Route Planning for Bicycles – Exact Constrained Shortest Paths made Practical via Contraction Hierarchy

Sabine Storandt

ICAPS 2012

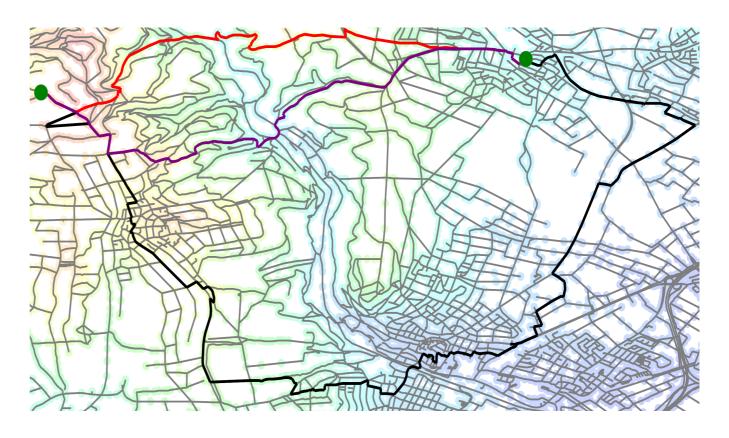
MOTIVATION

Bicycle route from A to B

- should be short
- but bear not too much hard climbs

Optimization Problem

Find the shortest path from A to B with a (positive) height difference smaller than H.



length height difference

RED: 7.5km 517m

BLACK: 19.1km 324m

PURPLE: 7.7km 410m

MOTIVATION

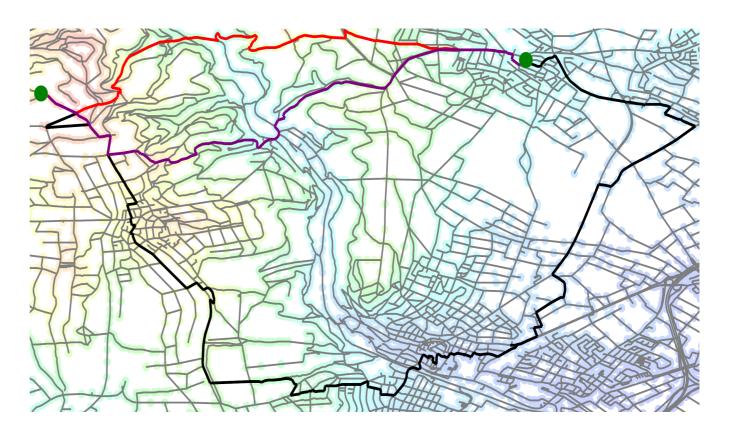
Bicycle route from A to B

- should be short
- but bear not too much hard climbs

Optimization Problem

Find the shortest path from A to B with a (positive) height difference smaller than H.

Constrained Shortest Path(CSP)
NP-hard



len	gth	height	difference

RED: 7.5km 517m

BLACK: 19.1km 324m

PURPLE: 7.7km 410m

FORMAL PROBLEM DEFINITION

Given

G(V, E) (street) graph

 $c: E \to \mathbb{R}_0^+ \text{ cost}$

 $r: E \to \mathbb{R}_0^+$ resource consumption

Goal

for $s,t\in V$, $R\in\mathbb{R}^+_0$ compute minimal cost path p from s to t whose resource consumption does not exceed R

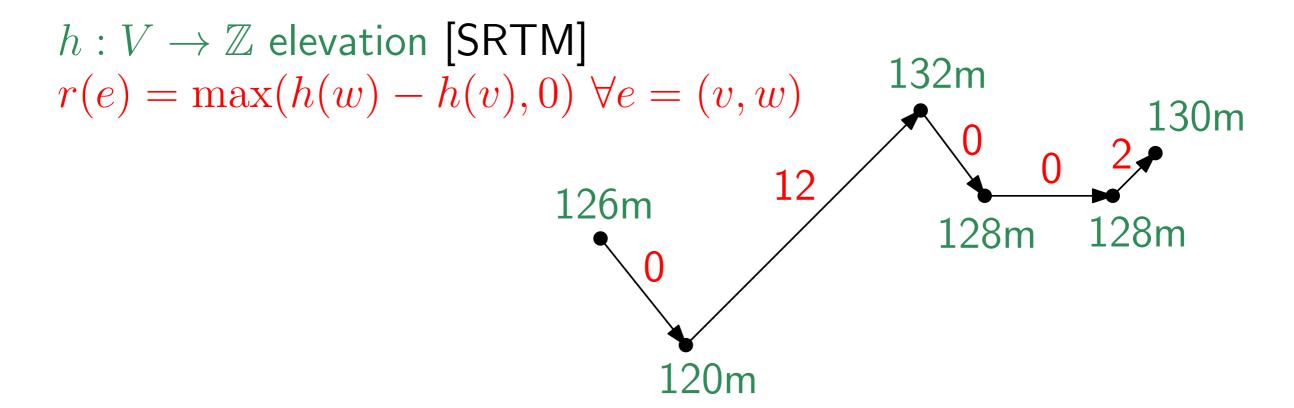
$$\min c(p) = \sum_{e \in p} c(e)$$
 s.t. $r(p) = \sum_{e \in p} r(e) \le R$

FORMAL PROBLEM DEFINITION

Bicycle Route Planning

<u>costs:</u> euclidean distance [OSM]

<u>resource</u>: positive height difference



CONTRIBUTION

Adaption of speed-up techniques for the shortest path problem to reduce

- query time
- space consumption

for exact CSP computation in large street networks.

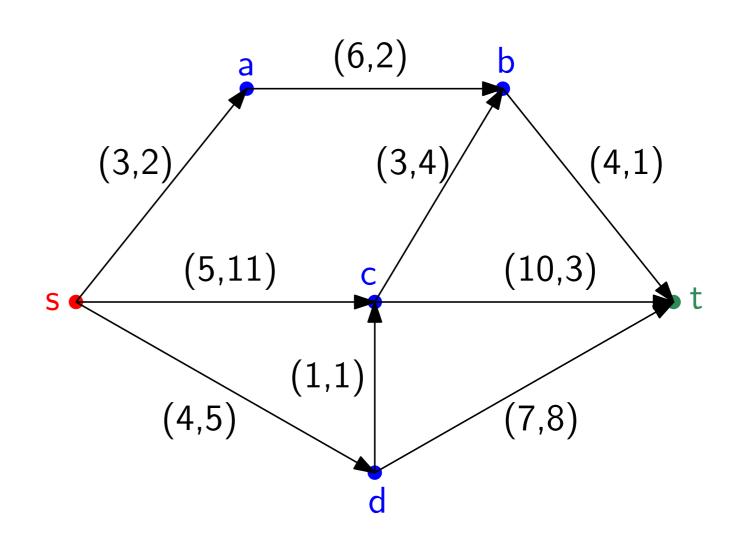
Focus Contraction Hierarchy

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists

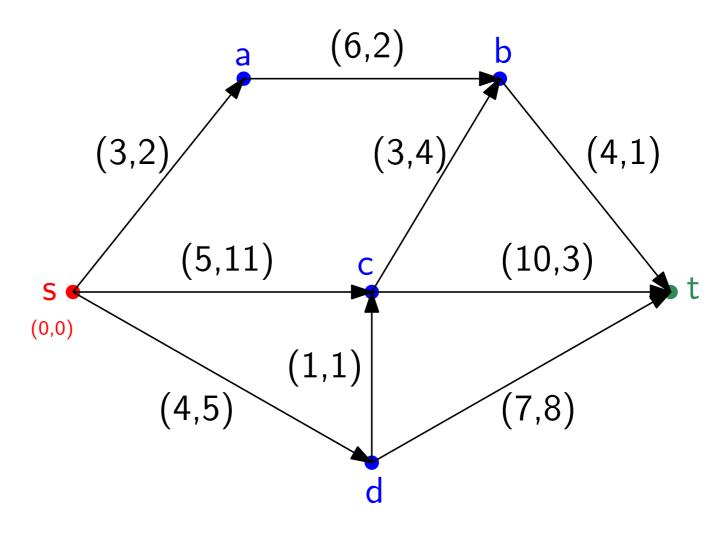


[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



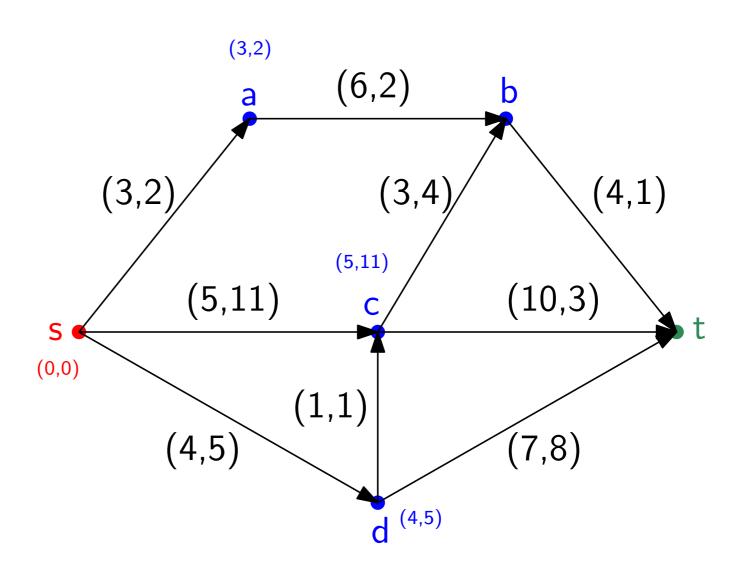
$$PQ = (0,0,s)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



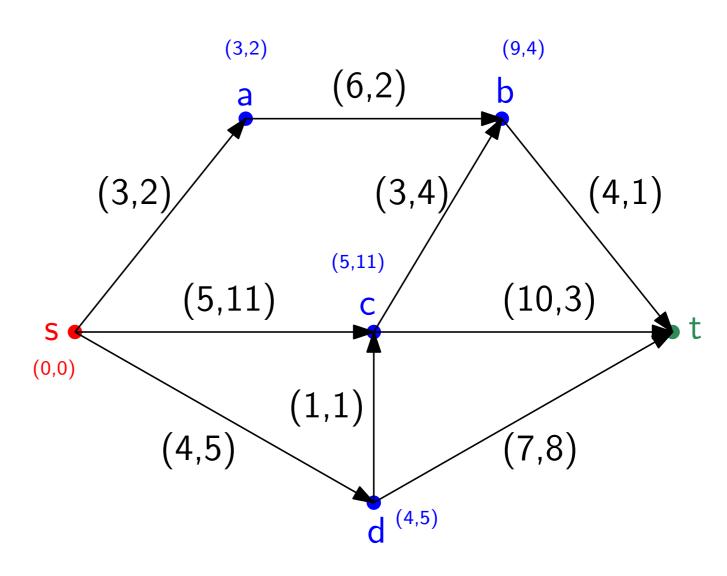
$$PQ = (3,2,a), (4,5,d), (5,11,c)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



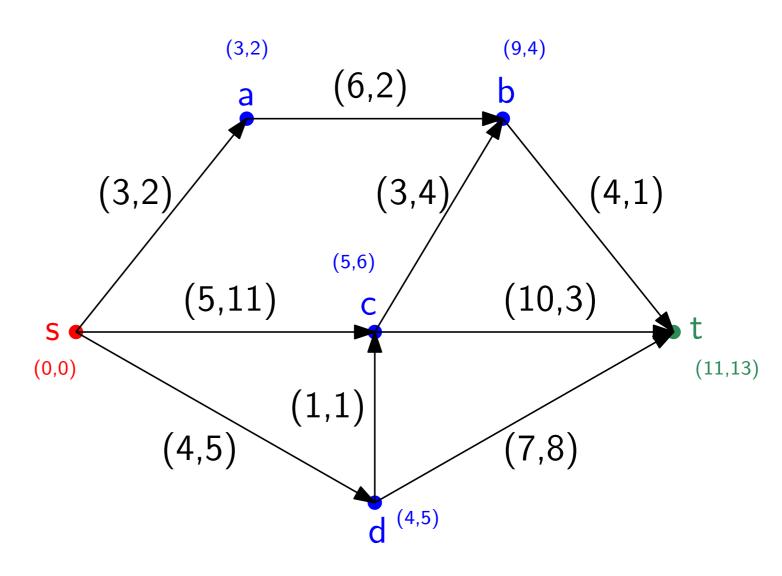
$$PQ = (4,5,d), (5,11,c), (9,4,b)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



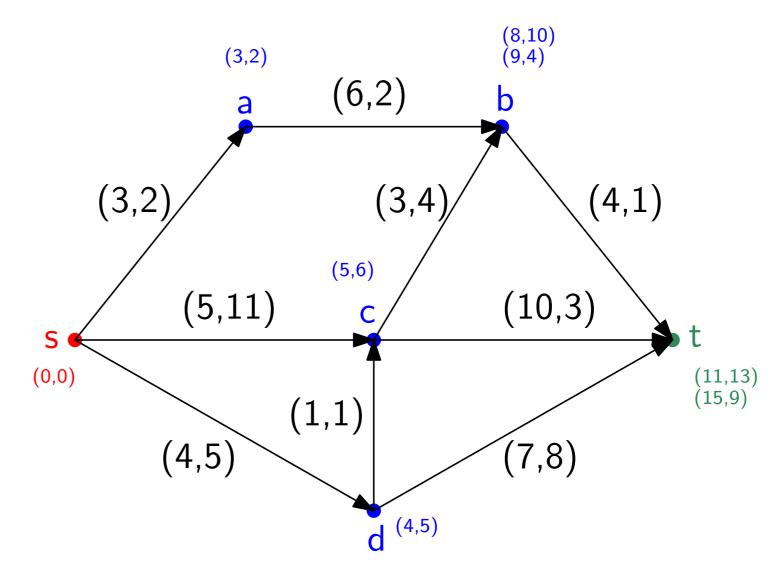
$$PQ = (5,6,c), (9,4,b)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



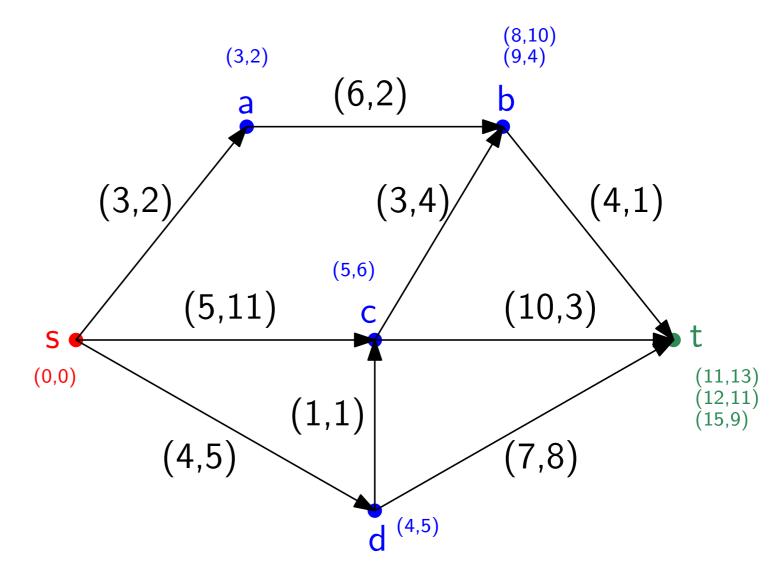
$$PQ = (8,10,b),(9,4,b)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



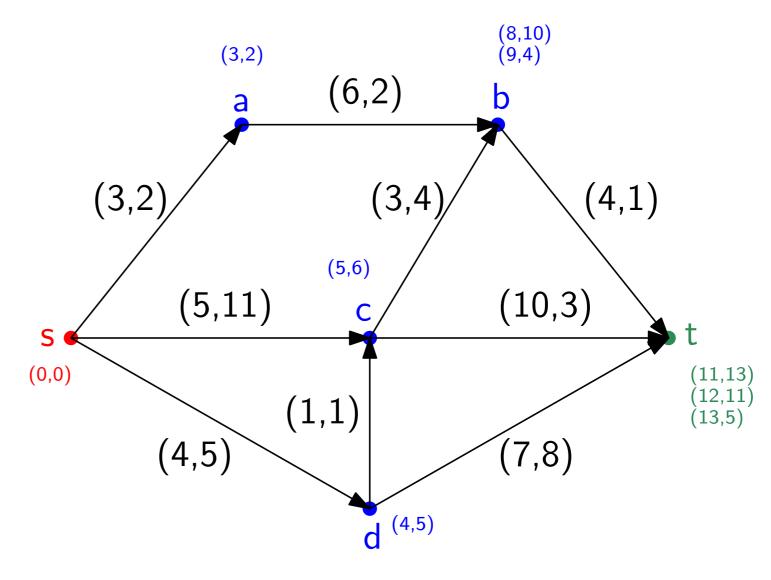
$$PQ = (9,4,b)$$

[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Pareto-optimal $\widehat{=}$ no dominating path exists



$$PQ = \emptyset$$

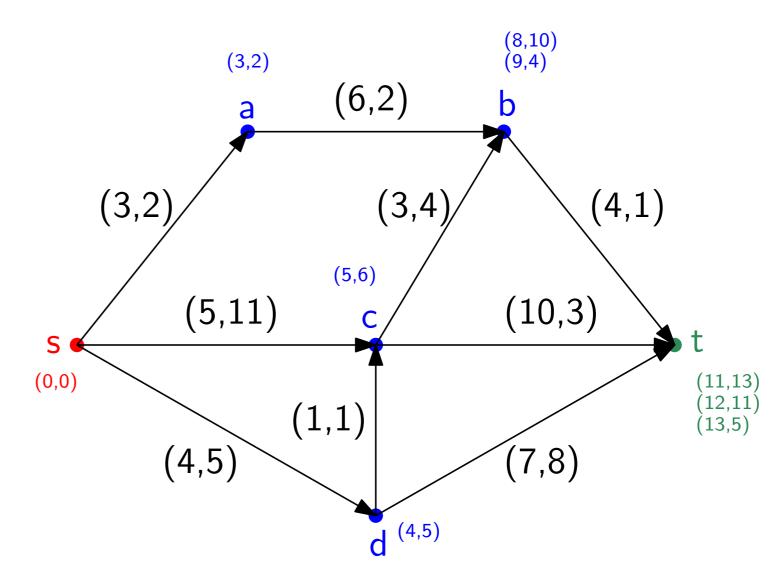
[Aggarwal, Aneja, and Nair 1982]

Approach

Assign to each node the list of pareto-optimal tuples.

Similarities to Dijkstra

- operates directly on the graph
- PQ and edge relaxation
- bidirectional version exists



$$PQ = \emptyset$$

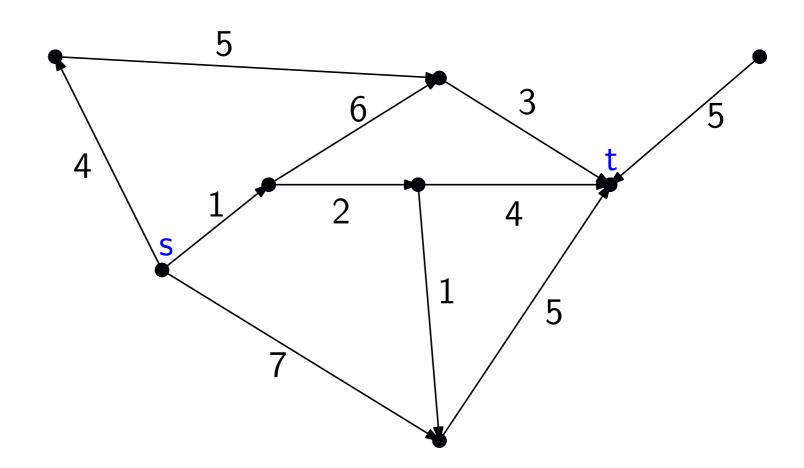
[Aneja, Aggarwal, and Nair 1983]

Idea

Consider only resource consumption

 $\forall v \in V$ compute minimal resource consumption r_{min} for a path s, \dots, v, \dots, t (via two Dijkstra runs)

Prune all nodes with $r_{min}(v) > R$



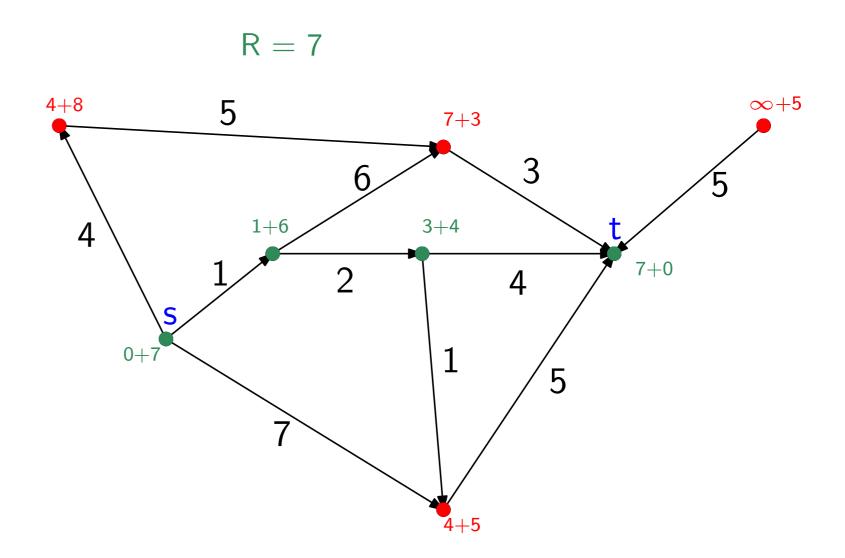
[Aneja, Aggarwal, and Nair 1983]

Idea

Consider only resource consumption

 $\forall v \in V$ compute minimal resource consumption r_{min} for a path s, \dots, v, \dots, t (via two Dijkstra runs)

Prune all nodes with $r_{min}(v) > R$



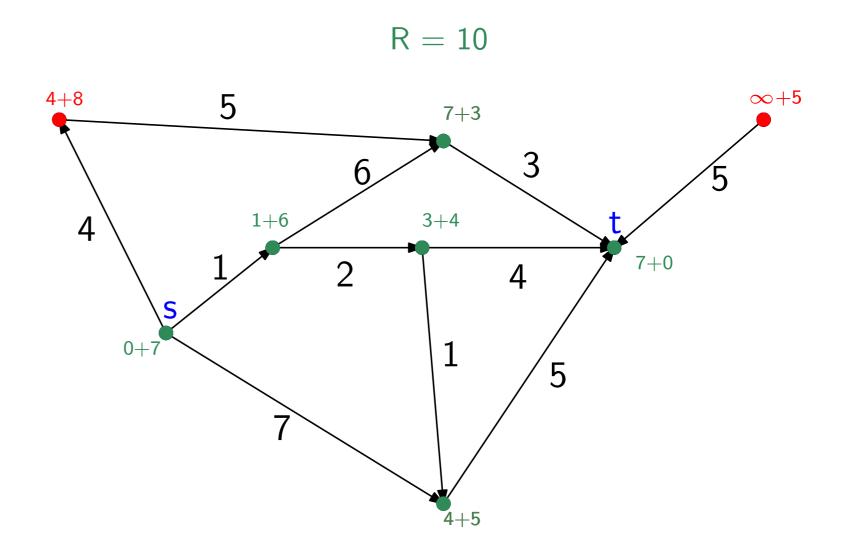
[Aneja, Aggarwal, and Nair 1983]

Idea

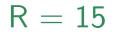
Consider only resource consumption

 $\forall v \in V$ compute minimal resource consumption r_{min} for a path s, \dots, v, \dots, t (via two Dijkstra runs)

Prune all nodes with $r_{min}(v) > R$



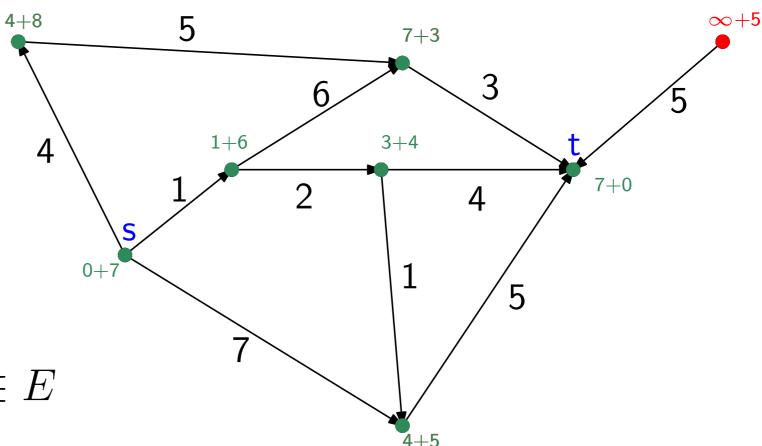
[Aneja, Aggarwal, and Nair 1983]



Problem

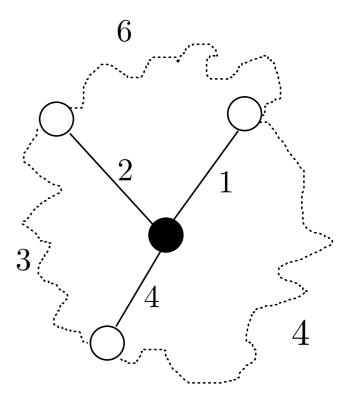
Impact low if

- R is large
- r(e) small for many $e \in E$



[Geisberger et al. 2008]

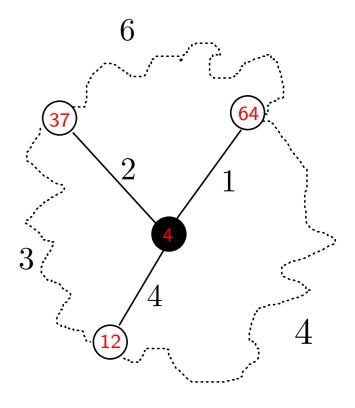
Graph preprocessing method



[Geisberger et al. 2008]

Graph preprocessing method

1. Assign distinct importance values to the nodes



[Geisberger et al. 2008]

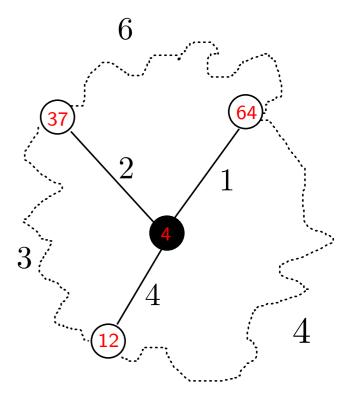
Graph preprocessing method

- 1. Assign distinct importance values to the nodes
- 2. Remove nodes one by one in order of importance ('contraction')

Task: maintain all shortest path distances in remaining graph

Add shortcut if no witness found

Witness: path shorter than reference path



[Geisberger et al. 2008]

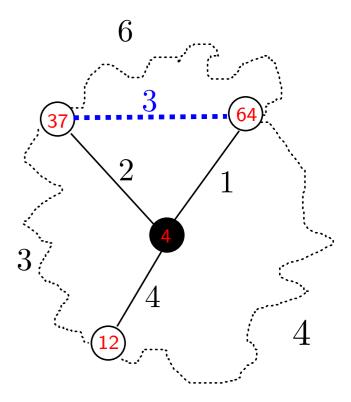
Graph preprocessing method

- 1. Assign distinct importance values to the nodes
- 2. Remove nodes one by one in order of importance ('contraction')

Task: maintain all shortest path distances in remaining graph

Add shortcut if no witness found

Witness: path shorter than reference path



[Geisberger et al. 2008]

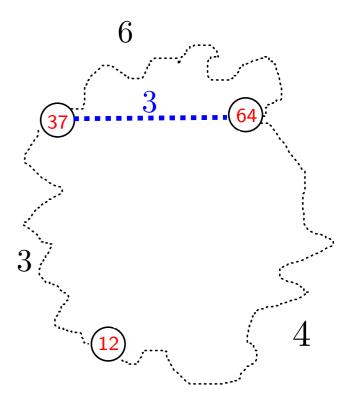
Graph preprocessing method

- 1. Assign distinct importance values to the nodes
- 2. Remove nodes one by one in order of importance ('contraction')

Task: maintain all shortest path distances in remaining graph

Add shortcut if no witness found Witness: path shorter than reference path

3. Add all shortcuts to original graph Every SP can be divided into $s\uparrow$ and $\downarrow t$



[Geisberger et al. 2008]

Graph preprocessing method

- 1. Assign distinct importance values to the nodes
- 2. Remove nodes one by one in order of importance ('contraction')

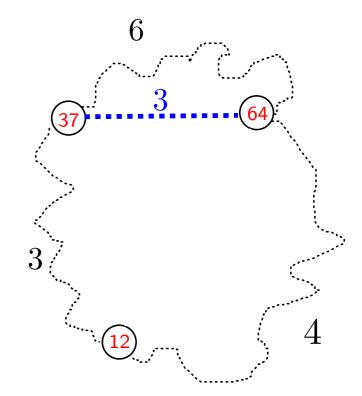
Task: maintain all shortest path distances in remaining graph

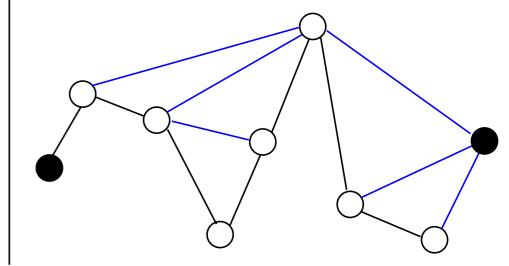
Add shortcut if no witness found Witness: path shorter than reference path

3. Add all shortcuts to original graph Every SP can be divided into $s\uparrow$ and $\downarrow t$

Query Answering

bidirectional: only relax edges to nodes with higher importance

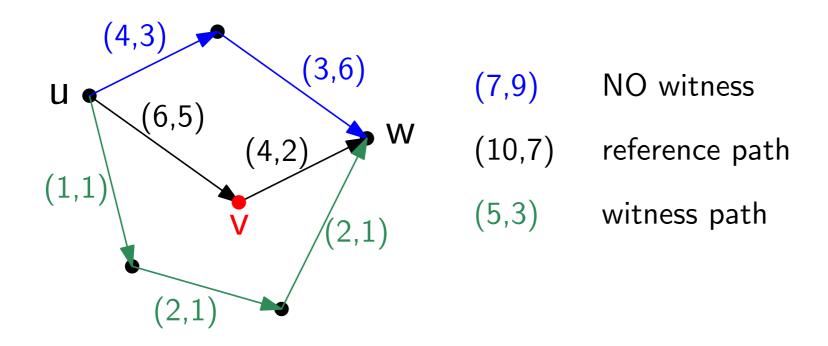




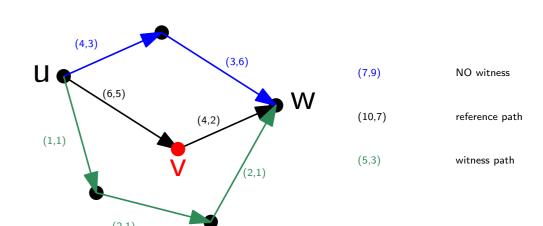
importance

Task maintain all pareto-optimal paths
Witness must dominate reference path

Task maintain all pareto-optimal paths
Witness must dominate reference path



Task maintain all pareto-optimal paths
Witness must dominate reference path

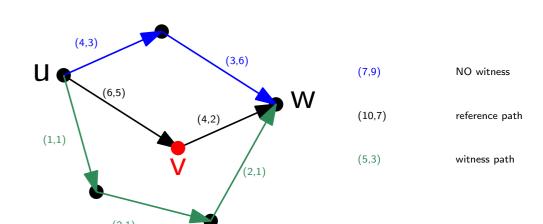


Naive Witness Search

reference path p = uvw

- start label setting computation(LSC) in u with R=r(p)
- if w receives label with $c \leq c(p), r \leq r(p)$, break \to witness path found
- insert shortcut if no witness was found

Task maintain all pareto-optimal paths
Witness must dominate reference path



Naive Witness Search

reference path p = uvw

- start label setting computation(LSC) in u with R=r(p)
- if w receives label with $c \le c(p), r \le r(p)$, break
 - → witness path found
- insert shortcut if no witness was found

Problem
LSC might be very time and space consuming

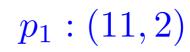
Basic Idea

Restrict witness search first to paths on the lower convex hull.

Lower Convex Hull(LCH)

for every v-w-path p: represent (c(p), r(p)) as line segment $\lambda c(p) + (1-\lambda)r(p)$, $\lambda \in [0,1]$

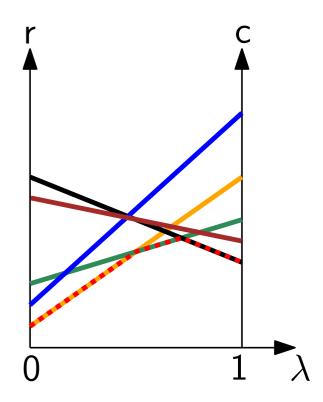
 $p \in LCH(v,w) \Leftrightarrow \exists \lambda \in [0,1]$ for which line segment of p is minimal



$$p_3:(1,8)$$

$$p_4:(5,7)$$

$$p_5:(4,8)$$



Basic Idea

Restrict witness search first to paths on the lower convex hull.

Advantage

paths on the LCH can be found by a Dijkstra run in G^{λ}

 G^{λ} : edges have single weight $w(e) = \lambda c(e) + (1 - \lambda)r(e)$

Basic Idea

Restrict witness search first to paths on the lower convex hull.

Advantage

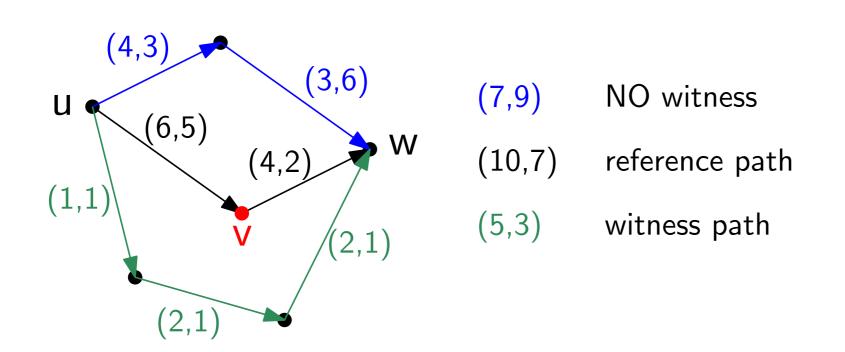
paths on the LCH can be found by a Dijkstra run in G^{λ} G^{λ} : edges have single weight $w(e) = \lambda c(e) + (1 - \lambda)r(e)$

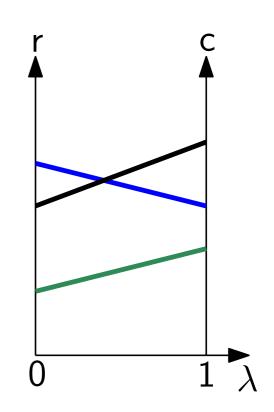
In which cases does exploring the LCH help? What if LCH check procedure is inconclusive?

In which cases does exploring the LCH help?

In which cases does exploring the LCH help?

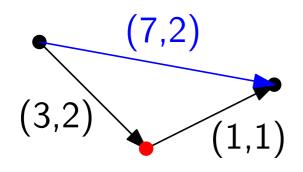
1. If dominating path is part of the LCH. witness path found, shortcut can be omitted





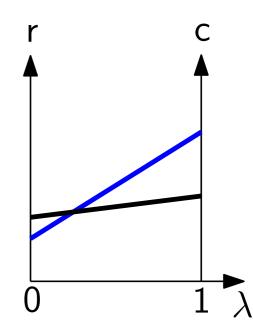
In which cases does exploring the LCH help?

- 1. If dominating path is part of the LCH. witness path found, shortcut can be omitted
- 2. If reference path is part of the LCH. no dominating path exists, shortcut must be inserted



(7,2)

(4,3) reference path



What if LCH check procedure is inconclusive?

Reasons

- 1. Neither p nor a possible witness are part of the LCH.
- 2. Number of λ support points too small.

Possibilities

- Apply LSC on top.
 or
- Add shortcut without further care.

EXPERIMENTAL RESULTS

Test Graphs 10k - 5.5m nodes

Preprocessing

- t=3 support points led to a conclusive result of the LCH-checker in 62% of the cases
- number of edges in CH-graph about twice the number of original edges (comparable to the conventional case)

Query Answering

- speed-up about two orders of magnitude
- remarkably less space consumption (8GB laptop sufficient, before some queries failed even on a 96GB server)

CONCLUSIONS

Can answer exact CSP queries in graphs with up to 500k nodes in time less than one second!

Also in the paper...

- speed-up via CH for dynamic programming CSP solution
- CSP-variant of arc-flags

Future Work

- ullet combination with other techniques/heuristics (e.g. A^*)
- consider other metric combinations and more complicated scenarios, e.g. edge cost functions

THANK YOU...

... for your attention!

Questions?

