
Planning Modulo Theories:
Extending the Planning Paradigm

Peter Gregory Derek Long and Maria Fox J. Christopher Beck
 Teesside University King’s College London University of Toronto

From SAT to SMT

SAT Instance:

 Given a propositional formula, F, over propositional variables, V.

Question:

 Is there a valuation on V that makes F true?

SMT Instance:

 Given a first order formula, F, over constants, C, predicates, P, function
symbols Fn, variables, V (of specified types) and a theory, T, defining the
meanings of C, P, Fn (and types).

Question:

 Is there a valuation on V that makes F true, subject to the constraints in T?

Solving SAT and SAT Module Theories, Nieuwenhuis, Oliveras and Tinelli, J. ACM, 2006

Simple Example

A=[x>3]
B=[x=0]
C=[x=1]

Solver links a core that performs search over propositional variables with theory
modules to check satisfiability of conjunctions of literals within specific theories

From Planning to Planning Modulo Theories

• Classically, planning variables are propositions

– Action parameters, drawn from finite enumerated sets, are not
variables – the grounded literals of a problem are

• To find a plan, valuations for the variables must be found at each
successive state

– Action(s) selected at each transition to support these valuations

• Action preconditions are propositional sentences

• Action effects are assignments to propositional variables

• PMT:

– Action preconditions are first order formulae over symbols with
associated theories

– Action effects assign values to variables of specified types (appropriate
to the theories in use)

PMT Example

(fuel ?t – truck) is a family of variables of type Number
(location ?t – truck) is a family of variables of type Location
 (which is a finite enumerated type in this example)

Models for PMT

• Domains are described using expressions built over theories

• Theories are attached to the domain description using a module
description language

– Modules specify the names and type signatures of the relevant
symbols

– Types can be infinite and structured eg: Sets, Multisets, Lists, Arrays

• Each module is supported by an implementation of an evaluation function
and a satisfaction tester for the expressions and literals defined by the
signatures

Also relevant: Geffner’s Functional Strips (2000); Helmert’s multi-valued fluents in PDDL; Dornhege et al Semantic
attachments for domain independent planning systems (ICAPS 09)

Planning with PMT

• Possibility 1: Translate PMT SMT using Planning SAT as starting point

– Exploits advances in SMT

– Fails to exploit the structure of planning problems

– In practice, performance is poor

PMTSMT

Problem PMT-as-SMT (Z3) secs MetricFF secs

Depots 03 57.59 0.03

Depots 04 85.43 0.38

Driverlog 12 10841.05 0.04

Driverlog 13 2102.93 0.34

Driverlog 14 3416.82 0.63

Rovers 07 21.65 0.05

Rovers 08 73.85 0.02

Reorder array with swaps (5) 1.2 [5 steps]

Reorder array with swaps (10) 33.4 [6 steps]

Reverse array segment (6) 11.1 [3 steps]

Reverse+swaps (5) 0.8 [2 steps]

Reverse+swaps (10) 32.9 [3 steps]

Planning with PMT

• Possibility 1: Translate PMT SMT using Planning SAT as starting point

– Exploits advances in SMT

– Fails to exploit the structure of planning problems

– In practice, performance is poor

• Possibility 2: Build a PMT planner...

Heuristic Forward Search for PMT

• We extend the hmax heuristic from the propositional case to the general
PMT case

• Recall: hmax heuristic is computed as the length of the shortest (parallel)
plan in a relaxed state space

• One way to think about the relaxation is as “ignoring delete effects”

• We now consider a different view of the relaxed state space

Relaxed Reachability

V1 = T
V2 = F

 ...

Vn = T

Initial state

V1 = T
V2 = F, T

 ...

Vn = T, F

Actions with
satisfiable
preconditions

Accumulated state

Delete effect assigns false:
when there are no negative
preconditions, delete effects
can be ignored in practice

Add effect assigns true

Assignments accumulate in variable domains

A (precondition) sentence is considered true if
some assignment from the set satisfies it

Domain Abstraction

• Each variable, v, in the problem has a domain, Dv, and an associated
domain abstraction A(Dv)

• Each value in Dv is mapped to a value in A(Dv) by an abstract

interpretation function

• The abstracted domain for a given type has corresponding abstract
interpretations of the symbols for the theory including the type

• To build an abstracted reachability graph we start by abstracting the initial
state and then:

– For each action whose precondition is satisfied under the abstract
interpretation

• Apply the effects by abstract interpretation of the assignment
within the current abstract state

An Example

• MetricFF can be interpreted in this way:

• For numeric variables the abstract interpretation uses the domain of real-
valued intervals

• Predicates such as < (and functions such as +) are abstractly interpreted
in the obvious ways (achieving relaxations)

 eg:

 (V < W) if the lower bound on the interval for V is smaller than the
upper bound on the interval for W

 (V + W) is the interval with lower bound equal to the sum of the lower
bounds on V and W etc.

• Effects are implemented by making each assignment to a numeric variable
extend its interval to include the new value

Example Abstractions

• One of the simplest abstract interpretations is an enumerated set of
reachable values:

– A(Dv) = power set of Dv

– Abstracted predicates are satisfied if some value in the abstract
interpretation satisfies the base predicate

– Assignment V := W is handled by adding to the set for V all the set of
possible values of W

• Another abstraction is the finite abstraction where we use A(Dv) = power

set of a finite subset of Dv coupled with a special value “top”

• Use enumerated abstraction over the subset and “top” when
additional values are required

Finite Abstractions: Choosing a Basis

• Automatic strategy for basis selection - we generate a set of constants
using a probing strategy:

– We perform an initial exploration of the space by selecting actions that
maximise the introduction of new constants, until we reach the goals
(in the relaxed space)

– This set is then used as the basis throughout all subsequent
reachability analyses

• By removing “top” from the finite abstraction we create an inadmissible
heuristic (some actions can be incorrectly considered inapplicable), but it
is more informed

– In this case we assign high values to apparent dead ends and leave
them in the search space to ensure completeness

Implementation

• We have implemented PMT Plan, which uses these abstractions, and
applied it to benchmark problems using infinite types:

– Integers (Jugs and Water)

– Sets (Dump-trucks, Storytellers)

– Multisets (Airport – new encoding)

Some Results

1

10

100

1000

10000

100000

1000000

0 20 40 60 80 100 120

PMTPlan MetricFF

0,01

0,1

1

10

100

1000

0 20 40 60 80 100 120

PMTPlan MetricFF

1

10

100

1000

10000

100000

1000000

0 5 10 15 20 25 30 35

PMTPlan MetricFF

0,01

0,1

1

10

100

1000

0 5 10 15 20 25 30 35

PMTPlan MetricFF

Nodes Generated Time Taken

PMTPlan using hmax with
finite basis, enumerated set
abstraction heuristic

MetricFF standard implementation;
Storytellers solved by using best
mechanism encoding for the set
behaviours

Lots More Types and Other Possibilities

• We are already considering lots of other interesting types, including
“robot configurations”, voltages and power-flows (in circuits) and angles
(trig functions)

• We are exploring ways to improve the heuristic from hmax to more
informed variants

– A challenge in implementing hFF say, is in assigning responsibilities for
the changes in values in an abstract domain to actions in the
preceding layer

• A key aspect of SMT is the communication of no-goods from theory-
solvers back to the core solver: we are considering similar techniques

• We want to integrate temporal planning with PMT planning, exploiting
prior work in Crikey and POPF

Extensions of PDDL

• Over successive extensions, PDDL supports:

– ADL

– Numbers

– Time

– Derived predicates

– Soft constraints

– Action Costs

– Object fluents

– Various specialised additions

• Each extension has required a new revision of the PDDL syntax and
interactions between extensions are not always fully resolved

Motivation for PMT

STRIPS
ADL
STRIPS

ADL
Numbers

Time

STRIPS
ADL

Numbers
Time

Invariants
Derived Predicates

Metrics

STRIPS
ADL

Numbers
Time

Invariants
Derived Predicates

Soft Goals
Trajectory Constraints

Preferences
Action Costs

STRIPS
ADL

Numbers
Time

Invariants
Derived Predicates

Soft Goals
Trajectory Constraints

Preferences
Object Fluents

CORE
LANGUAGE

NUMBERS

ADL

Object
Fluents

The Integer Module

(define (module integer)

 (:type integer)

 (:functions

 (< ?x - integer ?y - integer) - boolean

 (> ?x - integer ?y - integer) - boolean

 (<= ?x - integer ?y - integer) - boolean

 (>= ?x - integer ?y - integer) - boolean

 (+ ?x - integer ?y - integer) – integer

 (- ?x - integer ?y - integer) - integer

 (/ ?x - integer ?y - integer) - integer

 (* ?x - integer ?y - integer) - integer

 (increase ?x - integer ?y - integer) – unit

 (decrease ?x - integer ?y - integer) - unit

)

)

The Set Module

(define (module set)

 (:type set of a’)

 (:functions

 (cardinality ?s – set of a’) - integer

 (member ?s - set of a’ ?x – a’) - boolean

 (subset ?s1 ?s2 – set of a’) - boolean

 (union ?x – set of a’ ?y – set of a’) – set of a’

 (intersect ?x - set of a’ ?y – set of a’) – set of a’

 (difference ?x – set of a’ ?y – set of a’) – set of a’

 (add-element ?s - set of a’ ?x – a’) – set of a’

 (rem-element ?s - set of a’ ?x – a’) – set of a’

 (empty-set) - set of a’

 (construct-set ?x+ - a’) - set of a’

)

)

