ap-
plications. Unlike other KE tools for AI planning, itSIMPLE
focuses on the initial phases of a disciplined design cycle,
facilitating the transition of requirements to formal spec-
ifications. Requirements are gathered and modeled using
Unified Modeling Language (UML) (OMG 2005) to spec-
ify, visualize, modify, construct and document domains or
artifacts, in an object-oriented approach. A second repre-
sentation, Petri Nets (PN) (Rozemberg and Engelfriet 1998;
Murata 1989), is automatically generated from the UML
model and used to analyze dynamic aspects of the require-
ments such as deadlocks and invariants. A third repre-
sentation, Planning Domain Description Language (PDDL)
(Gerevini and Long 2006), is also automatically generated
in order to input the planning domain and instance into an
automated planner.

itSIMPLE’s framework and translators reduce the gap be-
tween real planning applications which are seldom repre-
sented directly in PDDL and state-of-the-art AI planners. it-
SIMPLE is an open-source, Java-based system that has been
applied to several real planning applications since 2005,
including petroleum supply port management (Sette et al.
2008), project management (Udo et al. 2008), advanced
manufacturing (Vaquero et al. 2006), information systems,
and intelligent logistics systems.

In this paper we describe the new features implemented in
version 4.0 of the itSIMPLE system. These new features aim
to enhance the modeling experience and provide designers
with extra tools to facilitate the model creation process, from
knowledge acquisition and modeling to plan generation and
analysis.

In what follows, we give a brief overview of the design
environment of itSIMPLE, sketching each available phase
of a design process, and the framework that integrates a set
of languages and formalisms used during the design process.
Next, we describe the new features of the tool (version 4.0)
and some future directions.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The Design Environment: Towards a
Disciplined Modeling Process for Planning

A completely formal design process is not possible since it
starts, by definition, with non-formalized, and perhaps tacit,
knowledge. itSIMPLE is divided into four primary phases,
which may be re-entered multiple times in an iterative fash-
ion and that define a design process which aims to capture
the essence of non-formalized knowledge and transform it
into a formal description of the planning domain. Each
phase is described below.

Requirements Elicitation and Modeling

Any planning system is embedded in a real environment,
that is, a myriad of “non-system” tools, objects, people, and
processes with which it must interact. It is necessary to have
a detailed model of this domain environment and it is im-
portant that this model be developed independently of the
planning system (McDermott 1981) based on the concept of
a work domain from Cognitive Design (Naikar, Hopcroft,
and Moylan 2005).

In itSIMPLE, requirements and knowledge are gathered
and modeled in an object-oriented fashion using a suite of
UML diagrams: class, state-machine, timing, and object di-
agrams. The UML diagrams are used to represent the main
aspects of the domain objects in the work domain and plan-
ning problem such as static information (objects and agents,
defined by classes and relations), dynamic information (state
transitions and features changed by actions) and problem
instance description (snapshots of objects and relationships
describing the initial state, goal state and desirable interme-
diate states for instance).

Domain Analysis

The Domain Analysis phase is based on static information
analysis and validation of dynamics using a state-transition
approach. Static analysis is performed by creating snapshots
and possible scenarios (using object diagrams) based on the
class diagrams and all constraints defined on them (Vaquero
et al. 2007). Dynamic analysis is performed by simulation
of Petri Nets created from UML models.



Plan Development
After modeling and analyzing the domain, itSIMPLE uses
PDDL to communicate the model to solvers, including
Metric-FF, FF, SGPlan, MIPS-xxl, LPG-TD, LPG, hspsp,
SATPlan, Plan-A, Blackbox, MaxPlan, LPRPG, POPF, and
Marvin. Designers can run these planners and obtain the re-
sulting plans to be analyzed, all in the same environment.
This feature gives itSIMPLE a significant flexibility to ex-
ploit recent advances in solver technology.

Plan Analysis
itSIMPLE provides some functionality for plan analysis, in-
cluding plan visualization and plan simulation. A plan visu-
alization and simulation is provided by a functionality called
“Movie Maker” (Vaquero et al. 2007). This functionality
captures the model of a domain and the plan specification
in PDDL and shows the simulation of interactions between
the plan and the domain through a sequence of object dia-
grams. Another important functionality is to be able to an-
alyze plans according to domain variables, called “Variable
Tracking”.

Language Framework
The language framework of itSIMPLE was designed to be
flexible and open, allowing different languages to be added.
In order to integrate the languages and phases noted above,
the environment uses extensible markup language (XML)
(Bray et al. 2004) as a core meta-language. More details
about the translation processes can be found in (Vaquero et
al. 2009).

The New Features and Improvements
In this section we describe the new developed features in
itSIMPLE4.0.

PDDL from Start to End, If Needed
In order to support planning experts, we have expanded it-
SIMPLE’s framework to allow the creation of PDDL models
from scratch. We have designed an initial PDDL editor so
that user can load, edit and save PDDL files with domain
and problems descriptions.

PDDL files from IPC or others sources can be easily
loaded in itSIMPLE. The tool imports and automatically
separates the elements of domain and problems contained
in the file. The user can directly edit the domain model and
problem description in the itSIMPLE interface. The PDDL
editor in itSIMPLE also allows the user incorporate new ac-
tions, predicates, goals, initial states and many others PDDL
components by using templates. The editor has a syntax
highlighting that differentiates language elements by color.
After editing, users can use any planner integrated with the
itSIMPLE tool and analyze the generated plan.

Using Modeling Patterns
In domain-independent planning, some researchers have in-
vestigated the identification of common structures in the do-
main model in order to trigger a more appropriated plan-
ning strategy (Long and Fox 2000; Clark 2001). Long &

Fox (2000) studied the detection of patterns (model sym-
metry and generic types) in the knowledge model, focusing
on enhancing the performance of automated planners (e.g.,
STAN) by exploiting specialized techniques when particular
structures are identified. Patterns have been found in several
planning problems that have transportation (Long and Fox
2000) or construction (Clark 2001) characteristics. In (Long
and Fox 2000), the authors characterize the main types exist-
ing in transportation problems, including, for instance, mo-
bile (types of objects that move on a map), location, portable
(type of object that are carried by mobiles on a map) and a
hierarchy of other mobile-related generic types (Long and
Fox 2000). Simpson et al. (2002) have made these pat-
terns (generic types) available in the modeling tool GIPO
for domain knowledge designers. Their work has provided
an initial pattern language for AI planning problems for the
mobile-related patterns. To our knowledge, however, none
of this work has provided a definition, description format or
catalog of design patterns for AI planning. Our work in this
direction can be seen as a continuation of the work done by
Simpson et al. (2002). However, our long-term goal is to (1)
provide such a definition and description format of design
patterns for AI Planning in a object-oriented fashion and (2)
propose an initial design patterns catalog.

As a step toward our goal to provide modeling patterns
to users, we have designed an initial (small) set of patterns
and made them available for the user in UML. We provide
a description of the intention of the pattern, scenarios, ap-
plicability, and the model representation using UML. We
followed a simple approach on this version of the system
in which users can import a pattern as a predefined set of
UML diagrams (classes, constraints and action definitions).
Based on previous work and analysis of benchmark and real
planning problems we provide the following initial set of
patterns:

• Move & Reach: a basic pattern that can be used to rep-
resent objects that can move and must reach certain po-
sitions or locations on a map. The pattern encapsulates
the behavior of two classes of objects (roles): Mobile
(agent) and Location. The common behavior of mobile
types has already been observed and defined in (Long and
Fox 2000). Here we are representing them in a object-
oriented fashion with UML.

• Transportation: a pattern that represents agent objects
(carriers) that can carry cargo items (portables) between
locations on a map. The pattern encapsulates the behav-
ior of the classes Carrier (agent), Cargo and Location. The
common behavior of carriers and portable types has also
been observed and defined in (Long and Fox 2000).

• Stack & Place: a pattern that can be used to represent an
agent object that can pile up, fit and organize item objects
on a surface or in a container. The pattern encapsulates the
behavior of the classes Stacker (agent), Item and Surface
(e.g., grid).

• Assembling: a pattern representing agent objects that must
compose or decompose parts to create structures or other
composed parts. Such (dis)assembling process has to fol-



low an order. The pattern encapsulates the behavior of the
classes Assembler (agent) and Part.

Time-based Models
We have recently (since version 3.5) added features to it-
SIMPLE to allow the representation of some time con-
straints. The tool provides timing diagrams to describe how
(boolean) properties of objects change during the execution
of an action, i.e., defining if a property becomes true at the
beginning or at the end of a durative action. These diagrams
are used to translate the conditions and effects of the ac-
tions to PDDL while assigning the right temporal operator
to them (e.g., at start, at end, over all) (Fox and Long 2003).
However, the tool did not cover the spectrum of timing con-
straints expressible in PDDL. In the new version of itSIM-
PLE, we have refined the way users input time constraints.
When using a timing diagram, users are now able to specify
whether the diagram represents the effect or the precondi-
tion of the action (the system then translates the conditions
to PDDL with the right temporal operator). The use of tim-
ing diagrams in the tool is still restricted to an action hori-
zon (as opposed to multiple actions or a series of actions)
and to boolean properties. However, we have made another
extension to overcome the latter problem and to open ways
to a more elaborated definition of time constraints in the ac-
tions’ conditions and effects. Since users define pre- and
post-conditions with the Object Constraint Language (OCL)
(OMG 2003) in itSIMPLE, we let them index, or annotate,
their OCL sentences with the desired temporal interval (e.g.,
[t1,t2] or (t1,t2]). For example, users can annotate a precon-
dition sentence such as ‘truck.at = loc and pkg.in = truck’
with the temporal interval [0,10], meaning that the condi-
tion must be true from time point 0 to 10 after an action has
started. It is also possible to use reserved words such as start
and end in the interval (e.g., [start,start] or [start,end] or
[end,end]) to annotate any sentence in the precondition and
effect (note that a precondition annotated with (start,end) or
[start,end] would be translated to PDDL using the over all
temporal operator). This extension is just one more step to
translating timing constraints to PDDL. We are working on
other approaches, such as timelines, to provide more model-
ing capabilities for time-based models.

Wizards for State Creation
We have been designing features to facilitate the task of cre-
ating large scale problem instances using UML object dia-
grams. We have developed wizards that can reduce the time
spent creating the initial state, goal state, or any intermediary
preferable state as snapshots. In many cases, users have to
specify and input several pieces of data, for example about
the distance between locations. Depending on the number of
locations the model contains, it can be time consuming to put
this information in the model. itSIMPLE allows the user to
import this information from a file or even link the file in the
model so the tool can use it when translating to PDDL and
sending the model to a planner. The file format is currently
limited to text files with each record in each line. However,
we plan to expand this idea to cover input data from other
types of files and chiefly from databases: users provide the

queries and the database access so the tool can take care of
retrieving the information from the database.

Creating associations among several objects in a diagram
can also be tedious. We have designed a wizard that allows
users to select a group of objects and associate them in dif-
ferent ways. For example, users can associate all of them,
associate just the neighbors, just the object in the right, just
in the left, and so forth. We have also designed wizards that
can create a predefined network of objects. For example,
users can create grids of locations or places by providing the
size of the grid, the class that represents the nodes in the
grid, the association that defines the edges of the network,
and the list of names of the generated objects (if necessary).
In addition, when selecting more the one object of the same
type it is possible to set their attribute values once, without
having to define them individually.

Exchanging and Sharing Experimental Setups
As described in previous sections, itSIMPLE is integrated
with several automated planners. Users can set up experi-
ments with the available planners, simulating what is done
in IPC. In previous versions of the system, designers were
able to select their favorite planners and run them over a
set of planning problem instances or even over several in-
stances of different domains. In the current version, users
are able to store the setup of an experiment in a XML file
and share it with others. A stored experimental setup can
be used to run the same experiment in different machines.
For example, one can design his/her experiment on a laptop,
export the setup and run it on a server later. It can also be ex-
changed and reused among researches and designers. Such
a setup stores the information about what planners must be
executed, in which order, what needs to be recorded (e.g.,
runtime, metrics), and the timeouts. Initially, users need to
have itSIMPLE installed in the machines that the experiment
will run.

Future Directions
In the itSIMPLE project, we aim to provide the ultimate
tool for modeling, testing, analyzing and deploying AI plan-
ning domain models. itSIMPLE will be extended to deal
with semantic analysis of UML and PDDL models, cross-
validation among model components and model dynamic
simulation through Petri Nets in the future. Many items
that lead the tool to encompass all of these features have
been implemented, but there are many more to develop. it-
SIMPLE must be improved with a more complete and ac-
curate time-based modeling, as well as allowing the user
to model HTN domains and domains with probabilistic fea-
tures. HTN domains can be easily modeled by using activity
diagrams which are native to UML. Probabilistic features
demand an extension of UML: a more detailed analysis of
the viability of this direction is needed.

Since itSIMPLE works with UML, it is natural to think
that it can deal with design patterns to help the user to model
domains by capturing some past solutions to improve the
current model. Initial design patterns have been already in-
corporated in itSIMPLE tool. However, much work is still



needed to reach a full use of design patterns in UML plan-
ning models.

itSIMPLE has been remodeled to become more feasible
and useful. Some new ways to model and manipulate the
planning environment and applications in UML, PDDL or
Petri Nets have changed and will be changing more in the
near future. All of these modifications aim to provide a tool
with more usability and user-friendly features.

Conclusion
itSIMPLE has been developed since 2004 and presented
since the first ICKEPS competition in 2005. Since then, we
have been working on eliminating remaining gaps between
practical applications and planning systems. Many features
have been implemented over the last eight years and itSIM-
PLE is finally becoming a tool that can allow researchers,
industrial users, students and other stakeholders to take ad-
vantage of recent planning development. The new features
described in this paper show that itSIMPLE has reached a
mature level with a stable version of UML modeling, do-
main analysis and planning simulations. It is a user-friendly
tool not only for beginners, students and non-planning ex-
perts, but also for planning experts.

References
Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.; Maler, E.; and
Yergeau, F. 2004. Extensible Markup Language (XML) 1.0
(Third Edition). Technical report.
Clark, M. 2001. Construction domains: A generic type
solved. In Proceedings of the 20th U.K. Planning and
Scheduling Workshop.
Fox, M., and Long, D. 2003. Pddl2.1: An extension of
pddl for expressing temporal planning domains. Journal of
Artificial Intelligence Research (JAIR) 20:61–124.
Gerevini, A., and Long, D. 2006. Preferences and soft con-
straints in pddl3. In Gerevini, A., and Long, D., eds., Pro-
ceedings of ICAPS workshop on Planning with Preferences
and Soft Constraints, 46–53.
Long, D., and Fox, M. 2000. Automatic Synthesis and use
of Generic Types in Planning. In Artificial Intelligence Plan-
ning and Scheduling AIPS-00, 196–205. Breckenridge, CO:
AAAI Press.
McDermott, J. 1981. Domain knowledge and the design
process. In DAC ’81: Proceedings of the 18th conference on
Design automation, 580–588. Piscataway, NJ, USA: IEEE
Press.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. In Proceedings of the IEEE, volume 77, 541–580.
Naikar, N.; Hopcroft, R.; and Moylan, A. 2005. Work
domain analysis: Theoretical Concepts and Methodology.
Technical report.
OMG. 2003. UML 2.0 OCL Specification m Version 2.0.
OMG. 2005. OMG Unified Modeling Language Specifica-
tion, m Version 2.0.

Rozemberg, G., and Engelfriet, J. 1998. Elementary net
systems. Lecture Notes in Computer Science 1491:12–121.
Springer.
Sette, F. M.; Vaquero, T. S.; Park, S. W.; and Silva, J. R.
2008. Are automated planners up to solve real problems? In
Proceedings of the 17th World Congress The International
Federation of Automatic Control (IFAC’08), Seoul, Korea,
15817–15824.
Udo, M.; Vaquero, T. S.; Silva, J. R.; and Tonidandel, F.
2008. Lean software development domain. In Proceedings
of ICAPS 2008 Scheduling and Planning Application work-
shop. Sydney, Australia.
Vaquero, T. S.; Tonidandel, F.; Barros, L. N.; and Silva, J. R.
2006. On the use of uml.p for modeling a real application
as a planning problem. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 434–437.
Vaquero, T. S.; Romero, V.; Tonidandel, F.; and Silva, J. R.
2007. itSIMPLE2.0: An integrated tool for designing plan-
ning environments. In Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS
2007). Providence, Rhode Island, USA.
Vaquero, T. S.; Silva, J. R.; Ferreira, M.; Tonidandel, F.;
and Beck, J. C. 2009. From requirements and analysis to
PDDL in itSIMPLE3.0. In Proceedings of the Third ICK-
EPS, ICAPS 2009, Thessaloniki, Greece.


