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Motivation 

• Two classes of solutions to probabilistic planning 
problems: 
– Complete policy (a.k.a. universal plan): 

• Maps every state to an action 

• Never fails, i.e., no need to replan 

• Optimal 

• Doesn’t scale up 
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Motivation 

• Two classes of solutions to probabilistic planning 
problems: 
– Complete policy (a.k.a. universal plan): 

• Maps every state to an action 

• Never fails, i.e., no need to replan 

• Optimal 

• Doesn’t scale up 

– Partial policy:  
• Maps some states to an action 

• Can fail, i.e., reaches an unpredicted state and replan from 
there 

• Non-optimal 

• Scales up 
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Contributions 

• A framework that offers a new trade-off 
between complete and partial policies: 

  

– A new model: short-sighted Stochastic Shortest 
Path Problems 

– A new planner: short-sighted probabilistic planner 
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• Model problems as Stochastic Shortest Path Problems 

• Generate short-sighted subproblems 

• Solve the subproblems and execute this solution 

 

 

 

 

 

• Analyze single and multiple execution cases 

Big Picture 
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Stochastic Shortest Path Problems (SSPs) 
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An SSP is the tuple <S,s0,G,A,P,C>: 

• Set of states S 

• Initial state s0 

• Set of goal states  

• Set of actions A 

• Transition prob. P(s’|s,a) 

• Cost C(s,a,s’) > 0 

– defined when P(s’|s,a) > 0 

 

a0 

a1 

s0 s1 s2 sG s3 

0.2 0.8 

0.1 
0.9 

1 1 1 

G = {sG} 

C( ,a0, ): 

 
C( ,a1, ): 

 

In the example: 

s/s’ s1 s2 sG 

s0 1 -- -- 

s1 -- 1 -- 

s2 -- -- 30 

s/s’ s0 s3 sG 

s0 -- 5 1 

s3 1 5 -- 



Optimal policies 

• An optimal policy      minimizes the expected 
cost to reach a goal state from s0 

  

• The minimum expected cost to reach a goal 
state from a state s is: 
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Short-Sighted SSPs: Idea 

• Manage uncertainty by: 
– Considering the uncertainty structure in the 

neighborhood of the current state; and 

– Adding artificial goals to heuristically approximate 
the pruned states. 

 

 

 

 
•           : minimum number of actions to reach s’ 

from s 
14 

state s 

Goal states 

Artificial goals 

Neighborhood of s 



Short-Sighted SSPs: Idea 

• Manage uncertainty by: 
– Considering the uncertainty structure in the 

neighborhood of the current state; and 

– Adding artificial goals to heuristically approximate 
the pruned states. 

 

 

 

 
•           : minimum number of actions to reach s’ 

from s 
15 

state s 

Goal states 

Artificial goals 

Neighborhood of s 



Given: 

 

  
the (s,t)-short-sighted SSP is <S’,s,G’,A,P,C’>:   

 

Short-Sighted SSPs: Definition 
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• an SSP <S,s0,G,A,P,C>,  
•   
• t > 0 and  
• a heuristic function H  



Given: 

 

  
the (s,t)-short-sighted SSP is <S’,s,G’,A,P,C’>:   

 

Short-Sighted SSPs: Definition 

17 
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States reachable using up to t actions 

Artificial goal: states reachable using 
exactly t actions 

•   

•   

• an SSP <S,s0,G,A,P,C>,  
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• t > 0 and  
• a heuristic function H  



Given: 
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Short-Sighted SSPs: Definition 
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States reachable using up to t actions 

Artificial goal: states reachable using 
exactly t actions 

If s’ is an artificial goal, then its cost is 
incremented by its heuristic value 

•   

•   

•   

• an SSP <S,s0,G,A,P,C>,  
•   
• t > 0 and  
• a heuristic function H  



Short-Sighted SSPs: Examples 
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• Original problem: 

 
 

• (s0,1)-short-sighted: 

 

 

 

• (s0,2)-short-sighted: 
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Short-Sighted SSPs: Examples 
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• Original problem: 

 
 

• (s0,1)-short-sighted: 

 

 

 

• (s0,2)-short-sighted: 

a0 

a1 

s0 s1 s2 sG s3 

0.1 
0.9 

1 1 1 

0.2 0.8 

s0 s1 sG s3 
1 

0.2 0.8 

s0 s1 s2 sG s3 

0.1 
0.9 

1 1 

0.2 0.8 

s0 0 

s1 1 

s2 2 

s3 1 

sG 1 



s2 

Short-Sighted SSPs and Look-ahead 
Look-ahead (s0, t=2) 
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s0 

s1 sG s3 

s3 s0 s2 

a0 

a1 

s0 s1 s2 sG s3 

0.1 
0.9 

1 1 1 

Original problem 

0.2 0.8 



Short-Sighted SSPs and Look-ahead 
Look-ahead (s0, t=2) Short-sighted SSP (s0,t=2) 
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Short-Sighted SSPs and Look-ahead 
Look-ahead (s0, t=2) Short-sighted SSP (s0,t=2) 
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s0 

s1 sG s3 

s3 s0 s2 

Key difference: Short-sighted SSPs preserve the action structure, 
e.g., self-loop actions and loops of actions 
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a1 

s0 s1 s2 sG s3 
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Short-Sighted SSPs and Look-ahead 
Look-ahead (s0, t=2) Short-sighted SSP (s0,t=2) 
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Theorem: the optimal value-function for an (s,t)-short-sighted SSP is 
at least as good as the t-look-ahead value of s, i.e., 

s0 

s1 sG s3 

s3 s0 s2 

Key difference: Short-sighted SSPs preserve the action structure, 
e.g., self-loop actions and loops of actions 

a0 

a1 

s0 s1 s2 sG s3 

0.1 
0.9 

1 1 s2 

0.2 0.8 



Short-Sighted Probabilistic Planner 
(SSiPP) 
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Since short-sighted SSPs are much 
smaller than the original problem. 
we can compute a complete policy 
for them. 



SSiPP and replanning 

• Theorem: at least t actions are executed in the 
environment before replanning is needed 

 

 

 
• The policy           can be executed for more than 2  

  

 timesteps: 
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s0 s1 s2 sG s3 

0.1 

1 1 

0.2 0.8 

0.9 

s0 s3 

a0 a0 

a0 

a1 



• Two scenarios: 

– the same problem is solved more than once; or 

– simulation is allowed for a given amount of time 

• Theorem: SSiPP is asymptotically optimal, i.e., 
if the same problem is solved sufficiently many 
times, then the optimal policy is found. 

Multiple Runs of SSiPP 
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SSiPP and Real Time Dynamic 
Programming (RTDP) 
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SSiPP RTDP 

• RTDP and anytime SSiPP: 

– can be seen as asynchronous value iteration 

– differ in the scheduling of Bellman updates (backups) 
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Experiments 

• Goal: compare SSiPP against the winners of the 
previous International Probabilistic Planning 
Competitions (IPPCs) 

• Methodology: (same as IPPC’04 and IPPC’06) 

– For each problem, planners are requested to solve it 
50 times in 20 minutes 

– Learning is allowed between attempts of the same 
problem 

– The evaluation metric is the number of times the goal 
is reached 
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Planners 

• We compare the following planners 

– SSiPP: using LRTDP as optimal solver 

– LRTDP: 2nd place IPPC’04 

– FF-Replan: 1st place IPPC’04 

– FPG: 1st place IPPC’06 

– RFF: 1st place IPPC’08 

• Parametrizations for SSiPP and LRTDP: 

– t ∈ {1,2,3,…,10} 

– H: zero-heuristic, FF+all-outcomes, min-min 
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• SSiPP: t = 3, H = FF+all-outcome 

• SSiPP: t = 8, H = zero-heuristic 

• LRTDP: t = 3, H = zero-heuristic 

• FF-Replan 

• FPG 

• RFF 49 
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Zeno Travel: results 
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IPPC experiment: summary 
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SSiPP Overall SSiPP Per Domain 

Outperforms all 16.6% 36.6% 

Ties with the best 41.6% 53.3% 



IPPC experiment: summary 

• In the considered problems: 

– SSiPP is never the last place in any of the problems 

– LRTDP never outperforms SSiPP 
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SSiPP Overall SSiPP Per Domain 

Outperforms all 16.6% 36.6% 

Ties with the best 41.6% 53.3% 



Conclusion and Future Work 

• A framework that offers a new trade-off between 
complete and partial policies 

– Short-sighted SSPs 

– SSiPP 

• as replanner: no replanning needed for at least t actions 

• as anytime algorithm: same guarantees as RTDP 

• Future work: 

– New definitions of short-sighted spaces (S’) 

– Improve scalability in problems that are not 
probabilistic interesting 
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Thank you! 
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Questions? 
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