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“30 Minutes or It's Free”

v

Delivery location



Agent’s Goal: Exceed a Threshold

* In competitive domains, second is as good
as last.

* “The person that said winning isn’t

everything, never won anything” — Mia - Y ®
Hamm T | .ﬂ
] 715_

 Arcade game - not just beating a level,
going for the top score.

If you're not first,
you're last!

-- Ricky Bobby

From the movie Talladega Nights




Take Risks to Win

* Change strategy to win.

— Play more defensively or offensively.

* Hockey: When is the best time to pull the goalie?
-




Pizza Delivery

“30 Minutes or It's Free”
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v v

Unexpected Traffic Delivery location



Risky Actions Create Higher Variance

Always risk-neutral

Always risky

Unlucky: cost high Lucky: cost low®




Application

* Specific Domain: thresholded-reward
problems.

* Suite of risk-sensitive policies: generated based
on exponential functions (assimilate risk).



Method

Demonstrate the technique for choosing the next
policy to follow based on maximizing the probability
of exceeding a reward threshold.

— Given : current state and current running cumulative
reward.



Formulate the Problem as an MDP

e Assume world defined as a Markov Decision

Process
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A Planning Problem

e Straightforward Approach
— Add cumulative reward or time to the state.

 Significantly increases the state space.

— Execute the optimal policy.

[McMillen, C, 2007. AAAI Press; MIT Press]

Intractable State Space for Realistic
~Domains.
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A Planning Problem

What about a dynamic policy?

— |If the agent is particularly unlucky, adjust how risky
actions are at run-time.

[Roth, M. 2005. Autonomous Agents and Multiagent Systems.]
[Cassandra,R.1998 PhD Thesis]
[Koenig,S .1995. IJCAI] 11



Approach

Offline

* Generate different policies: policies of varying risk
attitude.

e Estimate the reward distributions.

Online

* Switch between policies: Calculate the maximum
probability of being over a threshold at each time

step based on the current cumulative (discounted)
reward.
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Background on Risk



Utility and Risk

L

* linear utility /

(0.0)

* exponential utility U(r)=+5"

— most widely used function to represent risk-
sensitive utility.
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An Agent’s Utility Function

U4 YA
* ‘no-switch’ utility
— stays constant . —1 >
(0,0) (0,0)

* one-switch utility

— switch from risk-neutral to

risk-seeking behavior. . >

e prefer multi-switch utility

Emulate multi-switch utility by switching between
policies at run-time.

[Liu, Y., and Koenig, S. 2008. An exact algorithm for solving mdps under risk-sensitive planning objectives
with one-switch utility functions. AAMAS.] 15



Technical Approach



Approach

Offline

* Generate different policies: policies of varying risk
attitude.

e Estimate the reward distributions.

Online

* Switch between policies: Calculate the maximum
probability of being over a threshold at each time

step based on the current cumulative (discounted)
reward.
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Transform the MDP Probabilities

P(S' s, a)* o
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[S. Koenig. Goal-Directed Acting with Incomplete information. PhD
thacic1Q07]
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Approach

Offline

* Generate different policies: policies of varying risk
attitude.

e Estimate the reward distributions.

Online

* Switch between policies: Calculate the maximum
probability of being over a threshold at each time

step based on the current cumulative (discounted)
reward.
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Estimating the Reward Distribution

This work reasons about the complete non-
parametric reward distribution including the
distribution tails.

isk Neutral, Pizza (state 0)
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Distributions Vary Based on State
10

Risk Neutral, Pizza (state 0)
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frequency

frequency

Example Distributions
for Different Risk Attitudes

Risk Neutral, Pizza (state 0)
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Approach

Offline

* Generate different policies: policies of varying risk
attitude.

e Estimate the reward distributions.

Online

* Switch between policies: Calculate the maximum
probability of being over a threshold at each time

step based on the current cumulative (discounted)
reward.
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Switching Criteria

e Use the CDF to know the probability of being
greater than the threshold. 1-F()= If(t)dt=P(V>x)

i Empirical CDF - Pizza Domain (state 0)
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Switching Criteria

At each time-step, for that state s—>a—->s5—->a,

Empirical CDF - Pizza Domain (state 0) Empirical CDF - Pizza Domain (state 108)
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Results



Switching Shows Improvement, Pizza
Domain

* Execute 10,000 runs in original MDP
e Same start state every time.
* Risk-neutral vs switching (with risky policy 6=1.2).

Threshold = -100: Threshold = -70:;
Fails to Exceed the Threshold Fails to Exceed the Threshold
Risk Neutral Fails: 3120 Risk Neutral Fails: 8026
Switching Fails: 2166 Switching Fails: 5790
Fails 9.5% less using switching strategy; Fails 22.4% less using switching strategy:

Reduces losses by 30.6% Reduces losses by 27.9%
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Augmented State - Pizza Domain

 Add cumulative reward to the state, no discounting.
— States go from 200 ->30,200

Augmented State ‘ Risk-Variant Switching

Offline Time per policy

Solve policy: 18 hours Solve policy: < Imin

Gen rew dist: 5-10 min
Constr CDF: 1 min

Total: 18 hours Total: 12 min * 2 policies
=24 min

Execution Time
.015s Eval Switch : .02s

Pros: performs better, closer to optimal.

CoONS: Large planning time, and must re-generate the policy per
threshold.



Comparing Augmented State to Switching

* Execute 10,000 runs in original MDP
e Same start state every time.

* Augmented Larger State Space vs switching (with
risky policy 6=1.2).

Threshold = -70:

Fails to Exceed the Threshold
Risk Neutral Fails: 7946
Switching Fails: 6945
Augmented State Fails: 6256
Augmented state fails 16.9% less than risk Augmented state fails 6.8% less than
neutral; switching;

Reduces losses by 21.2% Reduces losses by 9.9%
29



Application to a Mario Domait






Switching Shows Improvement, Mario
Domain

« Execute 1,000 runs using
learned MDP for dynamics

« Same start state every time

Threshold = 100

Fails to Exceed the Threshold

Risk Neutral Fails: 919

Switching Fails: 738

Fails 18.1% less using switching strategy;

Reduces losses by 19.7%

« Execute 1,000 runs using
Infinite Mario Simulator

e 1.000 different worlds

« Switching based on
discounting of macro
actions

Threshold = 30

Fails to Exceed the Threshold

Risk Neutral Fails: 838

Switching Fails: 821

Fails 1.7% less using switching strategy;
Reduces losses by 2% 32



Future Work

* Expand to also switch with conservative
policies.

* Implement in real robot domains

— Multiple service robots

* Extend to more robustly handle situations
where the model does not reflect reality.
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Conclusion

* Demonstrated a general algorithm that allows an
agent to switch between risk-sensitive policies to
exceed a threshold.

- Reason about complete reward distribution
- Algorithm saves on planning time.

 Showed improved performance over risk-neutral
policies.

 Good for domains where want to take risks,
resulting in a higher cost of losing, for the
increased chance of winning.
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Takeaway

* General Algorithm:

— Accepts any collection of different policies for an agent to
employ.

— Switching strategy that chooses the next ‘best policy’ based
on some criteria.
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Questions?
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