Resource-Constrained Planning: A Monte-Carlo Random Walk Approach

Hootan Nakhost¹ Jörg Hoffmann² Martin Müller¹

¹University of Alberta ²Saarland University

Reasoning about Resources

- Examples of limited resources
 - Fuel, energy, money, time
- Model: not replenishable resources
 - Initial supply
 - Some actions consume resources

Limitation of the Current Methods

- Relaxation heuristics do not model resource consumption at all
- Greedy search algorithms add more problems

How to improve RCP?

- Build new heuristic functions
 - LPRPG [Coles et. al. ICAPS'08]
- Our approach: design new better search algorithms
 - Focusing on local search
 - Extend RW planner Arvand

Improvements to Arvand for RCP

- Smart Restarting (SR)
- On-path Search Continuation (OPSC)

Basic Restarting in an Example

Trucks-18

Smart Restarting

- Maintain a pool of most promising episodes performed so far
- When an episode gets stuck, instead of always restarting from the initial state, restart from a state visited in such an episode
- Parameters:
 - Pool size
 - When to start smart restarting

Smart Restarting in an Example

How to test RCP planners?

- The performance as a function of constrainedness
- Resource constrainedness C (Hoffmann et. al. IJCAI'07):

$$C = \frac{initial \ supply}{minimum \ need}$$

 The closer C is to 1, the more constrained is the problem

C for Multiple Resources

 The previous definition of C only works for problems with single resource

- New definition:
 - The largest factor by which we can downscale the initial resource supply without making the task unsolvable

Example

Money

Experiments

- Extensive experiments on three RCP domains
 - NoMystery
 - Rovers
 - TPP
- 8 satisficing and 5 optimal planners were tested
 - Arvand, FD-AT1, FD-AT2, LAMA, FF, LPG, M, Mp, LPRPGP
 - Num-2-sat, LM-cut, Merge and Shrink, Selmax, FD-AT-OPT

Encodings for RCP Problems

- Propositional
- Numerical
- Cost augmented
 - Only for single resource
- Costs with no hard constraints
 - Only for LAMA
- Preferences

RCP Benchmarks:

- 450 problem instances
- Smaller set of base problems for C=1.0
- Other problems obtained by changing
 C={1.1, 1.2, 1.3, 1.4, 1.5, 2.0}

Results: Rovers, small

Results: Rovers, small

Results: Rovers, large

Results: Rovers, large

Results: NoMystery, small

Results: NoMystery, small

Results: NoMystery, Large

Results: NoMystery, Large

Results: TPP

Results: TPP

Other Experiments: the effect of pool size on SR

Domain: NoMystery

Pool Size

IPC-2011

Planner	Arvand	A2(SR)	A2(OPSC)	LAMA	FD-AT1	FD-AT2	M	Мр	LPRPGP
Coverage	66%	68%	50%	51%	76%	68%	30%	40%	46%

• SR

- never worst
- better in 4 domains

OPSC

slow progress in the search space

Contributions

- Defined Resource constrainedness for multiple resources
- Extended benchmark suite controlling C
- large-scale study of the current state of the art as a function of C
- Two new techniques to improve Arvand

Future Work

- Deal with resources explicitly
- Design automatic configuration methods

Thank you for your attention!

Resource Distribution

Contributions

- Generalized the previous notion of C to the case of multiple resources
- Introduced two new techniques
 - Smart Restarting (SR)
 - On Path Search Continuation (OPSC)
- Extended benchmark suite controlling C
- Large-scale study of current Planners on RCP

An Example

Study the performance as a function of C

NoMystery: Summary

- Original Arvand already outperforms the state of the art
 - Coverage for C=1.0 is 18% compared to 4% for LPG
- Smart restarts can significantly improve Arvand
 - Coverage for C=1.0 improves to 46%
 - For C=1.1 coverage is 90% compared to 8% for LPG
 - Comparing to the previously known best planner LPG, there is a factor > 11 improvement in coverage for C=1.0
- The benefit of smart restarts tends to grow as C tends to 1

IPC Benchmarks

- Domains with resources: Mystery, Mprime, Trucks
- Puzzle domains: Pipesworld, Freecell
- Smart restarting improves the results in two domains and does not harm in other domains

Soft Encoding vs. Hard Encoding

Conclusions

- Current stat-of-the-art planners are very bad at economizing limited resources
- Local search can help

On-Path-Search Continuation

IPC Domains

- Usually planners are evaluated on competition domains
- Wide range of domains with different characteristics
- Different problem instances with different sizes

Motivation

- Need to economize limited resources
- Limitation of heuristic planners in critically resource-constrained problems
 - Relaxation heuristics do not model resource consumption at all
 - Greedy search algorithms add more problems

Controlling Resource Availability

- How the behavior of algorithm changes when the problem becomes more constrained
- Let C be the ratio between the amount of available resources vs. the minimum amount required
- The problem becomes intuitively harder as C approaches 1

Arvand

- Forward chaining local search
- In each step, run random walks to find the next state
- If no improvement after several steps, then restart

RCP Benchmarks:

- TPP
 - 5 problems with 1 agent, 8 market, 8 products
- NoMystery, small
 - 25 problems with 2 trucks, 9 locations, 9 packages
- NoMystery, large
 - 5 problems with 1 truck, 12 locations, 15 packages
- Rovers, small
 - 25 problems with 2 rovers, 11 locations, 16 objectives
- Rovers, large
 - 5 problems with 1 rover, 15 locations, 20 objective

Resource Distribution

 5 random problems with 5 pareto-optimal resource allocation for each of them

