Optimally Relaxing Partial-Order Plans with MaxSAT

Christian Muise (cjmuise@cs.toronto.edu) Sheila A. McIlraith (sheila@cs.toronto.edu) J. Christopher Beck (jcb@mie.utoronto.ca)

University of Toronto

June 27, 2012

Motivation

- Partial-Order Plans (POPs) have an appealing least commitment nature.
- POP planners are not as effective as sequential ones.
- MaxSAT solvers have become increasingly powerful.

Motivation

- Partial-Order Plans (POPs) have an appealing least commitment nature.
- POP planners are not as effective as sequential ones.
- MaxSAT solvers have become increasingly powerful.

Goal

Can we use a sequential planner to generate a plan and then use a SAT solver to turn that plan into an "optimal" POP?

Approach

Generate a sequential plan (FF).

Approach'

- Generate a sequential plan (FF).
- 2 Encode the problem of finding a POP from the plan.

Approach¹

- Generate a sequential plan (FF).
- Encode the problem of finding a POP from the plan.
- Use a MaxSAT solver to compute a POP (Sat4j).

The Result

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

- Background
 - Propositional Planning
 - Partial Order Plans
 - Partial Weighted MAXSAT

Propositional Planning

Planning Problem

- STRIPS Planning problem $\Pi = \langle F, O, I, G \rangle$
- F: Finite set of fluents
- O: Finite set of operators
- *I*: Initial state $(I \subseteq F)$
- G: Goal state $(G \subseteq F)$

Propositional Planning

Planning Problem

- STRIPS Planning problem $\Pi = \langle F, O, I, G \rangle$
- F: Finite set of fluents
- O: Finite set of operators
- I: Initial state $(I \subseteq F)$
- G: Goal state $(G \subseteq F)$

State

A state $s \subseteq F$ is a subset of the fluents that currently hold. In a *complete state*, fluents not in s are presumed to be false. A *partial state* does not have this assumption.

Operators and Actions

For each $o \in O$

- $PRE(o) \subseteq F$: Precondition
- $ADD(o) \subseteq F$: Add effects
- $DEL(o) \subseteq F$: Delete effects

Operators and Actions

For each $o \in O$

- $PRE(o) \subseteq F$: Precondition
- $ADD(o) \subseteq F$: Add effects
- $DEL(o) \subseteq F$: Delete effects

Action

An instance of an operator is referred to as an *action*. There may be many actions that correspond to the same operator.

Plans

Action execution

- An action a is executable in state s iff $PRE(a) \subset s$.
- Executing an action a executable in state s causes the state to change to $(s \setminus DEL(a)) \cup ADD(a)$.
- Execution of a sequence of actions is the process of executing each action in turn. A sequence can only be executed if each individual action is executable in the corresponding state.

Plans

Action execution

- An action a is executable in state s iff $PRE(a) \subset s$.
- Executing an action a executable in state s causes the state to change to $(s \setminus DEL(a)) \cup ADD(a)$.
- Execution of a sequence of actions is the process of executing each action in turn. A sequence can only be executed if each individual action is executable in the corresponding state.

Sequential Plan

A sequential plan is a sequence of actions $\vec{a} = [a_1, a_2, \cdots, a_n]$ that can be executed in the initial state I, and achieves the goal G.

- Background
 - Propositional Planning
 - Partial Order Plans
 - Partial Weighted MAXSAT

 a_1 a_2

 a_3 a_4

Actions

Ordering Constraints

Causal Links

Actions for A and G

Partial Order Plan (POP)

• For a problem Π , a POP is a tuple $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$.

Partial Order Plan (POP)

- For a problem Π , a POP is a tuple $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$.
- A: Set of actions in the plan corresponding to operators in Π .

Partial Order Plan (POP)

- For a problem Π , a POP is a tuple $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$.
- A: Set of actions in the plan corresponding to operators in Π .
- \mathcal{O} : Set of ordering constraints between the actions in \mathcal{A} .
 - E.g., $(a_1 \prec a_2) \in \mathcal{O}$ (can assume \mathcal{O} is transitively closed)

Partial Order Plan (POP)

- For a problem Π , a POP is a tuple $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$.
- A: Set of actions in the plan corresponding to operators in Π .
- \mathcal{O} : Set of ordering constraints between the actions in \mathcal{A} .
 - $\bullet \;\; \mathsf{E.g.,} \; (a_1 \prec a_2) \in \mathcal{O} \quad \text{(can assume \mathcal{O} is transitively closed)}$
- C: Set of causal links between the actions in A. A causal link is an annotated ordering constraint that is labelled with a fluent that represents why the link exists.
 - E.g., $(a_1 \stackrel{f}{\prec} a_2) \in \mathcal{C}$ (can assume $f \in ADD(a_1) \cap PRE(a_2)$)

Linearizations

A *linearization* of the POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is a total ordering of actions in \mathcal{A} that respects the ordering constraints of \mathcal{O} .

Linearizations

A *linearization* of the POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is a total ordering of actions in \mathcal{A} that respects the ordering constraints of \mathcal{O} .

Threats & Support

• For a causal link $(a_1 \stackrel{f}{\prec} a_2)$, we say that a_1 supports the precondition f of a_2 , and the precondition is supported.

Linearizations

A *linearization* of the POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is a total ordering of actions in \mathcal{A} that respects the ordering constraints of \mathcal{O} .

Threats & Support

- For a causal link $(a_1 \stackrel{f}{\prec} a_2)$, we say that a_1 supports the precondition f of a_2 , and the precondition is supported.
- Any precondition $f \in PRE(a)$ for some action $a \in A$ is an open precondition if it is not supported.

Linearizations

A *linearization* of the POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is a total ordering of actions in \mathcal{A} that respects the ordering constraints of \mathcal{O} .

Threats & Support

- For a causal link $(a_1 \stackrel{f}{\prec} a_2)$, we say that a_1 supports the precondition f of a_2 , and the precondition is supported.
- Any precondition $f \in PRE(a)$ for some action $a \in A$ is an open precondition if it is not supported.
- A causal link $(a_1 \stackrel{f}{\prec} a_2)$ is *threatened* if there is some action a_3 such that $f \in DEL(a_3)$ and $\mathcal{O} \cap \{(a_3 \prec a_1), (a_2 \prec a_3)\} = \emptyset$.

Linearizations:

$$[a_1, a_2, a_3, a_4] \quad [a_1, a_3, a_2, a_4] \quad [a_1, a_3, a_4, a_2]$$
$$[a_3, a_1, a_2, a_4] \quad [a_3, a_1, a_4, a_2]$$

Threats: $g_2 \in DEL(a_1)$

Threats: $g_2 \in DEL(a_1)$

POP Validity

Intuition

A POP is valid if it achieves the goal from the initial state.

POP Validity

Intuition

A POP is *valid* if it achieves the goal from the initial state.

Linearization Validity

A POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is valid for Π iff every linearization of the POP is a plan for Π .

POP Validity

Intuition

A POP is valid if it achieves the goal from the initial state.

Linearization Validity

A POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is valid for Π iff every linearization of the POP is a plan for Π .

Threat & Support Validity

A POP $P = \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle$ is valid for Π iff the following holds:

- **1** There are no open preconditions in P.
- 2 No causal link in C is threatened.
- **3** \mathcal{A} contains the dummy actions a_I and a_G .

Outline

- Background
 - Propositional Planning
 - Partial Order Plans
 - Partial Weighted MAXSAT

Satisfiability (SAT)

$$(x \vee y) \wedge (\neg x \vee z)$$

$$(x \lor y) \land (\neg x \lor z)$$

Satisfiability (SAT)

$$(x \lor y) \land (\neg x \lor z)$$

Maximum Satisfiability (MAXSAT)

$$(x \lor y \lor \neg z) \land (x \lor z) \land (y \lor z) \land (\neg x \lor \neg y) \land (\neg z \lor \neg x) \land (\neg z \lor \neg y)$$

Satisfiability (SAT)

$$(x \lor y) \land (\neg x \lor z)$$

Maximum Satisfiability (MAXSAT)

$$(x \lor y \lor \neg z) \land (x \lor z) \land (y \lor z) \land (\neg x \lor \neg y) \land (\neg z \lor \neg x) \land (\neg z \lor \neg y)$$

Weighted MAXSAT

$$\stackrel{3}{(x)} \wedge \left(\neg x \vee \neg y \right) \wedge \left(\neg x \vee \neg z \right) \wedge \stackrel{1}{(y)} \wedge \stackrel{1}{(z)}$$

Weighted MAXSAT

$$\stackrel{3}{(x)} \wedge \left(\neg x \vee \neg y \right) \wedge \left(\neg x \vee \neg z \right) \wedge \stackrel{1}{(y)} \wedge \stackrel{1}{(z)}$$

Weighted MAXSAT

$$\stackrel{\textbf{3}}{(\textbf{x})} \wedge \left(\neg \textbf{x} \vee \neg \textbf{y} \right) \wedge \left(\neg \textbf{x} \vee \neg \textbf{z} \right) \wedge \stackrel{\textbf{1}}{(\textbf{y})} \wedge \stackrel{\textbf{1}}{(\textbf{z})}$$

Weighted MAXSAT

$$\overset{\mathbf{3}}{(x)} \wedge (\neg x \vee \neg y) \wedge (\neg x \vee \neg z) \wedge \overset{\mathbf{1}}{(y)} \wedge \overset{\mathbf{1}}{(z)}$$

Partial Weighted MAXSAT

$$(x) \wedge (y) \wedge (z) \wedge (\neg x \vee \neg z) \wedge (\neg y \vee \neg z) \wedge (\neg x \vee \neg y)$$

Weighted MAXSAT

$$\stackrel{\textbf{3}}{(x)} \wedge (\neg x \vee \neg y) \wedge (\neg x \vee \neg z) \wedge \stackrel{\textbf{1}}{(y)} \wedge \stackrel{\textbf{1}}{(z)}$$

Partial Weighted MAXSAT

$$(x) \wedge (y) \wedge (z) \wedge (\neg x \vee \neg z) \wedge (\neg y \vee \neg z) \wedge (\neg x \vee \neg y)$$

Outline

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

Outline

- 2 Least Commitment Criteria
 - Deordering & Reordering
 - Least Commitment POP

Outline

- 2 Least Commitment Criteria
 - Deordering & Reordering
 - Least Commitment POP

• Would like a notion that includes the number of actions.

- Would like a notion that includes the number of actions.
- Prefer to first minimize the number of actions.

- Would like a notion that includes the number of actions.
- Prefer to first minimize the number of actions.
- When actions are minimal, minimize the number of orderings.

- Would like a notion that includes the number of actions.
- Prefer to first minimize the number of actions.
- When actions are minimal, minimize the number of orderings.

Least Commitment POP (LCP)

Let $P = \langle \mathcal{A}, \mathcal{O} \rangle$ and $Q = \langle \mathcal{A}', \mathcal{O}' \rangle$ be two POPs valid for Π . Q is a *least commitment POP* (LCP) of P iff Q is the minimum reordering of itself and there is no valid POP $\langle \mathcal{A}'', \mathcal{O}'' \rangle$ for Π such that $\mathcal{A}'' \subseteq \mathcal{A}$ and $|\mathcal{A}''| < |\mathcal{A}'|$.

Outline

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

Outline

- 3 Encoding
 - Core Encoding
 - Extensions
 - Approach

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

- No self loops.
- Include a_I and a_G.
- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

- No self loops.
- Include a_I and a_G.
- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

No self loops.

- Include a_I and a_G .
- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

No self loops.

- Include a_I and a_G .
- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

No self loops.

• $(x_{a_I}) \wedge (x_{a_G})$

Include a_I and a_G .

- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

 $\bullet \neg \kappa(a, a)$

No self loops.

• $(x_{a_I}) \wedge (x_{a_G})$

Include a_I and a_G .

- If an ordering is used, include the actions.
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

Include a_l and a_G .

No self loops.

 $\bullet \ (x_{a_I}) \wedge (x_{a_G})$

Ordering implies actions.

- $\bullet \ \kappa(a_i,a_j) \to x_{a_i} \wedge x_{a_j}$
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

No self loops. Include a_I and a_G .

 $\bullet \ (x_{a_I}) \wedge (x_{a_G})$

Ordering implies actions.

- $\bullet \ \kappa(a_i,a_j) \to x_{a_i} \wedge x_{a_j}$
- If we include an action, order it after (before) a_I (a_G).
- Enforce the transitive closure.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

- $\neg \kappa(a, a)$
- $(x_{a_I}) \wedge (x_{a_G})$
- $\kappa(a_i, a_j) \rightarrow x_{a_i} \wedge x_{a_j}$
- $x_{a_i} \to \kappa(a_I, a_i) \wedge \kappa(a_i, a_G)$
- Enforce the transitive closure.

No self loops.

Include a_I and a_G .

Ordering implies actions.

Order actions with a_I and a_G .

rder actions with at and ag.

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

- $\neg \kappa(a, a)$
- $(x_{a_I}) \wedge (x_{a_G})$
- $\kappa(a_i, a_j) \rightarrow x_{a_i} \wedge x_{a_j}$
- $x_{a_i} \to \kappa(a_I, a_i) \wedge \kappa(a_i, a_G)$
- Enforce the transitive closure.

No self loops.

Include a_I and a_G .

Ordering implies actions.

Order actions with a_I and a_G .

16/ 26

Action Variables and Ordering Variables

- $\forall a \in \vec{a}$, x_a : True iff a is in the final POP.
- $\forall a_i, a_i \in \vec{a}, \ \kappa(a_i, a_i)$: True iff $(a_i \prec a_i)$ is in the final POP.
- $\Upsilon(a_i, a_j, p)$: a_i supports a_j with p.

Basic Clauses

• $\neg \kappa(a, a)$

No self loops. Include a_I and a_G .

 \bullet $(x_{a_I}) \wedge (x_{a_G})$

Ordering implies actions.

 \bullet $\kappa(a_i, a_j) \rightarrow x_{a_i} \wedge x_{a_j}$

- Order actions with a_l and a_G .
- $\kappa(a_i, a_i) \wedge \kappa(a_i, a_k) \rightarrow \kappa(a_i, a_k)$

• $x_{a_i} \to \kappa(a_i, a_i) \wedge \kappa(a_i, a_G)$

Transitive closure.

Core Encoding Cont.

POP Viability Clauses

- Ensure that if we include action a_j , then every precondition p of a_i must be satisfied by at least one achiever a_i .
- Ensure that if a_i achieves precondition p for action a_j , then no deleter of p will be allowed to occur between a_i and a_j .

Core Encoding Cont.

POP Viability Clauses

• Ensure that if we include action a_j , then every precondition p of a_j must be satisfied by at least one achiever a_i .

$$X_{a_j} \to \bigwedge_{p \in PRE(a_j)} V_{a_i \in adders(p)} [\kappa(a_i, a_j) \land \Upsilon(a_i, a_j, p)]$$

• Ensure that if a_i achieves precondition p for action a_j , then no deleter of p will be allowed to occur between a_i and a_j .

Core Encoding Cont.

POP Viability Clauses

• Ensure that if we include action a_j , then every precondition p of a_j must be satisfied by at least one achiever a_i .

$$X_{a_j} \to \bigwedge_{p \in PRE(a_j)} \ \bigvee_{a_i \in adders(p)} [\kappa(a_i, a_j) \land \Upsilon(a_i, a_j, p)]$$

• Ensure that if a_i achieves precondition p for action a_j , then no deleter of p will be allowed to occur between a_i and a_j .

$$\Upsilon(a_i, a_j, p) \to \left[\bigwedge_{a_k \in \mathsf{deleters}(p)} x_{a_k} \to \kappa(a_k, a_i) \lor \kappa(a_j, a_k) \right]$$

Core Encoding Cont.

POP Viability Clauses

• Ensure that if we include action a_j , then every precondition p of a_j must be satisfied by at least one achiever a_i .

$$X_{a_j} \to \bigwedge_{p \in PRE(a_j)} \ \bigvee_{a_i \in adders(p)} [\kappa(a_i, a_j) \land \Upsilon(a_i, a_j, p)]$$

• Ensure that if a_i achieves precondition p for action a_j , then no deleter of p will be allowed to occur between a_i and a_j .

$$\Upsilon(a_i, a_j, p) \to \left[\bigwedge_{a_k \in \mathsf{deleters}(p)} x_{a_k} \to \kappa(a_k, a_i) \lor \kappa(a_j, a_k) \right]$$

Soft Clauses

- $w(\neg \kappa(a_i, a_j)) = 1, \forall a_i, a_j \in A$
- $w(\neg x_a) = 1 + |\mathcal{A}|^2, \ \forall a \in \mathcal{A} \setminus \{a_I, a_G\}$

- 3 Encoding
 - Core Encoding
 - Extensions
 - Approach

Extensions

All Actions (AA)

$$(x_a), \forall a \in A$$

Deordering (DO)

$$(\neg \kappa(a_j, a_i)), [a_1, \ldots, a_i, \ldots, a_j, \ldots, a_n]$$

Variants

- AA,DO: Minimum Deordering (MD)
- AA,¬DO: Minimum Reordering (MR)
- ¬AA,¬DO: Least Commitment POP (LCP)

- 3 Encoding
 - Core Encoding
 - Extensions
 - Approach

Approach

- Generate a sequential plan (FF).
- Encode the problem of finding a POP (MD, MR, or LCP).
- Use a MAXSAT solver to compute the POP (Sat4j).

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

- Empirical Evaluation
 - Relaxer Algorithm
 - Encoding Difficulty
 - POP Quality
 - Reordering Flexibility

Relaxer Algorithm (KK)

Introduced by Kambhampati and Kedar (1994), the algorithm computes a deordering of a plan by removing redundant edges.

Algorithm 1: Relaxer Algorithm

```
Input: Sequential plan, \vec{a}, including a_l and a_G
Output: Partial-order plan, \langle \mathcal{A}, \mathcal{O}, \mathcal{C} \rangle
foreach a_j \in \mathcal{A} do

foreach f \in PRE(a_j) do

Let a_i be the first action in \vec{a} such that i < j, f \in ADD(a_i), and \forall k, i < k < j \Rightarrow f \notin DEL(a_k).

Create a causal link between a_i and a_j.

Add necessary ordering constraints so f isn't threatened.
```

- Empirical EvaluationRelaxer Algorithm
 - Encoding Difficulty
 - POP Quality
 - Reordering Flexibility

Successfully Encoded

	Num	FF	Successfully
Domain	Probs	Solved	Encoded
Depots	22	22	22
Driverlog	20	16	16
Logistics	35	35	33
TPP	30	30	20
Rovers	20	20	20
Zeno	20	20	18
ALL	147	143	129

- Time / memory limit of 30min / 2GB.
- Encoding failure due to CNF conversion.

Solve Time

- Empirical Evaluation
 - Relaxer Algorithm
 - Encoding Difficulty
 - POP Quality
 - Reordering Flexibility

	# Ac	ctions	# Ordering Constraints				
Domain	KK	LCP	RX	MD	MR	LCP	
Depots (14)	34.9	31.0	473.4	473.4	430.9	341.5	
Driverlog (15)	27.5	26.5	332.6	332.6	326.9	297.3	
Logistics (30)	78.1	77.4	1490.6	1490.6	1462.5	1470.4	
TPP (5)	13.4	13.4	74.8	74.8	74.8	74.8	
Rovers (18)	31.1	30.3	223.2	223.2	217.6	204.2	
Zeno (16)	29.2	29.2	404.3	404.3	403.5	403.5	
ALL (98)	44.3	43.2	685.7	685.7	669.0	651.6	

Mean number of actions and ordering constraints. Number of actions for KK, MD, and MR are all equal.

	# Ac	ctions	# Ordering Constraints				
Domain	KK	LCP	RX	MD	MR	LCP	
Depots (14)	34.9	31.0	473.4	473.4	430.9	341.5	
Driverlog (15)	27.5	26.5	332.6	332.6	326.9	297.3	
Logistics (30)	78.1	77.4	1490.6	1490.6	1462.5	1470.4	
TPP (5)	13.4	13.4	74.8	74.8	74.8	74.8	
Rovers (18)	31.1	30.3	223.2	223.2	217.6	204.2	
Zeno (16)	29.2	29.2	404.3	404.3	403.5	403.5	
ALL (98)	44.3	43.2	685.7	685.7	669.0	651.6	

Four of the domains had problems with a reduction of actions.

	# Ac	ctions	# Ordering Constraints				
Domain	KK	LCP	RX	MD	MR	LCP	
Depots (14)	34.9	31.0	473.4	473.4	430.9	341.5	
Driverlog (15)	27.5	26.5	332.6	332.6	326.9	297.3	
Logistics (30)	78.1	77.4	1490.6	1490.6	1462.5	1470.4	
TPP (5)	13.4	13.4	74.8	74.8	74.8	74.8	
Rovers (18)	31.1	30.3	223.2	223.2	217.6	204.2	
Zeno (16)	29.2	29.2	404.3	404.3	403.5	403.5	
ALL (98)	44.3	43.2	685.7	685.7	669.0	651.6	

The Relaxer algorithm always computed the minimum deordering.

	# Ac	ctions	# Ordering Constraints				
Domain	KK	LCP	RX	MD	MR	LCP	
Depots (14)	34.9	31.0	473.4	473.4	430.9	341.5	
Driverlog (15)	27.5	26.5	332.6	332.6	326.9	297.3	
Logistics (30)	78.1	77.4	1490.6	1490.6	1462.5	1470.4	
TPP (5)	13.4	13.4	74.8	74.8	74.8	74.8	
Rovers (18)	31.1	30.3	223.2	223.2	217.6	204.2	
Zeno (16)	29.2	29.2	404.3	404.3	403.5	403.5	
ALL (98)	44.3	43.2	685.7	685.7	669.0	651.6	

Fewer actions may require an increase in ordering constraints.

- Empirical Evaluation
 - Relaxer Algorithm
 - Encoding Difficulty
 - POP Quality
 - Reordering Flexibility

Reordering Flexibility

MR (resp. KK): The number of linearizations of the POP for the minimum reordering (resp. the POP generated by Relaxer).

- Background
- 2 Least Commitment Criteria
- 3 Encoding
- 4 Empirical Evaluation
- Conclusion

• Introduced a practical method for computing the optimal deording and reordering of a plan.

- Introduced a practical method for computing the optimal deording and reordering of a plan.
- Proposed an extension to least commitment planning that includes the number of actions in a solution.

- Introduced a practical method for computing the optimal deording and reordering of a plan.
- Proposed an extension to least commitment planning that includes the number of actions in a solution.
- Discovered that the Relaxer algorithm is extremely efficient at computing optimal deorderings.

- Introduced a practical method for computing the optimal deording and reordering of a plan.
- Proposed an extension to least commitment planning that includes the number of actions in a solution.
- Discovered that the Relaxer algorithm is extremely efficient at computing optimal deorderings.
- Found that greater flexibility can be achieved when using reorderings or the introduced least commitment criterion.

Future Work

• Try other forms of optimization techniques (MIP, CSP, etc.).

Future Work

- Try other forms of optimization techniques (MIP, CSP, etc.).
- Use external reasoning for handling the transitive closure.

Future Work

- Try other forms of optimization techniques (MIP, CSP, etc.).
- Use external reasoning for handling the transitive closure.
- Incorporate preferences into the optimization function.

Thanks

http://www.haz.ca/research/popgen/

Linearization Corner Case

Boolean Satisfiability

- Boolean variables x_1, x_2, \cdots that can be either True or False.
- Unary operator \neg , and binary operators \lor and \land .
- Well formed formula built by using variables, ¬, ∨, and ∧.
- Typically given in Conjunctive Normal Form (CNF).

Boolean Satisfiability

- Boolean variables x_1, x_2, \cdots that can be either True or False.
- Unary operator \neg , and binary operators \lor and \land .
- Well formed formula built by using variables, \neg , \lor , and \land .
- Typically given in Conjunctive Normal Form (CNF).

SAT Problem

Given a well formed formula, find a True / False setting to the variables such that the formula evaluates to True.

Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the clauses as possible.

Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the clauses as possible.

Weighted MAXSAT

Given a CNF with weights on the clauses, find an assignment that maximizes the sum of the weights on the satisfied clauses.

Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the clauses as possible.

Weighted MAXSAT

Given a CNF with weights on the clauses, find an assignment that maximizes the sum of the weights on the satisfied clauses.

Partial Weighted MAXSAT

Given a CNF with weights on *soft* clauses, find an assignment that satisfy all of the *hard* clauses and maximizes the sum of the weights on the satisfied clauses.

Deordering

Deordering

Let $P = \langle \mathcal{A}, \mathcal{O} \rangle$ and $Q = \langle \mathcal{A}', \mathcal{O}' \rangle$ be two POPs, and Π a planning problem. Q is a deordering of P wrt. Π iff P and Q are valid POPs for Π , $\mathcal{A} = \mathcal{A}'$, and $\mathcal{O}' \subseteq \mathcal{O}$.

Optimal Deordering

Let $P = \langle \mathcal{A}, \mathcal{O} \rangle$ and $Q = \langle \mathcal{A}', \mathcal{O}' \rangle$ be two POPs, and Π a planning problem. Q is a minimum deordering of P wrt. Π iff

- \bigcirc Q is a deordering of P wrt. \square , and
- ② There is no deordering $\langle \mathcal{A}^{''}, \mathcal{O}^{''} \rangle$ of P wrt. Π s.t. $|\mathcal{O}''| < |\mathcal{O}'|$

Reordering

Reordering

Let $P = \langle \mathcal{A}, \mathcal{O} \rangle$ and $Q = \langle \mathcal{A}', \mathcal{O}' \rangle$ be two POPs, and Π a planning problem. Q is a reordering of P wrt. Π iff P and Q are valid POPs for Π , and $\mathcal{A} = \mathcal{A}'$.

Optimal Reordering

Let $P = \langle \mathcal{A}, \mathcal{O} \rangle$ and $Q = \langle \mathcal{A}', \mathcal{O}' \rangle$ be two POPs, and Π a planning problem. Q is a minimum reordering of P wrt. Π iff

- **1** Q is a reordering of P wrt. Π , and
- ② There is no reordering $\langle \mathcal{A}'', \mathcal{O}'' \rangle$ of P wrt. Π s.t. $|\mathcal{O}''| < |\mathcal{O}'|$

- Background
 - Propositional Planning
 - Partial Order Plans
 - Partial Weighted MAXSAT
 - Least Commitment Criteria
 - Deordering & Reordering
 - Least Commitment POP
 - 3 Encoding
 - Core Encoding
 - Extensions
 - Approach
 - Empirical Evaluation
 - Relaxer Algorithm
 - Encoding Difficulty
 - POP Quality
 - Reordering Flexibility
 - Conclusion