Optimal Search with Inadmissible Heuristics

Erez Karpas Carmel Domshlak

Faculty of Industrial Engineering and Management, Technion — Israel Institute of Technology

June 28, 2012

Outline

Admissibility and Optimality

A Path Admissible Heuristic for STRIPS

3 Empirical Evaluation

Admissibility of Heuristics

Admissible

A heuristic is admissible iff $h(s) \le h^*(s)$ for any state s.

Optimality and Admissibility

- We know that A* search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition?

Optimality and Admissibility

- We know that A* search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition?

Optimality and Admissibility

- We know that A* search with an admissible heuristic guarantees an optimal solution
- Is this a necessary condition? No

Globally Admissible

A heuristic is globally admissible iff there exists some optimal solution ρ such that for any state s along ρ : $h(s) \le h^*(s)$

Globally Admissible

A heuristic is globally admissible iff there exists some optimal solution ρ such that for any state s along ρ : $h(s) \le h^*(s)$

- As noted by Dechter & Pearl (1985), using A* with a globally admissible heuristic guarantees finding an optimal solution
- But heuristic estimates can be path-dependent

- As noted by Dechter & Pearl (1985), using A* with a globally admissible heuristic guarantees finding an optimal solution
- But heuristic estimates can be path-dependent

$\{\rho\}$ -Admissible

$\{\rho\}$ -Admissible

$\{\rho\}$ -Admissible

$\{\rho\}$ -Admissible

Path-admissible Heuristics

- Can be generalized to χ -admissibility for a set of solutions χ
- If χ is the set of all optimal solutions, we call h path admissible
- If χ contains at least one optimal solutions, we call h globally path admissible

Some Globally (Path) Admissible Heuristics

- Symmetry-based pruning (Pochter et al, 2011; Coles & Smith 2008; Rintanen 2003; Fox & Long, 2002)
- Partial order reduction (Chen & Yao, 2009; Haslum, 2000)
- Can be seen as assigning ∞ to pruned states

Search with Path-admissible Heuristics

- Using a (globally) path admissible heuristic with A* does not guarantee an optimal solution will be found
- However, tree based search algorithms can guarantee an optimal solution is found with a (globally) path admissible heuristic
- It is also possible to do some duplicate detection details later

Outline

Admissibility and Optimality

2 A Path Admissible Heuristic for STRIPS

3 Empirical Evaluation

Intended Effects

Chicken logic

Why did the chicken cross the road?

Intended Effects

Chicken logic

Why did the chicken cross the road?

To get to the other side

Intended Effects

Chicken logic

Why did the chicken cross the road?

To get to the other side

Observation

Every along action an optimal plan is there for a reason

- Achieve a precondition for another action
- Achieve a goal

- There must be a reason for applying load-o- t_1
- load-*o*-*t*₁ achieves *o*-in-*t*₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

- There must be a reason for applying load-o- t_1
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

- There must be a reason for applying load-o-t₁
- load-o-t₁ achieves o-in-t₁
- Any continuation of this path to an optimal plan must use some action which requires o-in-t₁

Intended Effects — Intuition

- We formalize chicken logic using the notion of Intended Effects
- A set of propositions $X \subseteq s_0[[\pi]]$ is an intended effect of path π , if we can use X to continue π into an optimal plan
- Using X refers to the presence of causal links in the optimal plan

Causal Link

Let $\pi = \langle a_0, a_1, \dots a_n \rangle$ be some path. The triple $\langle a_i, p, a_i \rangle$ forms a causal link in π if a_i is the actual provider of precondition p for a_i .

Intended Effects — Formal Definition

Intended Effects

Let OPT be a set of optimal plans for planning task Π . Given a path $\pi = \langle a_0, a_1, \dots a_n \rangle$ a set of propositions $X \subseteq s_0[[\pi]]$ is an OPT-intended effect of π iff there exists a path π' such that $\pi \cdot \pi' \in \text{OPT}$ and π' consumes exactly X ($p \in X$ iff there is a causal link $\langle a_i, p, a_i \rangle$ in $\pi \cdot \pi'$, with $a_i \in \pi$ and $a_i \in \pi'$).

- ullet IE(π |OPT) the set of all OPT-intended effect of π
- $IE(\pi) = IE(\pi|OPT)$ when OPT is the set of all optimal plans

The Intended Effects of $\pi = \langle load-o-t_1 \rangle$ are $\{\{o-in-t_1\}\}$

- ullet Working directly with the set of subsets $\mathsf{IE}(\pi|\mathsf{OPT})$ is difficult
- ullet We can interpret IE $(\pi| extsf{OPT})$ as a boolean formula ϕ

$$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$$

• We can also interpret any path π' from $s_0[[\pi]]$ as a boolean valuation over propositions P

$$p=$$
 TRUE \iff there is a causal link $\langle a_i,p,a_j
angle$ with $a_i\in\pi$ and $a_j\in\pi'$

- ullet Working directly with the set of subsets IE(π |OPT) is difficult
- ullet We can interpret IE $(\pi|\mathtt{OPT})$ as a boolean formula ϕ

$$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$$

• We can also interpret any path π' from $s_0[[\pi]]$ as a boolean valuation over propositions P

p= TRUE \iff there is a causal link $\langle a_i,p,a_j
angle$ with $a_i\in\pi$ and $a_j\in\pi'$

- ullet Working directly with the set of subsets $\mathsf{IE}(\pi|\mathsf{OPT})$ is difficult
- ullet We can interpret IE $(\pi| extsf{OPT})$ as a boolean formula ϕ

$$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$$

• We can also interpret any path π' from $s_0[[\pi]]$ as a boolean valuation over propositions P

p= TRUE \iff there is a causal link $\langle a_i,p,a_j
angle$ with $a_i\in\pi$ and $a_j\in\pi'$

- Working directly with the set of subsets $IE(\pi|OPT)$ is difficult
- ullet We can interpret IE $(\pi| extsf{OPT})$ as a boolean formula ϕ

$$X \in \mathsf{IE}(\pi|\mathsf{OPT}) \Longleftrightarrow X \models \phi$$

• We can also interpret any path π' from $s_0[[\pi]]$ as a boolean valuation over propositions P

$$ho=$$
 TRUE \iff there is a causal link $\langle a_i, \rho, a_j
angle$ with $a_i \in \pi$ and $a_j \in \pi'$

Intended Effects — Formula Example

The Intended Effects of $\pi=\langle {\sf load}\text{-}o\text{-}t_1\rangle$ are described by the formula $\phi=o\text{-in-}t_1$

Intended Effects — What Are They Good For?

We can use a logical formula describing $IE(\pi|OPT)$ to derive constraints about what must happen in any continuation of π to a plan in OPT.

Theorem 1

Let OPT be a set of optimal plans for a planning task Π , π be a path, and ϕ be a propositional logic formula describing IE(π |OPT). Then, for any $s_0[[\pi]]$ -plan π' , $\pi \cdot \pi' \in \text{OPT implies } \pi' \models \phi$.

Intended Effects — The Bad News

It's P-SPACE Hard to find the intended effects of path π .

Theorem 2

Let INTENDED be the following decision problem: Given a planning task Π , a path π , and a set of propositions $X \subseteq P$, is $X \in IE(\pi)$? Deciding INTENDED is P-SPACE Complete.

Approximate Intended Effects — The Good News

We can use supersets of $IE(\pi|OPT)$ to derive constraints about any continuation of π .

Theorem 3

Let OPT be a set of optimal plans for a planning task Π , π be a path, $PIE(\pi|OPT) \supseteq IE(\pi|OPT)$ be a set of possible OPT-intended effects of π , and ϕ be a logical formula describing PIE(π |OPT). Then, for any path π' from $s_0[[\pi]]$, $\pi \cdot \pi' \in \mathsf{OPT}$ implies $\pi' \models \phi$.

Finding Approximate Intended Effects — Shortcuts

- Intuition: X can not be an intended effect of π if there is a cheaper way to achieve X
- ullet Assume we have some library $\mathscr L$ of "shortcut" paths
- $X \subseteq s_0[[\pi]]$ can not be an intended effect of π if there exists some $\pi' \in \mathcal{L}$ such that:

Causal Structure

Causal Structure

$$\pi = \langle \text{ drive-}t_1\text{-}A\text{-}B$$

$$\pi = \langle \; \mathsf{drive} ext{-} t_1 ext{-} A ext{-} B \; \mathsf{,drive} ext{-} t_2 ext{-} A ext{-} B$$

 $\pi = \langle \text{ drive-}t_1\text{-}A\text{-}B , \text{drive-}t_2\text{-}A\text{-}B , \text{drive-}t_1\text{-}B\text{-}C \rangle$

 $\pi = \langle \; \mathsf{drive} ext{-} t_1 ext{-} A ext{-} B \; \mathsf{,drive} ext{-} t_2 ext{-} A ext{-} B \; \mathsf{,drive} ext{-} t_1 ext{-} B ext{-} C ext{-} A \;
angle$

$$\pi=\langle$$
 drive- t_1 -A-B ,drive- t_2 -A-B ,drive- t_1 -B-C ,drive- t_1 -C-A \rangle $\pi'=\langle$ drive- t_2 -A-B \rangle

Shortcuts in Logic Form

- For $X \subseteq s_0[[\pi]]$ to be an intended effect of π , it must achieve something that no shortcut does
- Expressed as a CNF formula:

$$\phi_{\mathscr{L}}(\pi) = igwedge_{\pi' \in \mathscr{L}: C(\pi') < C(\pi)} ee_{p \in s_0[[\pi]] \setminus s_0[[\pi']]}
ho$$

 Each clause of this formula stands for an existential optimal disjunctive action landmark: There must exist some action in some optimal continuation that consumes one of its propositions

Finding Shortcuts

- Where does the shortcut library $\mathscr L$ come from?
- It does not need to be static it can be dynamically generated for each path
- We use the causal structure of the current path a graph whose nodes are actions, with an edge from a_i to a_j if there is a causal link where a_i provides some proposition for a_j
- We attempt to remove parts of the causal structure, to obtain a "shortcut"

Shortcuts as Landmarks

- The formula $\phi_{\mathscr{L}}(\pi)$ describes \exists -opt landmarks landmarks which occur in some optimal plan
- We can incorporate those landmarks with "regular" landmarks, and derive a heuristic using the cost partitioning method
- The resulting heuristic is path admissible
- To guarantee optimality, we modify A* to reevaluate h(s) every time a cheaper path to s is found

$\overline{\{ ho\}}$ -path Admissibility

We also have another variant of the heuristic — $\phi_{\mathscr{L}}(\pi|\{\rho\})$

- $\{\rho\}$ -admissible
- $m{\circ}$ ho is the lexicographically lowest optimal plan
- Requires more modifications to A*

Outline

Admissibility and Optimality

2 A Path Admissible Heuristic for STRIPS

3 Empirical Evaluation

Coverage

coverage	$\phi_{\mathscr{L}}(\pi)$	$\phi_{\mathscr{L}}(\pi \{ ho\})$	h _{LA}	LM-A*
airport (50)	28	27	28	28
depot (22)	5	5	4	4
driverlog (20)	9	9	7	7
elevators (30)	7	0	7	7
freecell (80)	51	49	51	51
mprime (35)	19	17	15	15
mystery (30)	15	15	12	12
parcprinter (30)	12	12	11	11
pipesworld-tankage (50)	10	8	10	9
satellite (36)	6	4	4	4
sokoban (30)	15	0	15	15
trucks-strips (30)	7	7	6	6
SUM	547	514	531	530

Only interesting domains are shown

Expansions

expansions	$\phi_{\mathscr{L}}(\pi)$	$\phi_{\mathscr{L}}(\pi \{ ho\})$	h _{LA}
airport (27)	211052	420947	211647
blocks (21)	1064433	1160581	1070441
depot (4)	290141	388822	401696
driverlog (7)	170534	224226	363541
freecell (49)	403030	556692	403030
grid (2)	227288	231599	467078
gripper (5)	458498	594875	458498
logistics00 (20)	816589	1487932	862443
logistics98 (3)	13227	22014	45654
miconic (141)	135213	183319	135213
mprime (15)	35308	42093	313576
mystery (14)	37698	48785	290133
openstacks (12)	1579931	1756117	1579931
parcprinter (11)	101178	146959	158090
pathways (4)	32287	58912	173593
pegsol (26)	3948303	4364821	3948303
pipesworld-notankage (15)	1248036	1775363	1377390
pipesworld-tankage (8)	24080	36830	28761
psr-small (48)	358647	373242	698003
rovers (5)	98118	343152	231380
satellite (4)	5906	8817	10623
scanalyzer (13)	22251	27893	23213
storage (13)	313259	359482	475049
tpp (5)	4227	7355	12355
transport (9)	915027	1062859	929285
trucks-strips (6)	230699	314618	1261745
woodworking (11)	92195	163589	152975
zenotravel (8)	66600	86782	186334
SUM	12903755	16248676	16269980

Thank You

