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Interesting Problem in the Ocean 
Sciences 

• Harmful algal blooms are huge patches of algae that 
come up from the bottom and bloom on the 
surface. 

 

• They are associated with widespread marine 
mortality events and shellfish poisonings. 

 

• Our specific task is to use an AUV to follow a 
particular contour on the surface defined by a 
chlorophyll concentration. 

 

• The problem involves intelligent decision-making, 
but combinatorial reasoning cannot be done on 
board. 

 

• Plan-based policy learning produces robust, 
lightweight, intelligent trackers. 



Patch-tracking 

• Why can’t the AUV do edge-following? 

– The edge is not distinct but might be dispersed 
over several metres 

– The AUV does not have high manoeuverability 
relative to the contour of the edge. 
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Our Approach 

• We use the same policy-learning strategy as we 
used in our work on multiple battery 
management (ICAPS 2011): 
– Sample patch instances 
– Use a planner to solve them offline 
– Execute the plans against the instances to construct 

<policy state,action> examples for training 
– Learn a decision tree classifier that maps states to 

actions 
– Evaluate the performance of the learned policy on 

new simulated instances. 



The Simulator 

• To build the planning instances we generate 
patch contours using a simulator constructed 
at MBARI.  

• Red regions signify high chlorophyll 
• There are many contours defined by different      
chlorophyll levels 
• The outermost contour defines what we call a 
“standard” patch. 

(simulator developed by Mike Godin, Research Engineer, MBARI) 



Example Plan 
8km8 

We solve 2000 
of these, each 
plan contains 
about 500 
actions 

8km 

Max confusion = 5 



Hindsight Optimisation 

Start Gate Goal 
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Gate is open with probability p 

<Start,Unk> 

A B 

<G,o> <G,c> 

D C,B 
<20> <70> 

<40> 

<S,Unk>,A = 20p + 70(1-p) = 70-50p 
<S,Unk>,B = 40 
 
If p >3/5 then A is better, otherwise B 

<S,Unk>  A 
<S,c>  B 
<G,o>  D 
<G,c>  C 

Final policy for p > 3/5: 

HOP samples and plans from every intermediate state. 



Plan-based policy learning 

Start Gate Goal 
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Gate is open with probability p 

Build 1000 samples:  
    in 1000p of them, the gate is open. The optimal plan is A,D.  
    in 1000(1-p) of them the gate is closed and the optimal plan is B. 
 
Play these plans out in simulation against the  initial policy state <S,Unk>: 
    in 1000p cases,  from state <S,Unk> we apply A 
    in 1000(1-p) cases, from state <S,Unk> we apply B 
    in 1000p cases, from state <G,o>, we apply D 
 
Classify: 
    if p > 1/2 then <S,Unk>  A 
 otherwise  <S,Unk>  B 
    and <G,o>  D. 
 
Roll out against new samples:  
    When we execute A we will sometimes arrive in <G,c>. 
 No policy action for <G,c>! 
                    Repair: 
     add  <G,c>  C and reclassify: 

Policy when p > 1/2: 
<S,Unk>  A 
<S,c>  B 
<G,o>  D 
<G,c>  C 

 

We learn to do this when p > 1/2, 
while HOP learns to do this only 
when p > 3/5, and it proposes B 
otherwise. 

So HOP is optimal in this case, and PBL is not. 



Adding a Light in HOP 

• There might be observable variables that 
increase discrimination. 

 

Start Gate 
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RED GREEN 

OPEN 2/5 3/5 

CLOSED 4/5 1/5 

<S,Unk,R>   
<S,Unk,G> 

p = 1/2 
<G,o> = 20  

<G,c> = 70 
A 

1/3 

2/3 

<G,o> = 20 

<G,c> = 70 
A 

3/4 

1/4 

Total cost of A: 53.3 

Total cost of A: 32.5 

Total cost of B: 40 

<S,Unk,R>  B 
<S,Unk,G>  A 

Policy fragment: HOP has to recalculate the 
conditional probabilities in 
each state when the light is 
added. 



Adding a Light in PBL 

Start Gate 
10 
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RED GREEN 

OPEN 2/5 3/5 

CLOSED 4/5 1/5 

p = 1/2 

<S,Unk,R>  B 
<S,Unk,G>  A 

Policy fragment: 

Policy State:  
<Location, GateStatus, LightStatus> 
 
Play out the plans against the initial policy state: 
<S,Unk,R> = A (200) 
<S,Unk,G> = A (300) 
<S,Unk,R> = B (400) 
<S,Unk,G> = B (100) Loc = S? 

Gate = Unk? 

Light = R? 
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Note that we don’t have to redo the 
planning step when we add the 
light! 

We don’t need to be given this explicitly We call this 
observable-
correlate 
learning 



Observable-Correlate Policy Learning 

• An informative set of state variables is essential to enable the classifier to 
structure the decision tree. 

• The policy state consists of: 

– Average bearing over last 10 moves (angle from North) 

– The count of times each of the five actions (Left, Right, Forward, Forward-Left, Forward-Right) was 

performed in the plan so far (LC, RC, FC, FLC, FRC) 

– What chlorophyll level was last sensed 

– Facing direction (N,S,E,W) 

– Confusion level (0-max) 

 

(, LC, RC, FC, FLC, FRC , R/W, Facing, Conf) 

N 

E 
 

We don’t retain the cell that is used in the plan state! 



Why no cell? Why not HOP? 

• We want the policy to be independent of the cell that the AUV 
is in 

– Conditioning on the cell would make the policy thousands 
of times bigger 

• Possibly HOP could compute the conditional probabilities at 
each state by sampling from the simulator if it knew the AUV 
cell, but.....  

• suppose HOP has access only to the policy state, how would it 
compute the conditional probability of being in the patch 
following a given next move? 



Repairing the Policy with Default actions 

Area-based Default Action 

The repaired policy traversing 
an unseen patch 



• For a fair evaluation we need: 
– good measures 

– good (non planning) opponent 

 

 

 

 
• Static Policy + loops-avoidance routine 

 “On every move, use the area-based default action” 

 

Evaluation 

static planning 

How far is the patch from the path? 

How far is the path from the patch? 



Robustness Tests 

static planning static planning 

We perform 
10,000 tests 
and average 
the results 



Conclusions 

• Plan-based policy learning works well when: 
– It would be very difficult (or impossible) to calculate the 

conditional probabilities at intermediate states 
– The sampled instances can be usefully seen as planning 

problems 
– There is a gap between the plan state variables and the 

observable variables, and the relationship between them 
is not known. 

• The experiments reported here were done in 
simulation, but we have now performed sea tests at 
MBARI with Kanna Rajan and Frederic Py, with 
promising initial results (work in progress). 


