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Motivation

Partial-Order Plans (POPs) have an appealing least

commitment nature.

POP planners are not as effective as sequential ones.

MaxSAT solvers have become increasingly powerful.
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Motivation

Partial-Order Plans (POPs) have an appealing least

commitment nature.

POP planners are not as effective as sequential ones.

MaxSAT solvers have become increasingly powerful.

Goal

Can we use a sequential planner to generate a plan and then use a
SAT solver to turn that plan into an “optimal” POP?
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Approach

1 Generate a sequential plan (FF).
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Approach

1 Generate a sequential plan (FF).

2 Encode the problem of finding a POP from the plan.

3 Use a MaxSAT solver to compute a POP (Sat4j).
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The Result

Problem Instance
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Outline

1 Background

2 Least Commitment Criteria

3 Encoding

4 Empirical Evaluation

5 Conclusion
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Outline

1 Background
Propositional Planning
Partial Order Plans
Partial Weighted MAXSAT
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Propositional Planning

Planning Problem

STRIPS Planning problem Π = 〈F ,O, I ,G 〉

F : Finite set of fluents

O: Finite set of operators

I : Initial state (I ⊆ F )

G : Goal state (G ⊆ F )
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Propositional Planning

Planning Problem

STRIPS Planning problem Π = 〈F ,O, I ,G 〉

F : Finite set of fluents

O: Finite set of operators

I : Initial state (I ⊆ F )

G : Goal state (G ⊆ F )

State

A state s ⊆ F is a subset of the fluents that currently hold. In a
complete state, fluents not in s are presumed to be false. A partial

state does not have this assumption.
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Operators and Actions

For each o ∈ O

PRE (o) ⊆ F : Precondition

ADD(o) ⊆ F : Add effects

DEL(o) ⊆ F : Delete effects
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Operators and Actions

For each o ∈ O

PRE (o) ⊆ F : Precondition

ADD(o) ⊆ F : Add effects

DEL(o) ⊆ F : Delete effects

Action

An instance of an operator is referred to as an action. There may
be many actions that correspond to the same operator.
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Plans

Action execution

An action a is executable in state s iff PRE (a) ⊂ s.

Executing an action a executable in state s causes the state to
change to (s \ DEL(a)) ∪ ADD(a).

Execution of a sequence of actions is the process of executing
each action in turn. A sequence can only be executed if each
individual action is executable in the corresponding state.
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Plans

Action execution

An action a is executable in state s iff PRE (a) ⊂ s.

Executing an action a executable in state s causes the state to
change to (s \ DEL(a)) ∪ ADD(a).

Execution of a sequence of actions is the process of executing
each action in turn. A sequence can only be executed if each
individual action is executable in the corresponding state.

Sequential Plan

A sequential plan is a sequence of actions ~a = [a1, a2, · · · , an] that
can be executed in the initial state I , and achieves the goal G .
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POP Example
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POP Example

a1 a2

a3 a4

Actions
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POP Example

a1 a2

a3 a4

Ordering Constraints
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POP Example

a1 a2

a3 a4

p1

p2

Causal Links
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POP Example

aI aG

a1 a2

a3 a4

p1

p2

g1

g2

Actions for A and G
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Partial Order Plans

Partial Order Plan (POP)

For a problem Π, a POP is a tuple P = 〈A,O, C〉.
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Partial Order Plans

Partial Order Plan (POP)

For a problem Π, a POP is a tuple P = 〈A,O, C〉.

A: Set of actions in the plan corresponding to operators in Π.
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Partial Order Plan (POP)

For a problem Π, a POP is a tuple P = 〈A,O, C〉.

A: Set of actions in the plan corresponding to operators in Π.

O: Set of ordering constraints between the actions in A.
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Partial Order Plans

Partial Order Plan (POP)

For a problem Π, a POP is a tuple P = 〈A,O, C〉.

A: Set of actions in the plan corresponding to operators in Π.

O: Set of ordering constraints between the actions in A.

E.g., (a1 ≺ a2) ∈ O (can assume O is transitively closed)

C: Set of causal links between the actions in A. A causal link
is an annotated ordering constraint that is labelled with a
fluent that represents why the link exists.

E.g., (a1
f
≺ a2) ∈ C (can assume f ∈ ADD(a1) ∩ PRE (a2))
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POP Terminology

Linearizations

A linearization of the POP P = 〈A,O, C〉 is a total ordering of
actions in A that respects the ordering constraints of O.
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A linearization of the POP P = 〈A,O, C〉 is a total ordering of
actions in A that respects the ordering constraints of O.

Threats & Support

For a causal link (a1
f
≺ a2), we say that a1 supports the

precondition f of a2, and the precondition is supported.
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A linearization of the POP P = 〈A,O, C〉 is a total ordering of
actions in A that respects the ordering constraints of O.

Threats & Support

For a causal link (a1
f
≺ a2), we say that a1 supports the

precondition f of a2, and the precondition is supported.

Any precondition f ∈ PRE (a) for some action a ∈ A is an
open precondition if it is not supported.
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POP Terminology

Linearizations

A linearization of the POP P = 〈A,O, C〉 is a total ordering of
actions in A that respects the ordering constraints of O.

Threats & Support

For a causal link (a1
f
≺ a2), we say that a1 supports the

precondition f of a2, and the precondition is supported.

Any precondition f ∈ PRE (a) for some action a ∈ A is an
open precondition if it is not supported.

A causal link (a1
f
≺ a2) is threatened if there is some action a3

such that f ∈ DEL(a3) and O ∩ {(a3 ≺ a1), (a2 ≺ a3)} = ∅.
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POP Example

aI aG

a1 a2

a3 a4

p1

p2

g1

g2
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POP Example

aI aG

a1 a2

a3 a4

p1

p2

g1

g2

Linearizations:
[a1, a2, a3, a4] [a1, a3, a2, a4] [a1, a3, a4, a2]

[a3, a1, a2, a4] [a3, a1, a4, a2]
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POP Example

aI aG

a1 a2

a3 a4

p1

p2

g1

g2

Threats: g2 ∈ DEL(a1)
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POP Example

aI aG

a1 a2

a3 a4

p1

p2

g1

g2

Threats: g2 ∈ DEL(a1)
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POP Validity

Intuition

A POP is valid if it achieves the goal from the initial state.
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POP Validity

Intuition

A POP is valid if it achieves the goal from the initial state.

Linearization Validity

A POP P = 〈A,O, C〉 is valid for Π iff every linearization of the
POP is a plan for Π.
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POP Validity

Intuition

A POP is valid if it achieves the goal from the initial state.

Linearization Validity

A POP P = 〈A,O, C〉 is valid for Π iff every linearization of the
POP is a plan for Π.

Threat & Support Validity

A POP P = 〈A,O, C〉 is valid for Π iff the following holds:

1 There are no open preconditions in P .

2 No causal link in C is threatened.

3 A contains the dummy actions aI and aG .
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Outline

1 Background
Propositional Planning
Partial Order Plans
Partial Weighted MAXSAT
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(Maximum) Satisfiability

Satisfiability (SAT)

(x ∨ y) ∧ (¬x ∨ z)
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(Maximum) Satisfiability

Satisfiability (SAT)

(x ∨ y) ∧ (¬x ∨ z)

Maximum Satisfiability (MAXSAT)

(x ∨ y ∨ ¬z) ∧ (x ∨ z) ∧ (y ∨ z) ∧

(¬x ∨ ¬y) ∧ (¬z ∨ ¬x) ∧ (¬z ∨ ¬y)
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(Partial) Weighted MAXSAT

Weighted MAXSAT

3

(x) ∧
1

(¬x ∨ ¬y) ∧
1

(¬x ∨ ¬z) ∧
1

(y) ∧
1

(z)
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(Partial) Weighted MAXSAT

Weighted MAXSAT

3

(x) ∧
1

(¬x ∨ ¬y) ∧
1

(¬x ∨ ¬z) ∧
1

(y) ∧
1

(z)

Partial Weighted MAXSAT

1

(x) ∧
2

(y) ∧
3

(z) ∧
•
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•
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•
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Outline

2 Least Commitment Criteria
Deordering & Reordering
Least Commitment POP
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Deordering & Reordering

a1 a2 a3
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Deordering & Reordering

a1 a2 a3

a1 a2

a3

Deordering
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Deordering & Reordering

a1 a2 a3

a1 a2

a3

Deordering

=⇒

a1

a2a3

Reordering
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Outline

2 Least Commitment Criteria
Deordering & Reordering
Least Commitment POP
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Least Commitment POP

Would like a notion that includes the number of actions.
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Least Commitment POP

Would like a notion that includes the number of actions.

Prefer to first minimize the number of actions.

When actions are minimal, minimize the number of orderings.

Least Commitment POP (LCP)

Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two POPs valid for Π. Q is
a least commitment POP (LCP) of P iff Q is the minimum
reordering of itself and there is no valid POP 〈A

′′

,O
′′

〉 for Π such
that A′′ ⊆ A and |A′′| < |A′|.
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Outline

3 Encoding
Core Encoding
Extensions
Approach
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Core Encoding

Action Variables and Ordering Variables

∀a ∈ ~a, xa : True iff a is in the final POP.

∀ai , aj ∈ ~a, κ(ai , aj): True iff (ai ≺ aj) is in the final POP.

Υ(ai , aj , p): ai supports aj with p.

Basic Clauses

No self loops.

Include aI and aG .

If an ordering is used, include the actions.

If we include an action, order it after (before) aI (aG ).

Enforce the transitive closure.
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κ(ai , aj) → xai ∧ xaj Ordering implies actions.

xai → κ(aI , ai ) ∧ κ(ai , aG ) Order actions with aI and aG .

Enforce the transitive closure.
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∀ai , aj ∈ ~a, κ(ai , aj): True iff (ai ≺ aj) is in the final POP.

Υ(ai , aj , p): ai supports aj with p.

Basic Clauses

¬κ(a, a) No self loops.

(xaI ) ∧ (xaG ) Include aI and aG .

κ(ai , aj) → xai ∧ xaj Ordering implies actions.

xai → κ(aI , ai ) ∧ κ(ai , aG ) Order actions with aI and aG .

κ(ai , aj) ∧ κ(aj , ak) → κ(ai , ak) Transitive closure.
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Core Encoding Cont.

POP Viability Clauses

Ensure that if we include action aj , then every precondition p

of aj must be satisfied by at least one achiever ai .

Ensure that if ai achieves precondition p for action aj , then no
deleter of p will be allowed to occur between ai and aj .
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xaj →

∧

p∈PRE(aj )

∨

ai∈adders(p)

[

κ(ai , aj) ∧Υ(ai , aj , p)
]

Ensure that if ai achieves precondition p for action aj , then no
deleter of p will be allowed to occur between ai and aj .

Christian Muise, Sheila A. McIlraith, and J. Christopher Beck Optimally Relaxing Partial-Order Plans with MaxSAT



17/ 26

Core Encoding Cont.

POP Viability Clauses

Ensure that if we include action aj , then every precondition p

of aj must be satisfied by at least one achiever ai .
xaj →

∧
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Ensure that if ai achieves precondition p for action aj , then no
deleter of p will be allowed to occur between ai and aj .

Υ(ai , aj , p) →
[
∧

ak∈deleters(p)
xak → κ(ak , ai ) ∨ κ(aj , ak)

]
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Core Encoding Cont.

POP Viability Clauses

Ensure that if we include action aj , then every precondition p

of aj must be satisfied by at least one achiever ai .
xaj →

∧

p∈PRE(aj )

∨

ai∈adders(p)

[

κ(ai , aj) ∧Υ(ai , aj , p)
]

Ensure that if ai achieves precondition p for action aj , then no
deleter of p will be allowed to occur between ai and aj .

Υ(ai , aj , p) →
[
∧

ak∈deleters(p)
xak → κ(ak , ai ) ∨ κ(aj , ak)

]

Soft Clauses

w(¬κ(ai , aj)) = 1, ∀ai , aj ∈ A

w(¬xa) = 1 + |A|2, ∀a ∈ A \ {aI , aG}
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Extensions

All Actions (AA)

(xa), ∀a ∈ A

Deordering (DO)

(¬κ(aj , ai)), [a1, . . . , ai , . . . , aj , . . . , an]

Variants

AA,DO: Minimum Deordering (MD)

AA,¬DO: Minimum Reordering (MR)

¬AA,¬DO: Least Commitment POP (LCP)
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Approach

1 Generate a sequential plan (FF).

2 Encode the problem of finding a POP (MD, MR, or LCP).

3 Use a MAXSAT solver to compute the POP (Sat4j).
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Relaxer Algorithm (KK)

Introduced by Kambhampati and Kedar (1994), the algorithm
computes a deordering of a plan by removing redundant edges.

Algorithm 1: Relaxer Algorithm

Input: Sequential plan, ~a, including aI and aG
Output: Partial-order plan, 〈A,O, C〉
foreach aj ∈ A do1

foreach f ∈ PRE (aj) do2

Let ai be the first action in ~a such that i < j , f ∈ ADD(ai ), and3

∀k , i < k < j ⇒ f /∈ DEL(ak).

Create a causal link between ai and aj .4

Add necessary ordering constraints so f isn’t threatened.5

6
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Successfully Encoded

Num FF Successfully
Domain Probs Solved Encoded

Depots 22 22 22

Driverlog 20 16 16

Logistics 35 35 33

TPP 30 30 20

Rovers 20 20 20

Zeno 20 20 18

ALL 147 143 129

Time / memory limit of 30min / 2GB.

Encoding failure due to CNF conversion.
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Solve Time
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POP Quality

# Actions # Ordering Constraints
Domain KK LCP RX MD MR LCP

Depots (14) 34.9 31.0 473.4 473.4 430.9 341.5
Driverlog (15) 27.5 26.5 332.6 332.6 326.9 297.3
Logistics (30) 78.1 77.4 1490.6 1490.6 1462.5 1470.4

TPP (5) 13.4 13.4 74.8 74.8 74.8 74.8
Rovers (18) 31.1 30.3 223.2 223.2 217.6 204.2
Zeno (16) 29.2 29.2 404.3 404.3 403.5 403.5

ALL (98) 44.3 43.2 685.7 685.7 669.0 651.6

Mean number of actions and ordering constraints. Number of
actions for KK, MD, and MR are all equal.
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# Actions # Ordering Constraints
Domain KK LCP RX MD MR LCP

Depots (14) 34.9 31.0 473.4 473.4 430.9 341.5
Driverlog (15) 27.5 26.5 332.6 332.6 326.9 297.3
Logistics (30) 78.1 77.4 1490.6 1490.6 1462.5 1470.4

TPP (5) 13.4 13.4 74.8 74.8 74.8 74.8
Rovers (18) 31.1 30.3 223.2 223.2 217.6 204.2
Zeno (16) 29.2 29.2 404.3 404.3 403.5 403.5

ALL (98) 44.3 43.2 685.7 685.7 669.0 651.6

Four of the domains had problems with a reduction of actions.
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POP Quality

# Actions # Ordering Constraints
Domain KK LCP RX MD MR LCP

Depots (14) 34.9 31.0 473.4 473.4 430.9 341.5
Driverlog (15) 27.5 26.5 332.6 332.6 326.9 297.3
Logistics (30) 78.1 77.4 1490.6 1490.6 1462.5 1470.4

TPP (5) 13.4 13.4 74.8 74.8 74.8 74.8
Rovers (18) 31.1 30.3 223.2 223.2 217.6 204.2
Zeno (16) 29.2 29.2 404.3 404.3 403.5 403.5

ALL (98) 44.3 43.2 685.7 685.7 669.0 651.6

The Relaxer algorithm always computed the minimum deordering.
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POP Quality

# Actions # Ordering Constraints
Domain KK LCP RX MD MR LCP

Depots (14) 34.9 31.0 473.4 473.4 430.9 341.5
Driverlog (15) 27.5 26.5 332.6 332.6 326.9 297.3
Logistics (30) 78.1 77.4 1490.6 1490.6 1462.5 1470.4

TPP (5) 13.4 13.4 74.8 74.8 74.8 74.8
Rovers (18) 31.1 30.3 223.2 223.2 217.6 204.2
Zeno (16) 29.2 29.2 404.3 404.3 403.5 403.5

ALL (98) 44.3 43.2 685.7 685.7 669.0 651.6

Fewer actions may require an increase in ordering constraints.
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Reordering Flexibility

MR (resp. KK): The number of linearizations of the POP for the
minimum reordering (resp. the POP generated by Relaxer).
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Conclusion

Introduced a practical method for computing the optimal
deording and reordering of a plan.
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Conclusion

Introduced a practical method for computing the optimal
deording and reordering of a plan.

Proposed an extension to least commitment planning that
includes the number of actions in a solution.

Discovered that the Relaxer algorithm is extremely efficient at
computing optimal deorderings.

Found that greater flexibility can be achieved when using
reorderings or the introduced least commitment criterion.
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Future Work

Try other forms of optimization techniques (MIP, CSP, etc.).
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Future Work

Try other forms of optimization techniques (MIP, CSP, etc.).

Use external reasoning for handling the transitive closure.

Incorporate preferences into the optimization function.
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Thanks

http://www.haz.ca/research/popgen/
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Linearization Corner Case

a1

a2

a3

a4

a1 a2

a3 a4
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Boolean Satisfiability

Boolean variables x1, x2, · · · that can be either True or False.

Unary operator ¬, and binary operators ∨ and ∧.

Well formed formula built by using variables, ¬, ∨, and ∧.

Typically given in Conjunctive Normal Form (CNF).
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Boolean Satisfiability

Boolean variables x1, x2, · · · that can be either True or False.

Unary operator ¬, and binary operators ∨ and ∧.

Well formed formula built by using variables, ¬, ∨, and ∧.

Typically given in Conjunctive Normal Form (CNF).

SAT Problem

Given a well formed formula, find a True / False setting to the
variables such that the formula evaluates to True.
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Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the
clauses as possible.
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Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the
clauses as possible.

Weighted MAXSAT

Given a CNF with weights on the clauses, find an assignment that
maximizes the sum of the weights on the satisfied clauses.
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Partial Weighted MAXSAT

MAXSAT

Given a CNF, find an assignment that satisfies as many of the
clauses as possible.

Weighted MAXSAT

Given a CNF with weights on the clauses, find an assignment that
maximizes the sum of the weights on the satisfied clauses.

Partial Weighted MAXSAT

Given a CNF with weights on soft clauses, find an assignment that
satisfy all of the hard clauses and maximizes the sum of the
weights on the satisfied clauses.
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Deordering

Deordering

Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two POPs, and Π a planning
problem. Q is a deordering of P wrt. Π iff P and Q are valid
POPs for Π, A = A′, and O′ ⊆ O.

Optimal Deordering

Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two POPs, and Π a planning
problem. Q is a minimum deordering of P wrt. Π iff

1 Q is a deordering of P wrt. Π, and

2 There is no deordering 〈A
′′

,O
′′

〉 of P wrt. Π s.t. |O′′| < |O′|

Christian Muise, Sheila A. McIlraith, and J. Christopher Beck Optimally Relaxing Partial-Order Plans with MaxSAT



26/ 26

Reordering

Reordering

Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two POPs, and Π a planning
problem. Q is a reordering of P wrt. Π iff P and Q are valid POPs
for Π, and A = A′.

Optimal Reordering

Let P = 〈A,O〉 and Q = 〈A
′

,O
′

〉 be two POPs, and Π a planning
problem. Q is a minimum reordering of P wrt. Π iff

1 Q is a reordering of P wrt. Π, and

2 There is no reordering 〈A
′′

,O
′′

〉 of P wrt. Π s.t. |O′′| < |O′|
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