About Partial Order Reduction in Planning and Computer Aided Verification

Martin Wehrle and Malte Helmert

June 27, 2012

Introduction

Preliminaries

Sleep sets
Commut. pruning
Stratified plannin

Partial order reduction

Partial order reduction (POR)

- Originally proposed for computer aided verification (CAV)
- Pruning technique to tackle state explosion problem
- Avoids redundant application orders of independent operators

Example

Introduction

Preliminaries

Sleep sets

Further re

Partial order reduction

Currently

- ▶ POR techniques recently (re-)considered in planning
- Various existing POR techniques in CAV and planning
- ▶ Formal relationships of these techniques mostly unclear

In this paper

- ► Theoretical analysis of relationships of POR-based techniques
- Comparison of techniques from CAV and planning
- Investigation of transition and state reduction techniques

In this talk

- ► Focus on transition reduction techniques
- Outline about state reduction techniques at the end

Introduction

Preliminaries

Sleep sets

Commut. pruning Stratified plannin

. . .

Preliminaries

Terminology

- $ightharpoonup \mathcal V$ finite set of multi-valued variables v with domain $\mathrm{dom}(v)$
- ▶ (Partial) state = (partial) function $s: \mathcal{V} \to \text{dom}(\mathcal{V})$
- ▶ Operators of the form $o = \langle pre, eff \rangle$
- ▶ Operator o applicable in state s iff $s \models pre$
- Successor state obtained by setting effect variables

Planning instance

A SAS^+ planning instance is a 4-tuple $(\mathcal{V}, \mathcal{O}, s_0, s_\star)$, where

- $ightharpoonup \mathcal{V}$ is a finite set of multi-values variables,
- O is a finite set of operators,
- $ightharpoonup s_0$ is the initial state,
- ▶ s_{\star} the partial goal state.

Introduction

Preliminaries

Sleep sets Commut. pruning Stratified planning

. . . .

Preliminaries

Commutative operators

Operators o and o' are commutative if

- ▶ $prevars(o) \cap effvars(o') = \emptyset$, and
- $effvars(o) \cap prevars(o') = \emptyset$, and
- ▶ all $v \in effvars(o) \cap effvars(o')$ are set to the same value.

Example

 $drive(loc_1, loc_2)$ and $drive(loc_3, loc_4)$ are commutative

Introduction

Preliminaries

Sleep sets
Commut. pruning
Stratified planning

Introductio

Preliminaries

Transition reduction

Commut. prunin Stratified plannin

Transition reduction techniques

- Reduce the number of applied transitions
- Guaranteed to preserve permutation of pruned paths
- Pruning decisions are path-dependent
- lacktriangle Not directly applicable to graph search algorithms like A^*
- ▶ Useful for tree search algorithms like *IDA**

Notation

- $lackbox{ Path} = {\sf sequence} \ {\sf of} \ {\sf operators} \ \sigma \ {\sf that} \ {\sf starts} \ {\sf in} \ s_0$
- We apply state terminology to paths
- lacktriangle Example: "o applicable in σ " if o applicable after applying σ

Introduction

Preliminaries

Transition reduction

Commut. pruning Stratified plannin

Further results

Sleep sets (Godefroid, 1996)

- lacktriangle Every path σ has a corresponding sleep set (possibly empty)
- lacktriangle Sleep set = set of operators which are pruned in σ

Computation

- 1. Search begins with empty sleep set: $sleep(\varepsilon) := \emptyset$
- 2. Sleep sets for successor paths of path σ : Consider operators o_1, \ldots, o_n that are applied in σ in this order.

```
sleep(\sigma o_i) := (sleep(\sigma) \cup \{o_1, \dots, o_{i-1}\}) \setminus \{o \mid o, o_i \text{ not commutative}\}
```

Introduction

Preliminari

Sleep sets

Comm

Stratified planning

Conclusion

Officiasions

Example

• $sleep(\varepsilon; drive(t_0, A_0, A_1)) = \emptyset \cup \emptyset \setminus \emptyset = \emptyset$

Introduction

Preliminaries

Sleep sets

Commut. pruning

Turtiler re

Conclusio

Example

- \blacktriangleright $sleep(\varepsilon; drive(t_0, A_0, A_1)) = \emptyset$

Introduction

T Tellitillianes

Sleep sets

Commut. prunin

Example

- \blacktriangleright sleep(ε ; drive(t_0, A_0, A_1)) = \emptyset
- ▶ Path ε ; $drive(t_1, B_0, B_1)$; $drive(t_0, A_0, A_1)$ is not generated

Introduction

ricillillianes

Sleep sets

Comm

Stratified planning

Introduction

Preliminaries

Sleep sets
Commut. pruning

Stratified planni

. . .

Conclusions

Commutativity pruning (Haslum & Geffner, 2000)

- ▶ Impose (arbitrary) total order < on operators
- ▶ Successor path $\sigma oo'$ of σo is not generated (pruned) if
 - 1. o and o' are commutative, and
 - 2. o' < o
- "Prune paths with commutative operators in wrong order"

Proposition

Under the same total order < on the operators, every path pruned by commutativity pruning is also pruned by sleep sets.

Proof

Consider path $\sigma oo'$ pruned by commutativity pruning (CP).

- 1. $\sigma oo'$ pruned by CP, therefore o' < o and o, o' commutative
- 2. o and o' commutative, therefore o' applicable in σ
- 3. Therefore, $o' \in \{\hat{o} \mid \hat{o} < o \text{ and } \hat{o} \text{ applicable in } \sigma\} =: A$
- 4. Moreover, $o' \notin \{\hat{o} \mid \hat{o} \text{ and } o \text{ not commutative}\} =: NC$
- 5. Same order < for both: $sleep(\sigma o) = (sleep(\sigma) \cup A) \setminus NC$
- 6. Hence, $o' \in sleep(\sigma o)$

Introduction

Preliminaries

Sleep sets

Commut. pruning Stratified planning

C---l....

Commut. pruning

Proposition

There exist paths pruned by sleep sets and not pruned by CP.

Why?

- ▶ Intuitively: sleep sets store more information than CP
- Concrete example given in the paper

Stratified planning (Chen et al., 2009)

- ▶ SCCs $C_1 < \cdots < C_n$ of causal graph in topological ordering
- ▶ Ordering < such that edges from C_i to C_j only if $i \leq j$
- $\blacktriangleright level(v) := i \text{ iff } v \in C_i$
- ightharpoonup level(o) := i iff ex. effect variable v in o with level(v) = i

Pruning algorithm

Prune path $\sigma oo'$ if

- 1. level(o') > level(o), and
- 2. o' does not read a variable that is written by o, and
- 3. o' and o do not write a common variable.

Introduction

Prelimina

Sleep sets
Commut. pruning
Stratified planning

Further results

Let $<_c$ be an ordering such that $o <_c o'$ if level(o) > level(o').

Proposition

Every path pruned by stratified planning is also pruned by commutativity pruning with $<_c$.

Proof sketch

Consider the path $\sigma oo'$ pruned by stratified planning (SP).

- ▶ In this case, o and o' are commutative
- ▶ By definition: level(o') > level(o) implies $o' <_c o$.
- ▶ Therefore, $\sigma oo'$ is pruned by commutativity pruning.

Introduction

Preliminaries

Sleep sets Commut. pruning Stratified planning

Further re

Proposition

There exist paths pruned by commutativity pruning and not by SP.

Example

- Variables build single SCC in causal graph
- ▶ No pruning by SP because all operators have equal level
- Commutative operators can still be pruned by CP
- Concrete example given in the paper

Introduction

Preliminaries

Sleep sets Commut. pruning Stratified planning

Further results

Introduction

Preliminaries

Sleep sets Commut. pruning Stratified planning

Further result

Conclusions

Transition reduction techniques: Results summary

- 1. Sleep sets strictly dominate commutativity pruning
- 2. Commutativity pruning strictly dominates stratified planning

What about state reduction techniques?

Introduction

Sleep sets Commut. pruning Stratified planning

Further results

Conclusions

Further results: State reduction

Further results

State reduction techniques

- Reduce the size of explored state space
- State-dependent (not path-dependent)
- lacktriangle Applicable to graph search algorithms like A^*

Results summary

- Corrected expansion core method (Chen & Yao, 2009) is special case of strong stubborn sets (Valmari, 1991)
- ► Therefore: Pruning power of expansion core is theoretically at most as high as pruning power of strong stubborn sets
- ▶ What about the practice?
 → A Stubborn Set Algorithm for Optimal Planning (Alkhazraji, Wehrle, Mattmüller, Helmert; ECAI 2012)

Introduction

ricillillianes

Sleep sets Commut. prunin Stratified plannir

Further results

Conclusions

Summary

- ▶ POR techniques from CAV and planning are strongly related
- ► CAV techniques generalize investigated planning techniques

Ongoing and future work

- Impact of design choices to compute strong stubborn sets?
- ▶ Investigation of weak stubborn sets (Valmari, 1991)

Introduction

Freiminaries

Sleep sets Commut. pruning Stratified plannin