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Abstract

Two extreme approaches can be applied to solve a proba-
bilistic planning problem, namely closed loop algorithms and
open loop (a.k.a. replanning) algorithms. While closed loop
algorithms invest significant computational effort to gener-
ate a closed form solution, open loop algorithms compute
open form solutions and interact with the environment in
order to refine the computed solution. In this paper, we in-
troduce short-sighted Stochastic Shortest Path (SSP), a new
model in which solutions computed based on it can be ex-
ecuted for at least ¢ steps as a closed form solution. Using
short-siehted SSPs. we nresent a novel nrohahilistic nlanner
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Figure I jon with the envirgnmentTor closed loop
planners (CLPs) and open loop planners (OLPs).

RTDP (Bonet and Geffner 2003), resulting in optimal al-
gorithms with convergence bounds. Due to the pruning in

* The right version is in the online proceedings



Motivation

* Two classes of solutions to probabilistic planning
problems:

— Complete policy (a.k.a. universal plan):
* Maps every state to an action
* Never fails, i.e., no need to replan
e Optimal
* Doesn’t scale up



Motivation

* Two classes of solutions to probabilistic planning
problems:

— Complete policy (a.k.a. universal plan):
* Maps every state to an action
* Never fails, i.e., no need to replan
e Optimal
e Doesn’t scale up
— Partial policy:
* Maps some states to an action

e Canfail, i.e., reaches an unpredicted state and replan from
there

* Non-optimal
e Scales up 3



Contributions

* A framework that offers a new trade-off
between complete and partial policies:

— A new model: short-sighted Stochastic Shortest
Path Problems

— A new planner: short-sighted probabilistic planner
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Stochastic Shortest Path Problems (SSPs)

—_— aO
_____ > a,
1 1
0.2 In the example:
An SSP is the tuple <S,s,,G,A,P,C>: G ={sg}

* Set of states S C(,a,, )N EN
« Initial state s, S e s
s; 1 5 -

e Set of goal statesG C S

| c(,a,, ) EAIE
* Set of actions A T
* Transition prob. P(s’|s,a) = |- |
 CostC(s,a,s’)>0 2l

— defined when P(s’|s,a) >0 .



Optimal policies

 An optimal policy 7 minimizes the expected
cost to reach a goal state from s,

* The minimum expected cost to reach a goal
state from a state s is:

V¥ (s) = 0 if s €G
mingep Y oes P(s']s,a)[C(s, a,s") + V*(s')]  otherwise
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Short-Sighted SSPs: Idea

 Manage uncertainty by:

— Considering the uncertainty structure in the
neighborhood of the current state; and

— Adding artificial goals to heuristically approximate
the pruned states.

Artificial goals ~__

states —__| #\
Neighborhood of s \
Goal states
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Short-Sighted SSPs: Idea

 Manage uncertainty by:

— Considering the uncertainty structure in the
neighborhood of the current state; and

— Adding artificial goals to heuristically approximate
the pruned states.

Artificial goals ~__

state s — | *\
Neighborhood of s }5(33 s') <t \ Goal states

*§(s, s'): minimum number of actions to reach s’
froms
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Short-Sighted SSPs: Definition

Given: ¢ an SSP <S§,s,,G,A,P,C>,
cs€S
*t>0and
* a heuristic function H
the (s,t)-short-sighted SSP is <S’,s,G’,A,P,C’'>:
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Short-Sighted SSPs: Definition

Given: ¢ an SSP <§,s,,G,A,P,C>,
cs€S
t>0and
* a heuristic function H
the (s,t)-short-sighted SSP is <S’,s,G’,A,P,C’'>:

/ States reachable using up to t actions

— {‘5 € S|‘§(5 S ) t Artificial goal: states reachable using

/ exactly t actions

tyu(GnS')

e G' = {S! S S|5(3,, s)
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Short-Sighted SSPs: Definition

Given: ¢ an SSP <§,s,,G,A,P,C>,
cs€S
t>0and
* a heuristic function H
the (s,t)-short-sighted SSP is <S’,s,G’,A,P,C’>:

/ States reachable using up to t actions

S! — {3! c S|‘§(5 S ) t} Artificial goal: states reachable using

exactly t actions
e G = {s' €5|d(s, ) ﬁﬁijy
{C(s,a,s )+ H(s') ifs’ e

/ /
* ((s,a,5) = ! ‘
C(s,a,s") otherwise
If s” is an artificial goal, then its cost is

incremented by its heuristic value "



Short-Sighted SSPs: Examples

* Original problem:
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e Original problem:

Short-Sighted SSPs: Examples
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Short-Sighted SSPs and Look-ahead

Original problem — > a, Look-ahead (s, t=2)
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Short-Sighted SSPs and Look-ahead

Short-sighted SSP (s,,t=2) — > a, Look-ahead (s, t=2)
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Short-Sighted SSPs and Look-ahead

Short-sighted SSP (s,,t=2)
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Key difference: Short-sighted SSPs preserve the action structure,
e.g., self-loop actions and loops of actions
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Short-Sighted SSPs and Look-ahead

Short-sighted SSP (s,,t=2)
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dp
dq

Look-ahead (s, t=2)

\
N
\
\
N
N,
\
| ;
1
1
@

Key difference: Short-sighted SSPs preserve the action structure,
e.g., self-loop actions and loops of actions

Theorem: the optimal value-function for an (s,t)-short-sighted SSP is
at least as good as the t-look-ahead value of s, i.e.,

Li(sp) < Vi (sg) < V*(sp)
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Short-Sighted Probabilistic Planner
(SSiPP)

begin

5+ 5

while s ¢ G do

(S',s,G' A, P,C") + GENERATE-SHORT-SIGHTED-SSP(S, s, H)
* ¢ OPTIMAL-SSP-SOLVER((S',s,G' A, P,C"), H)

while s € G' do

| s+ execute-action(7* (s))

end

Since short-sighted SSPs are much
smaller than the original problem.
we can compute a complete policy
for them.
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SSiPP and replanning

e Theorem: at least t actions are executed in the
environment before replanning is needed

ﬁao
_____ > al

* The policy S Ls can be executed for more than 2

dp dog

timesteps:

) a a a
S) —> §3 —> §3 —> §3 —> - - -
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Multiple Runs of SSiPP

* Two scenarios:
— the same problem is solved more than once; or

— simulation is allowed for a given amount of time
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times, then the optimal policy is found.
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SSiPP and Real Time Dynamic
Programming (RTDP)

 RTDP and anytime SSiPP:

— can be seen as asynchronous value iteration
— differ in the scheduling of Bellman updates (backups)

RTDP SSiPP
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SSiPP and Real Time Dynamic
Programming (RTDP)

 RTDP and anytime SSiPP:

— can be seen as asynchronous value iteration
— differ in the scheduling of Bellman updates (backups)

RTDP SSiPP
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Experiments

* Goal: compare SSiPP against the winners of the
previous International Probabilistic Planning
Competitions (IPPCs)

 Methodology: (same as iPpc’04 and 1ppci0s)

— For each problem, planners are requested to solve it
50 times in 20 minutes

— Learning is allowed between attempts of the same
problem

— The evaluation metric is the number of times the goal
is reached



Planners

 We compare the following planners
— SSiPP: using LRTDP as optimal solver
— LRTDP: 2" place IPPC’04
— FF-Replan: 15t place IPPC’04
— FPG: 15t place IPPC’06
— RFF: 15t place IPPC’08

 Parametrizations for SSiPP and LRTDP:
-t€{1,2,3,..,10}
— H: zero-heuristic, FF+all-outcomes, min-min



Triangle tireworld: results

Problem #

- SSiPP: t = 3, H = FF+all-outcome
- SSiPP: t = 8, H = zero-heuristic
LRTDP: t = 3, H = zero-heuristic

RFF 49




Blocks World: result

goal
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Problem #

- SSiPP: t = 3, H = FF+all-outcome
- SSiPP: t = 2, H = FF+all-outcome
LRTDP: t = 3, H = zero-heuristic
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Exploding Blocks World: results

the goal
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goal
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Zeno Travel: results

Problem #

- SSiPP: t = 3, H = FF+all-outcome
- SSiPP: t = 2, H = FF+all-outcome
LRTDP: t = 3, H = zero-heuristic
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IPPC experiment: summary

_ SSiPP Overall | SSiPP Per Domain

Outperforms all 16.6% 36.6%
Ties with the best 41.6% 53.3%
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IPPC experiment: summary

_ SSiPP Overall | SSiPP Per Domain

Outperforms all 16.6% 36.6%
Ties with the best 41.6% 53.3%

* Inthe considered problems:
— SSiPP is never the last place in any of the problems
— LRTDP never outperforms SSiPP
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Conclusion and Future Work

* A framework that offers a new trade-off between
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— Short-sighted SSPs
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Conclusion and Future Work

* A framework that offers a new trade-off between
complete and partial policies

— Short-sighted SSPs

— SSiPP
 as replanner: no replanning needed for at least t actions
* as anytime algorithm: same guarantees as RTDP

* Future work:
— New definitions of short-sighted spaces (S’)

— Improve scalability in problems that are not
probabilistic interesting
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Thank you!



Questions?

59



