About Partial Order Reduction in Planning and Computer Aided Verification

Martin Wehrle and Malte Helmert

June 27, 2012
Partial order reduction

Partial order reduction (POR)

- Originally proposed for computer aided verification (CAV)
- Pruning technique to tackle state explosion problem
- Avoids redundant application orders of independent operators

Example
Partial order reduction

Currently

- POR techniques recently (re-)considered in planning
- Various existing POR techniques in CAV and planning
- Formal relationships of these techniques mostly unclear

In this paper

- Theoretical analysis of relationships of POR-based techniques
- Comparison of techniques from CAV and planning
- Investigation of transition and state reduction techniques

In this talk

- Focus on transition reduction techniques
- Outline about state reduction techniques at the end
Preliminaries

Terminology
- \(\mathcal{V} \) finite set of multi-valued variables \(v \) with domain \(\text{dom}(v) \)
- (Partial) state = (partial) function \(s : \mathcal{V} \rightarrow \text{dom}(\mathcal{V}) \)
- Operators of the form \(o = \langle \text{pre}, \text{eff} \rangle \)
- Operator \(o \) applicable in state \(s \) iff \(s \models \text{pre} \)
- Successor state obtained by setting effect variables

Planning instance
A \(SAS^+ \) planning instance is a 4-tuple \((\mathcal{V}, \mathcal{O}, s_0, s_\star) \), where
- \(\mathcal{V} \) is a finite set of multi-values variables,
- \(\mathcal{O} \) is a finite set of operators,
- \(s_0 \) is the initial state,
- \(s_\star \) the partial goal state.
Commutative operators

Operators o and o' are commutative if
- $\text{prevars}(o) \cap \text{effvars}(o') = \emptyset$, and
- $\text{effvars}(o) \cap \text{prevars}(o') = \emptyset$, and
- all $v \in \text{effvars}(o) \cap \text{effvars}(o')$ are set to the same value.

Example

$\text{drive}(\text{loc}_1, \text{loc}_2)$ and $\text{drive}(\text{loc}_3, \text{loc}_4)$ are commutative
Transition reduction techniques
Transition reduction techniques

- Reduce the number of applied transitions
- Guaranteed to preserve permutation of pruned paths
- Pruning decisions are path-dependent
- Not directly applicable to graph search algorithms like A^*
- Useful for tree search algorithms like IDA^*

Notation

- Path $= \text{sequence of operators } \sigma \text{ that starts in } s_0$
- We apply state terminology to paths
- Example: “o applicable in σ” if o applicable after applying σ
Transition reduction techniques

Sleep sets (Godefroid, 1996)

- Every path σ has a corresponding sleep set (possibly empty)
- Sleep set = set of operators which are pruned in σ

Computation

1. Search begins with empty sleep set: $\text{sleep}(\varepsilon) := \emptyset$
2. Sleep sets for successor paths of path σ: Consider operators o_1, \ldots, o_n that are applied in σ in this order.

$$\text{sleep}(\sigma o_i) := (\text{sleep}(\sigma) \cup \{o_1, \ldots, o_{i-1}\}) \setminus \{o \mid o, o_i \text{ not commutative}\}$$
Transition reduction techniques

Example

\[\text{sleep}(\varepsilon; \text{drive}(t_0, A_0, A_1)) = \emptyset \cup \emptyset \setminus \emptyset = \emptyset \]
Transition reduction techniques

Example

\[\begin{align*}
\text{sleep}(\varepsilon; \text{drive}(t_0, A_0, A_1)) &= \emptyset \\
\text{sleep}(\varepsilon; \text{drive}(t_1, B_0, B_1)) &= \{\text{drive}(t_0, A_0, A_1)\}
\end{align*}\]
Transition reduction techniques

Example

- $\text{sleep}(\varepsilon; \text{drive}(t_0, A_0, A_1)) = \emptyset$
- $\text{sleep}(\varepsilon; \text{drive}(t_1, B_0, B_1)) = \{ \text{drive}(t_0, A_0, A_1) \}$
- Path $\varepsilon; \text{drive}(t_1, B_0, B_1); \text{drive}(t_0, A_0, A_1)$ is not generated
Transition reduction techniques

Commutativity pruning (Haslum & Geffner, 2000)

- Impose (arbitrary) total order $<$ on operators
- Successor path $σoo'$ of $σo$ is not generated (pruned) if
 1. o and o' are commutative, and
 2. $o' < o$
- “Prune paths with commutative operators in wrong order”
Transition reduction techniques

Proposition

Under the same total order $<$ on the operators, every path pruned by commutativity pruning is also pruned by sleep sets.

Proof

Consider path $\sigma oo'$ pruned by commutativity pruning (CP).

1. $\sigma oo'$ pruned by CP, therefore $o' < o$ and o, o' commutative
2. o and o' commutative, therefore o' applicable in σ
3. Therefore, $o' \in \{\hat{o} | \hat{o} < o$ and \hat{o} applicable in $\sigma\} =: A$
4. Moreover, $o' \notin \{\hat{o} | \hat{o}$ and o not commutative\} =: NC
5. Same order $<$ for both: $\text{sleep}(\sigma o) = (\text{sleep}(\sigma) \cup A) \setminus NC$
6. Hence, $o' \in \text{sleep}(\sigma o)$
Proposition
There exist paths pruned by sleep sets and not pruned by CP.

Why?
- Intuitively: sleep sets store more information than CP
- Concrete example given in the paper
Transition reduction techniques

Stratified planning (Chen et al., 2009)

- SCCs $C_1 < \cdots < C_n$ of causal graph in topological ordering
- Ordering $<$ such that edges from C_i to C_j only if $i \leq j$
- $\text{level}(v) := i$ iff $v \in C_i$
- $\text{level}(o) := i$ iff ex. effect variable v in o with $\text{level}(v) = i$

Pruning algorithm

Prune path $\sigma oo'$ if

1. $\text{level}(o') > \text{level}(o)$, and
2. o' does not read a variable that is written by o, and
3. o' and o do not write a common variable.
Transition reduction techniques

Let $<_c$ be an ordering such that $o <_c o'$ if $\text{level}(o) > \text{level}(o')$.

Proposition

Every path pruned by stratified planning is also pruned by commutativity pruning with $<_c$.

Proof sketch

Consider the path $\sigma oo'$ pruned by stratified planning (SP).

- In this case, o and o' are commutative
- By definition: $\text{level}(o') > \text{level}(o)$ implies $o' <_c o$.
- Therefore, $\sigma oo'$ is pruned by commutativity pruning.
Transition reduction techniques

Proposition
There exist paths pruned by commutativity pruning and not by SP.

Example
- Variables build single SCC in causal graph
- No pruning by SP because all operators have equal level
- Commutative operators can still be pruned by CP
- Concrete example given in the paper
Transition reduction techniques

Transition reduction techniques: Results summary

1. Sleep sets strictly dominate commutativity pruning
2. Commutativity pruning strictly dominates stratified planning

What about state reduction techniques?
Further results: State reduction
Further results

State reduction techniques

- Reduce the size of explored state space
- State-dependent (not path-dependent)
- Applicable to graph search algorithms like A^*

Results summary

- Corrected expansion core method (Chen & Yao, 2009) is special case of strong stubborn sets (Valmari, 1991)
- Therefore: Pruning power of expansion core is theoretically at most as high as pruning power of strong stubborn sets
- What about the practice?
 ⇝ A Stubborn Set Algorithm for Optimal Planning (Alkhazraji, Wehrle, Mattmüller, Helmert; ECAI 2012)
Conclusions

Summary

- POR techniques from CAV and planning are strongly related
- CAV techniques generalize investigated planning techniques

Ongoing and future work

- Impact of design choices to compute strong stubborn sets?
- Investigation of weak stubborn sets (Valmari, 1991)