
Reverse Iterative Deepening for

Finite-Horizon MDPs

with Large Branching Factorswith Large Branching Factors

Andrey Kolobov, Peng Dai, Mausam, Daniel S. Weld

Computer Science and Engineering

University of Washington, Seattle

1

IPPC-2011

Before

• Goal-oriented MDPs

• Small branching factors

After

• Reward MDPs, big finite horizons

• Enormous branching factors• Small branching factors

• Optimization criterion:

prob. of reaching the goal

• Solvable with:

– Heuristic search

– Determinization planning

• Enormous branching factors

• Optimization criterion: total

expected reward

• Solvable with:

– Heur. search? No! Much branching

– Det. planning? No! Doesn’t help

2

Objectives

To build a scalable planner that

• Has good anytime behavior

• Capable of dealing with FH MDPs with large

branching factors and long horizonsbranching factors and long horizons

• Generalizes beyond IPPC

– Has few parameters

3

GLUTTON Overview

• Uses offline LR2TDP

– LRTDP with reverse iterative deepening

– With some optimizations

• Subsampling transition function• Subsampling transition function

• Correlated transition function samples

• Caching

• Others

4

UCT vs. LRTDP

UCT (Kocsis&Czepesvari, ECAI’06)

• Successful in many areas

• Handles high branching

LRTDP (Bonet&Geffner, ICAPS’03)

• Successful in planning

• Poor with high branching• Handles high branching

– If you know good params!

• Excellent anytime behavior

– If you know good params!

• Poor with high branching

– Relies on Bellman backups

• Excellent anytime behavior

– In goal-oriented problems

5

Hard to pick,
don’t generalize
across problems

LRTDP in the Finite-Horizon Setting

S0

6

S1 Sn
…

Horizon H

LRTDP: Reverse Iterative Deepening for

Better Anytime Performance

S0

7

S1 Sn
…

Horizon 1

S0

S0

Horizon 2

Horizon H

Dealing with High Branching

• Subsample!

– Sample several successors of s, a

– Perform Bellman backups only over the samples– Perform Bellman backups only over the samples

• Optimal as the number of samples goes to infinity

8

Separating Out Natural Dynamics

Restart(Ser1)

Status of Server1

Due to the action’s
dynamics

9

Restart(Ser2)

Restart(Ser3)

Status of Server2

Status of Server3

Due to natural
dynamics (shared
among all actions!)

dynamics

Sampling Successors of s under all actions:

The Algorithm

• For the current state s:

– Generate N samples of all variables affected by ND

– For each action a of these N samples:

• Resample the variables affected by AD• Resample the variables affected by AD

• Main insight: each a by itself affects few state vars

– Large speedup (no need to resample ND for each a)

– But… makes samples for different actions correlated

10

Caching State-Value Successor Samples

Observation: until planners are memory-bound, they are

CPU-bound

Memory

Cache state-action

11

Time

State-value

mapping

Cache state-action
successors here,
shrink cache as

needed

Other Optimizations

• Upper-bound heuristic

– H(s, t) = maxt’ for which s is solved (t-t’)Rmax(a) + V*(s,t’)

• Default actions

– Tell you what to do in unexplored states

12

Experimental Results

• LRTDP vs. PROST (Keller & Eyerich, ICAPS-2012)
on all IPPC-2011 domains

• Reverse ID helps on goal-oriented domains

• Offline planning isn’t worth it on large problems

13

Coming Up Next: Gourmand

• Same ideas as Glutton, but online

– Given a time limit, automatically allocates time for

each time step up to the horizon

– Provides policy guaranteesProvides policy guarantees

• Beats both offline LR2TDP (as in Glutton) and UCT

(as in PROST)

– Details as AAAI’12

14

Conclusions

• Presented scalable algorithm for FH MDPs with

large branching factors

– Based on offline LRTDP with reverse iterative

deepening and optimizations

– Has good anytime performance

• When used online has even better anytime

performance

– Gourmand (Kolobov, Mausam, Weld, AAAI’12)

15

