
Plan-based Policy Learning for
Autonomous Feature Tracking

Maria Fox, Derek Long and

Daniele Magazzeni

Interesting Problem in the Ocean
Sciences

• Harmful algal blooms are huge patches of algae that
come up from the bottom and bloom on the
surface.

• They are associated with widespread marine
mortality events and shellfish poisonings.

• Our specific task is to use an AUV to follow a
particular contour on the surface defined by a
chlorophyll concentration.

• The problem involves intelligent decision-making,
but combinatorial reasoning cannot be done on
board.

• Plan-based policy learning produces robust,
lightweight, intelligent trackers.

Patch-tracking

• Why can’t the AUV do edge-following?

– The edge is not distinct but might be dispersed
over several metres

– The AUV does not have high manoeuverability
relative to the contour of the edge.

50m

30

173m Waypoint 1 Waypoint 2

Our Approach

• We use the same policy-learning strategy as we
used in our work on multiple battery
management (ICAPS 2011):
– Sample patch instances
– Use a planner to solve them offline
– Execute the plans against the instances to construct

<policy state,action> examples for training
– Learn a decision tree classifier that maps states to

actions
– Evaluate the performance of the learned policy on

new simulated instances.

The Simulator

• To build the planning instances we generate
patch contours using a simulator constructed
at MBARI.

• Red regions signify high chlorophyll
• There are many contours defined by different
chlorophyll levels
• The outermost contour defines what we call a
“standard” patch.

(simulator developed by Mike Godin, Research Engineer, MBARI)

Example Plan
8km8

We solve 2000
of these, each
plan contains
about 500
actions

8km

Max confusion = 5

Hindsight Optimisation

Start Gate Goal
10

20
B

10

40

C

D
A

Gate is open with probability p

<Start,Unk>

A B

<G,o> <G,c>

D C,B
<20> <70>

<40>

<S,Unk>,A = 20p + 70(1-p) = 70-50p
<S,Unk>,B = 40

If p >3/5 then A is better, otherwise B

<S,Unk>  A
<S,c>  B
<G,o>  D
<G,c>  C

Final policy for p > 3/5:

HOP samples and plans from every intermediate state.

Plan-based policy learning

Start Gate Goal
10

20
B

10

40

C

D
A

Gate is open with probability p

Build 1000 samples:
 in 1000p of them, the gate is open. The optimal plan is A,D.
 in 1000(1-p) of them the gate is closed and the optimal plan is B.

Play these plans out in simulation against the initial policy state <S,Unk>:
 in 1000p cases, from state <S,Unk> we apply A
 in 1000(1-p) cases, from state <S,Unk> we apply B
 in 1000p cases, from state <G,o>, we apply D

Classify:
 if p > 1/2 then <S,Unk>  A
 otherwise <S,Unk>  B
 and <G,o>  D.

Roll out against new samples:
 When we execute A we will sometimes arrive in <G,c>.
 No policy action for <G,c>!
 Repair:
 add <G,c>  C and reclassify:

Policy when p > 1/2:
<S,Unk>  A
<S,c>  B
<G,o>  D
<G,c>  C

We learn to do this when p > 1/2,
while HOP learns to do this only
when p > 3/5, and it proposes B
otherwise.

So HOP is optimal in this case, and PBL is not.

Adding a Light in HOP

• There might be observable variables that
increase discrimination.

Start Gate
10

20
B

10

40

C

D
A

RED GREEN

OPEN 2/5 3/5

CLOSED 4/5 1/5

<S,Unk,R>
<S,Unk,G>

p = 1/2
<G,o> = 20

<G,c> = 70
A

1/3

2/3

<G,o> = 20

<G,c> = 70
A

3/4

1/4

Total cost of A: 53.3

Total cost of A: 32.5

Total cost of B: 40

<S,Unk,R>  B
<S,Unk,G>  A

Policy fragment: HOP has to recalculate the
conditional probabilities in
each state when the light is
added.

Adding a Light in PBL

Start Gate
10

20
B

10

40

C

D
A

RED GREEN

OPEN 2/5 3/5

CLOSED 4/5 1/5

p = 1/2

<S,Unk,R>  B
<S,Unk,G>  A

Policy fragment:

Policy State:
<Location, GateStatus, LightStatus>

Play out the plans against the initial policy state:
<S,Unk,R> = A (200)
<S,Unk,G> = A (300)
<S,Unk,R> = B (400)
<S,Unk,G> = B (100) Loc = S?

Gate = Unk?

Light = R?

Y

Y

B

Y N

A

N

B

Note that we don’t have to redo the
planning step when we add the
light!

We don’t need to be given this explicitly We call this
observable-
correlate
learning

Observable-Correlate Policy Learning

• An informative set of state variables is essential to enable the classifier to
structure the decision tree.

• The policy state consists of:

– Average bearing over last 10 moves (angle from North)

– The count of times each of the five actions (Left, Right, Forward, Forward-Left, Forward-Right) was

performed in the plan so far (LC, RC, FC, FLC, FRC)

– What chlorophyll level was last sensed

– Facing direction (N,S,E,W)

– Confusion level (0-max)

(, LC, RC, FC, FLC, FRC , R/W, Facing, Conf)

N

E


We don’t retain the cell that is used in the plan state!

Why no cell? Why not HOP?

• We want the policy to be independent of the cell that the AUV
is in

– Conditioning on the cell would make the policy thousands
of times bigger

• Possibly HOP could compute the conditional probabilities at
each state by sampling from the simulator if it knew the AUV
cell, but.....

• suppose HOP has access only to the policy state, how would it
compute the conditional probability of being in the patch
following a given next move?

Repairing the Policy with Default actions

Area-based Default Action

The repaired policy traversing
an unseen patch

• For a fair evaluation we need:
– good measures

– good (non planning) opponent

• Static Policy + loops-avoidance routine

 “On every move, use the area-based default action”

Evaluation

static planning

How far is the patch from the path?

How far is the path from the patch?

Robustness Tests

static planning static planning

We perform
10,000 tests
and average
the results

Conclusions

• Plan-based policy learning works well when:
– It would be very difficult (or impossible) to calculate the

conditional probabilities at intermediate states
– The sampled instances can be usefully seen as planning

problems
– There is a gap between the plan state variables and the

observable variables, and the relationship between them
is not known.

• The experiments reported here were done in
simulation, but we have now performed sea tests at
MBARI with Kanna Rajan and Frederic Py, with
promising initial results (work in progress).

