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From SAT to SMT 

SAT Instance:  

 Given a propositional formula, F, over propositional variables, V. 

Question: 

 Is there a valuation on V that makes F true? 

 

 

SMT Instance: 

 Given a first order formula, F, over constants, C, predicates, P, function 
symbols Fn, variables, V (of specified types) and a theory, T, defining the 
meanings of C, P, Fn (and types). 

Question: 

 Is there a valuation on V that makes F true, subject to the constraints in T? 

 

Solving SAT and SAT Module Theories, Nieuwenhuis, Oliveras and Tinelli, J. ACM, 2006 



Simple Example 

A=[x>3] 
B=[x=0] 
C=[x=1] 

Solver links a core that performs search over propositional variables with theory 
modules to check satisfiability of conjunctions of literals within specific theories 



From Planning to Planning Modulo Theories 

• Classically, planning variables are propositions 

– Action parameters, drawn from finite enumerated sets, are not 
variables – the grounded literals of a problem are 

• To find a plan, valuations for the variables must be found at each 
successive state 

– Action(s) selected at each transition to support these valuations 

• Action preconditions are propositional sentences 

• Action effects are assignments to propositional variables 

 

• PMT: 

– Action preconditions are first order formulae over symbols with 
associated theories 

– Action effects assign values to variables of specified types (appropriate 
to the theories in use) 



PMT Example 

(fuel ?t – truck) is a family of variables of type Number 
(location ?t – truck) is a family of variables of type Location   
 (which is a finite enumerated type in this example) 



Models for PMT 

• Domains are described using expressions built over theories 

 

• Theories are attached to the domain description using a module 
description language  

– Modules specify the names and type signatures of the relevant 
symbols 

– Types can be infinite and structured eg: Sets, Multisets, Lists, Arrays 

 

• Each module is supported by an implementation of an evaluation function 
and a satisfaction tester for the expressions and literals defined by the 
signatures 

Also relevant: Geffner’s Functional Strips (2000); Helmert’s multi-valued fluents in PDDL; Dornhege et al Semantic 
attachments for domain independent planning systems (ICAPS 09) 



Planning with PMT 

• Possibility 1: Translate PMT  SMT using Planning  SAT as starting point 

– Exploits advances in SMT 

– Fails to exploit the structure of planning problems 

– In practice, performance is poor 

 



PMTSMT 

Problem PMT-as-SMT (Z3) secs MetricFF secs 

Depots 03  57.59 0.03 

Depots 04 85.43 0.38 

Driverlog 12 10841.05 0.04 

Driverlog 13 2102.93 0.34 

Driverlog 14 3416.82 0.63 

Rovers 07 21.65 0.05 

Rovers 08 73.85 0.02 

Reorder array with swaps (5) 1.2 [5 steps] 

Reorder array with swaps (10) 33.4 [6 steps] 

Reverse array segment (6) 11.1 [3 steps] 

Reverse+swaps (5) 0.8 [2 steps] 

Reverse+swaps (10) 32.9 [3 steps] 



Planning with PMT 

• Possibility 1: Translate PMT  SMT using Planning  SAT as starting point 

– Exploits advances in SMT 

– Fails to exploit the structure of planning problems 

– In practice, performance is poor 

 

• Possibility 2: Build a PMT planner... 



Heuristic Forward Search for PMT 

• We extend the hmax heuristic from the propositional case to the general 
PMT case 

 

• Recall: hmax heuristic  is computed as the length of the shortest (parallel) 
plan in a relaxed state space 

 

• One way to think about the relaxation is as “ignoring delete effects” 

 

• We now consider a different view of the relaxed state space 



Relaxed Reachability 

V1 = T 
V2 = F 
 
    ... 
 
 
Vn = T 

Initial state 

V1 = T 
V2 = F, T 
 
    ... 
 
 
Vn = T, F 

Actions with 
satisfiable 
preconditions 

Accumulated state 

Delete effect assigns false: 
when there are no negative 
preconditions, delete effects 
can be ignored in practice 

Add effect assigns true 

Assignments accumulate in variable domains 

A (precondition) sentence is considered true if 
some assignment from the set satisfies it 
 



Domain Abstraction 

• Each variable, v, in the problem has a domain, Dv, and an associated 
domain abstraction A(Dv) 

• Each value in Dv is mapped to a value in A(Dv) by an abstract 

interpretation function 

• The abstracted domain for a given type has corresponding abstract 
interpretations of the symbols for the theory including the type 

 

• To build an abstracted reachability graph we start by abstracting the initial 
state and then: 

– For each action whose precondition is satisfied under the abstract 
interpretation 

• Apply the effects by abstract interpretation of the assignment 
within the current abstract state 



An Example 

• MetricFF can be interpreted in this way: 

• For numeric variables the abstract interpretation uses the domain of real-
valued intervals 

• Predicates such as <  (and functions such as +) are abstractly interpreted  
in the obvious ways (achieving relaxations) 

 eg: 

     (V < W) if the lower bound on the interval for V is smaller than the 
upper bound on the interval for W 

 (V + W) is the interval with lower bound equal to the sum of the lower 
bounds on V and W etc. 

 

• Effects are implemented by making each assignment to a numeric variable 
extend its interval to include the new value 



Example Abstractions 

• One of the simplest abstract interpretations is an enumerated set of 
reachable values: 

– A(Dv) = power set of Dv 

– Abstracted predicates are satisfied if some value in the abstract 
interpretation satisfies the base predicate 

– Assignment V := W is handled by adding to the set for V all the set of 
possible values of W 

 

• Another abstraction is the finite abstraction where we use A(Dv) = power 

set of a finite subset of Dv coupled with a special value “top” 

• Use enumerated abstraction over the subset and “top” when 
additional values are required 

 

 

 



Finite Abstractions: Choosing a Basis 

• Automatic strategy for basis selection - we generate a set of constants 
using a probing strategy: 

– We perform an initial exploration of the space by selecting actions that 
maximise the introduction of new constants, until we reach the goals 
(in the relaxed space)  

– This set is then used as the basis throughout all subsequent 
reachability analyses 

 

• By removing “top” from the finite abstraction we create an inadmissible 
heuristic (some actions can be incorrectly considered inapplicable), but it 
is more informed 

– In this case we assign high values to apparent dead ends and leave 
them in the search space to ensure completeness 

 

 

 

 



Implementation 

• We have implemented PMT Plan, which uses these abstractions, and 
applied it to benchmark problems using infinite types: 

– Integers (Jugs and Water) 

– Sets (Dump-trucks, Storytellers) 

– Multisets (Airport – new encoding) 



Some Results 
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Lots More Types and Other Possibilities 

• We are already considering lots of other interesting types, including 
“robot configurations”, voltages and power-flows (in circuits) and angles 
(trig functions) 

 

• We are exploring ways to improve the heuristic from hmax to more 
informed variants 

– A challenge in implementing hFF say, is in assigning responsibilities for 
the changes in values in an abstract domain to actions in the 
preceding layer 

• A key aspect of SMT is the communication of no-goods from theory-
solvers back to the core solver: we are considering similar techniques 

 

• We want to integrate temporal planning with PMT planning, exploiting 
prior work in Crikey and POPF 



 





Extensions of PDDL 

• Over successive extensions, PDDL  supports: 

– ADL  

– Numbers 

– Time 

– Derived predicates 

– Soft constraints 

– Action Costs 

– Object fluents  

– Various specialised additions 

 

• Each extension has required a new revision of the PDDL syntax and 
interactions between extensions are not always fully resolved 



Motivation for PMT 
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The Integer Module 

(define (module integer) 

  (:type integer) 

  (:functions 

    (<        ?x - integer ?y - integer) - boolean 

    (>        ?x - integer ?y - integer) - boolean 

    (<=       ?x - integer ?y - integer) - boolean 

    (>=       ?x - integer ?y - integer) - boolean 

    (+        ?x - integer ?y - integer) – integer 

    (-        ?x - integer ?y - integer) - integer 

    (/        ?x - integer ?y - integer) - integer 

    (*        ?x - integer ?y - integer) - integer 

    (increase ?x - integer ?y - integer) – unit 

    (decrease ?x - integer ?y - integer) - unit 

  ) 

) 



The Set Module 

(define (module set) 

  (:type set of a’) 

  (:functions 

    (cardinality ?s – set of a’)               - integer 

    (member    ?s - set of a’ ?x – a’)         - boolean 

    (subset    ?s1 ?s2 – set of a’)            - boolean 

    (union     ?x – set of a’ ?y – set of a’)  – set of a’ 

    (intersect ?x - set of a’ ?y – set of a’)  – set of a’ 

    (difference ?x – set of a’ ?y – set of a’) – set of a’ 

    (add-element ?s - set of a’ ?x – a’) – set of a’ 

    (rem-element ?s - set of a’ ?x – a’) – set of a’ 

    (empty-set)                          - set of a’ 

    (construct-set ?x+ - a’)             - set of a’ 

  ) 

) 


