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Partial order reduction (POR)

I Originally proposed for computer aided verification (CAV)

I Pruning technique to tackle state explosion problem

I Avoids redundant application orders of independent operators

Example

A0 B0

A1 B1

t0 t1 A0B0

A1B0 A0B1

A1B1
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Partial order reduction

Currently

I POR techniques recently (re-)considered in planning

I Various existing POR techniques in CAV and planning

I Formal relationships of these techniques mostly unclear

In this paper

I Theoretical analysis of relationships of POR-based techniques

I Comparison of techniques from CAV and planning

I Investigation of transition and state reduction techniques

In this talk

I Focus on transition reduction techniques

I Outline about state reduction techniques at the end
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Preliminaries

Terminology

I V finite set of multi-valued variables v with domain dom(v)

I (Partial) state = (partial) function s : V → dom(V)
I Operators of the form o = 〈pre, eff 〉
I Operator o applicable in state s iff s |= pre

I Successor state obtained by setting effect variables

Planning instance
A SAS+ planning instance is a 4-tuple (V,O, s0, s?), where

I V is a finite set of multi-values variables,

I O is a finite set of operators,

I s0 is the initial state,

I s? the partial goal state.
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Preliminaries

Commutative operators
Operators o and o′ are commutative if

I prevars(o) ∩ effvars(o′) = ∅, and

I effvars(o) ∩ prevars(o′) = ∅, and

I all v ∈ effvars(o) ∩ effvars(o′) are set to the same value.

Example

loc1 loc2 loc3 loc4

drive(loc1, loc2) and drive(loc3, loc4) are commutative
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Transition reduction techniques

I Reduce the number of applied transitions

I Guaranteed to preserve permutation of pruned paths

I Pruning decisions are path-dependent

I Not directly applicable to graph search algorithms like A∗

I Useful for tree search algorithms like IDA∗

Notation

I Path = sequence of operators σ that starts in s0
I We apply state terminology to paths

I Example: “o applicable in σ” if o applicable after applying σ
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Transition reduction techniques

Sleep sets (Godefroid, 1996)

I Every path σ has a corresponding sleep set (possibly empty)

I Sleep set = set of operators which are pruned in σ

Computation

1. Search begins with empty sleep set: sleep(ε) := ∅
2. Sleep sets for successor paths of path σ: Consider operators

o1, . . . , on that are applied in σ in this order.

sleep(σoi) := (sleep(σ)∪{o1, . . . , oi−1})\{o | o, oi not commutative}
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Transition reduction techniques

Example

A0 B0

A1 B1

t0 t1 A0B0

A1B0

∅

∅

I sleep(ε; drive(t0, A0, A1)) = ∅ ∪ ∅ \ ∅ = ∅
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Transition reduction techniques

Example

A0 B0

A1 B1

t0 t1
A0B0

A1B0 A0B1

∅

∅ {drive(t0, A0, A1)}

I sleep(ε; drive(t0, A0, A1)) = ∅
I sleep(ε; drive(t1, B0, B1)) = {drive(t0, A0, A1)}
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Transition reduction techniques

Example

A0 B0

A1 B1

t0 t1
A0B0

A1B0 A0B1

A1B1 A1B1

∅

∅ {drive(t0, A0, A1)}

I sleep(ε; drive(t0, A0, A1)) = ∅
I sleep(ε; drive(t1, B0, B1)) = {drive(t0, A0, A1)}
I Path ε; drive(t1, B0, B1); drive(t0, A0, A1) is not generated



Introduction

Preliminaries

Transition reduction

Sleep sets

Commut. pruning

Stratified planning

Further results

Conclusions

Transition reduction techniques

Commutativity pruning (Haslum & Geffner, 2000)

I Impose (arbitrary) total order < on operators

I Successor path σoo′ of σo is not generated (pruned) if

1. o and o′ are commutative, and
2. o′ < o

I “Prune paths with commutative operators in wrong order”
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Transition reduction techniques

Proposition
Under the same total order < on the operators, every path pruned
by commutativity pruning is also pruned by sleep sets.

Proof
Consider path σoo′ pruned by commutativity pruning (CP).

1. σoo′ pruned by CP, therefore o′ < o and o, o′ commutative

2. o and o′ commutative, therefore o′ applicable in σ

3. Therefore, o′ ∈ {ô | ô < o and ô applicable in σ} =: A

4. Moreover, o′ /∈ {ô | ô and o not commutative} =: NC

5. Same order < for both: sleep(σo) = (sleep(σ) ∪A) \NC

6. Hence, o′ ∈ sleep(σo)
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Proposition
There exist paths pruned by sleep sets and not pruned by CP.

Why?

I Intuitively: sleep sets store more information than CP

I Concrete example given in the paper
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Stratified planning (Chen et al., 2009)

I SCCs C1 < · · · < Cn of causal graph in topological ordering

I Ordering < such that edges from Ci to Cj only if i ≤ j
I level(v) := i iff v ∈ Ci

I level(o) := i iff ex. effect variable v in o with level(v) = i

Pruning algorithm
Prune path σoo′ if

1. level(o′) > level(o), and

2. o′ does not read a variable that is written by o, and

3. o′ and o do not write a common variable.
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Let <c be an ordering such that o <c o
′ if level(o) > level(o′).

Proposition
Every path pruned by stratified planning is also pruned by
commutativity pruning with <c.

Proof sketch
Consider the path σoo′ pruned by stratified planning (SP).

I In this case, o and o′ are commutative

I By definition: level(o′) > level(o) implies o′ <c o.

I Therefore, σoo′ is pruned by commutativity pruning.
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Proposition
There exist paths pruned by commutativity pruning and not by SP.

Example

I Variables build single SCC in causal graph

I No pruning by SP because all operators have equal level

I Commutative operators can still be pruned by CP

I Concrete example given in the paper
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Transition reduction techniques: Results summary

1. Sleep sets strictly dominate commutativity pruning

2. Commutativity pruning strictly dominates stratified planning

What about state reduction techniques?
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Further results: State reduction
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Further results

State reduction techniques

I Reduce the size of explored state space

I State-dependent (not path-dependent)

I Applicable to graph search algorithms like A∗

Results summary

I Corrected expansion core method (Chen & Yao, 2009) is
special case of strong stubborn sets (Valmari, 1991)

I Therefore: Pruning power of expansion core is theoretically at
most as high as pruning power of strong stubborn sets

I What about the practice?
 A Stubborn Set Algorithm for Optimal Planning
(Alkhazraji, Wehrle, Mattmüller, Helmert; ECAI 2012)
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Conclusions

Summary

I POR techniques from CAV and planning are strongly related

I CAV techniques generalize investigated planning techniques

Ongoing and future work

I Impact of design choices to compute strong stubborn sets?

I Investigation of weak stubborn sets (Valmari, 1991)
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