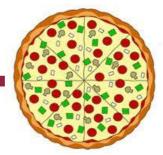
Reward Thresholds

Breelyn Kane and Reid Simmons June 29, 2012

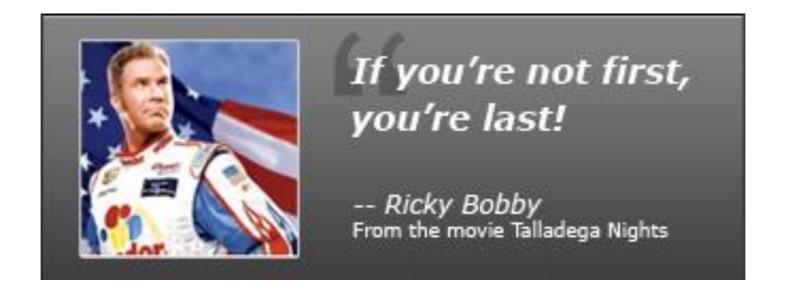
Pizza Delivery



"30 Minutes or It's Free"

Agent's Goal: Exceed a Threshold

- In competitive domains, second is as good as last.
- "The person that said winning isn't everything, never won anything" – Mia Hamm
- Arcade game not just beating a level, going for the top score.

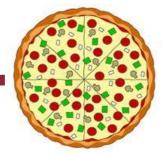


Take Risks to Win

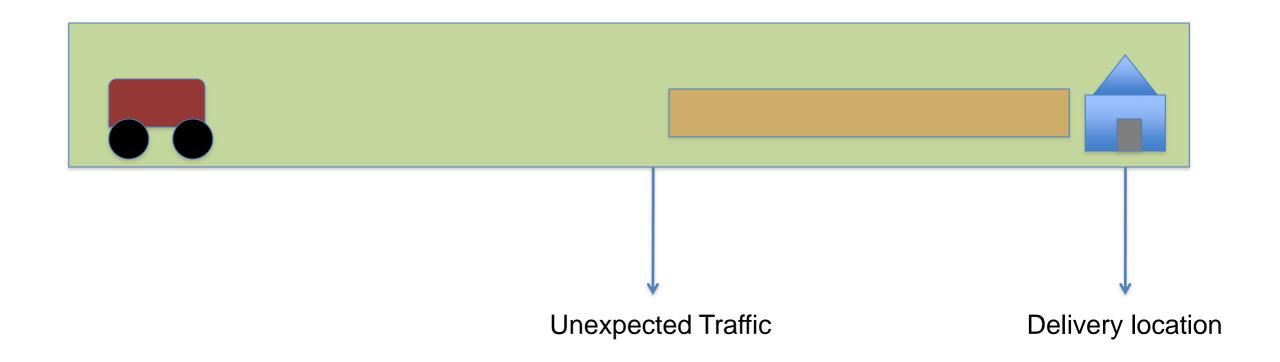
- Change strategy to win.
 - Play more defensively or offensively.

Hockey: When is the best time to pull the goalie?

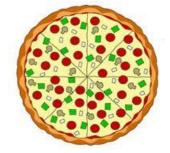
Pizza Delivery



"30 Minutes or It's Free"

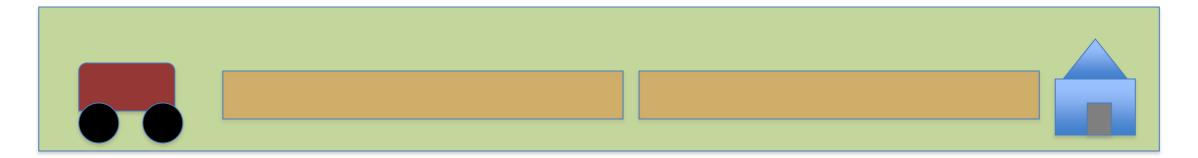


Risky Actions Create Higher Variance



Always risk-neutral

Always risky



Unlucky: cost high

Lucky: cost low⁶

Application

Specific Domain: thresholded-reward problems.

 Suite of risk-sensitive policies: generated based on exponential functions (assimilate risk).

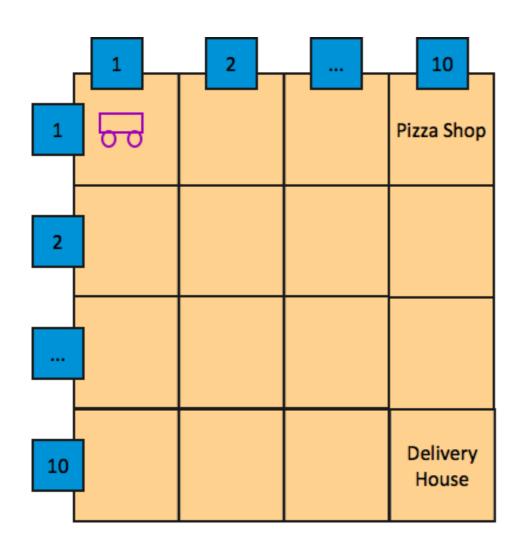
Method

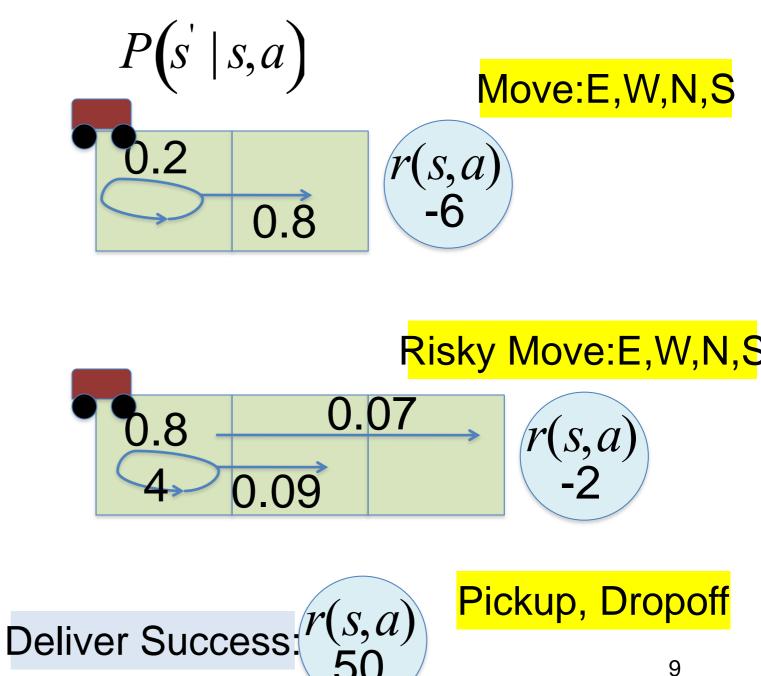
Demonstrate the technique for choosing the next policy to follow based on *maximizing the probability of exceeding a reward threshold.*

Given : current state and current running cumulative reward.

Formulate the Problem as an MDP

 Assume world defined as a Markov Decision Process





A Planning Problem

- Straightforward Approach
 - Add cumulative reward or time to the state.
 - Significantly increases the state space.
 - Execute the optimal policy.

[McMillen, C, 2007. AAAI Press; MIT Press]

Intractable State Space for Realistic Domains.

A Planning Problem

What about a dynamic policy?

If the agent is particularly unlucky, adjust how risky actions are at run-time.

Tradeoff some computation and somewhat less optimality for significant savings in planning time.

[Roth, M. 2005. Autonomous Agents and Multiagent Systems.] [Cassandra,R.1998 PhD Thesis] [Koenig,S .1995. IJCAI]

Approach

Offline

- Generate different policies: policies of varying risk attitude.
- Estimate the reward distributions.

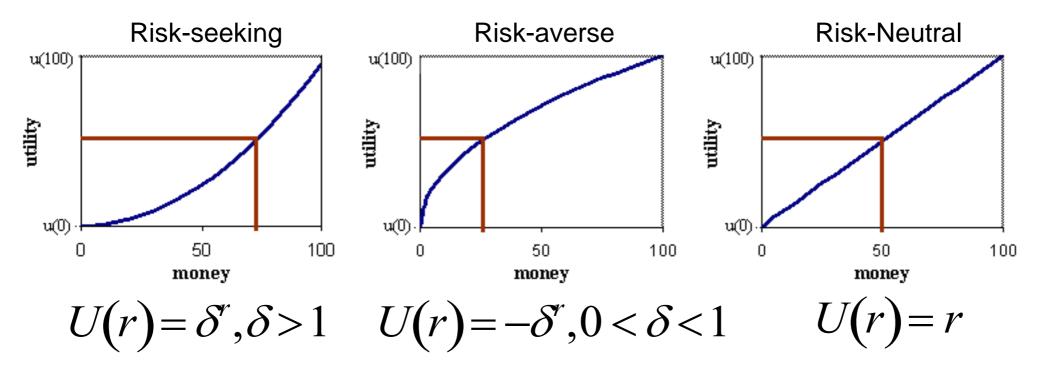
Online

 Switch between policies: Calculate the maximum probability of being over a threshold at each time step based on the current cumulative (discounted) reward.

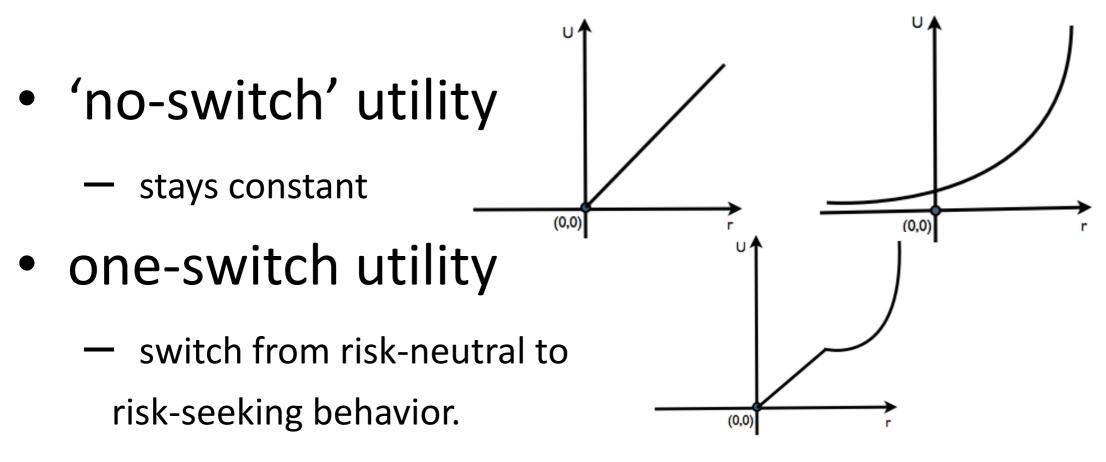
Background on Risk

Utility and Risk

- linear utility
 (0.0)
- exponential utility $U(r) = \pm \delta^r$
 - most widely used function to represent risksensitive utility.



An Agent's Utility Function



prefer multi-switch utility

Emulate multi-switch utility by switching between policies at run-time.

[Liu, Y., and Koenig, S. 2008. An exact algorithm for solving mdps under risk-sensitive planning objectives with one-switch utility functions. AAMAS.]

Technical Approach

Approach

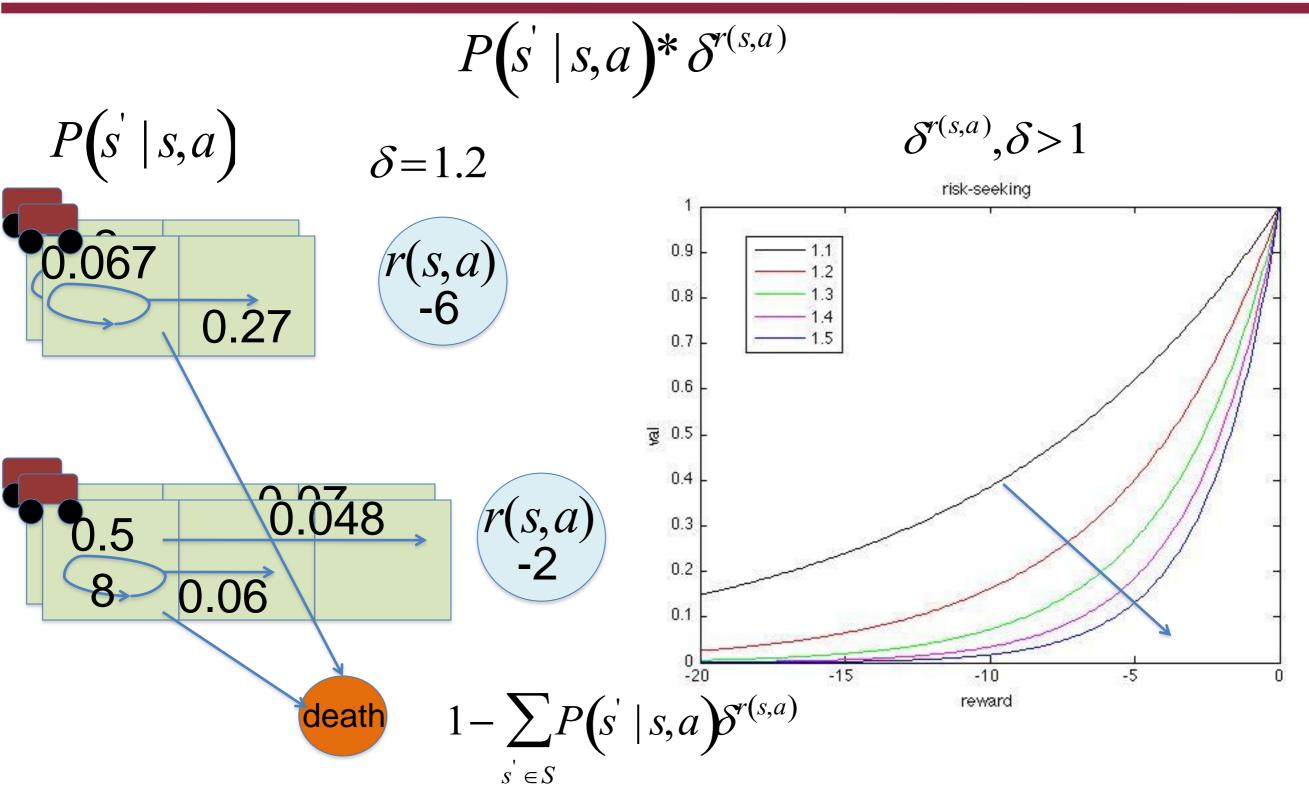
Offline

- Generate different policies: policies of varying risk attitude.
- Estimate the reward distributions.

Online

 Switch between policies: Calculate the maximum probability of being over a threshold at each time step based on the current cumulative (discounted) reward.

Transform the MDP Probabilities



[S. Koenig. Goal-Directed Acting with Incomplete information. PhD thesis1997]

18

Approach

Offline

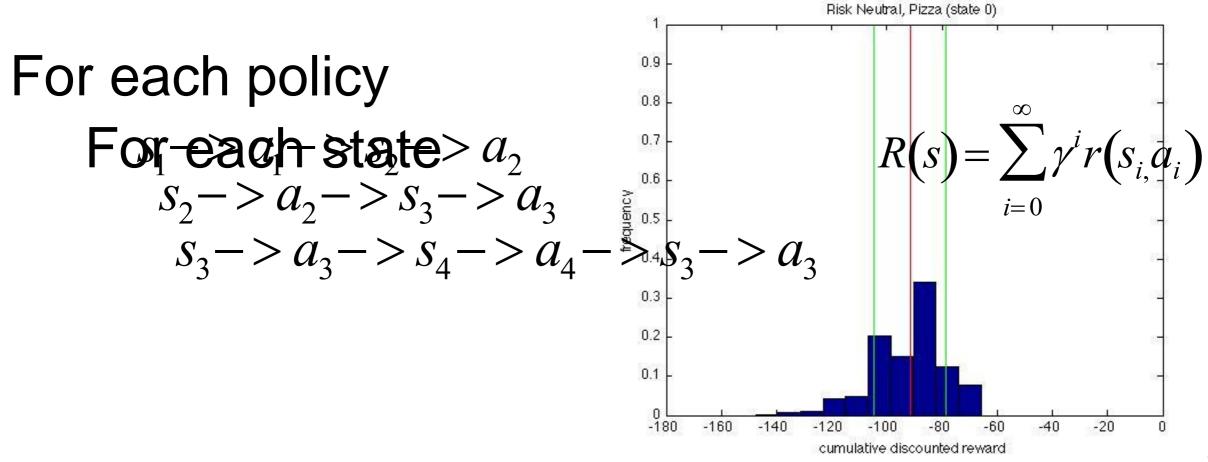
- Generate different policies: policies of varying risk attitude.
- Estimate the reward distributions.

Online

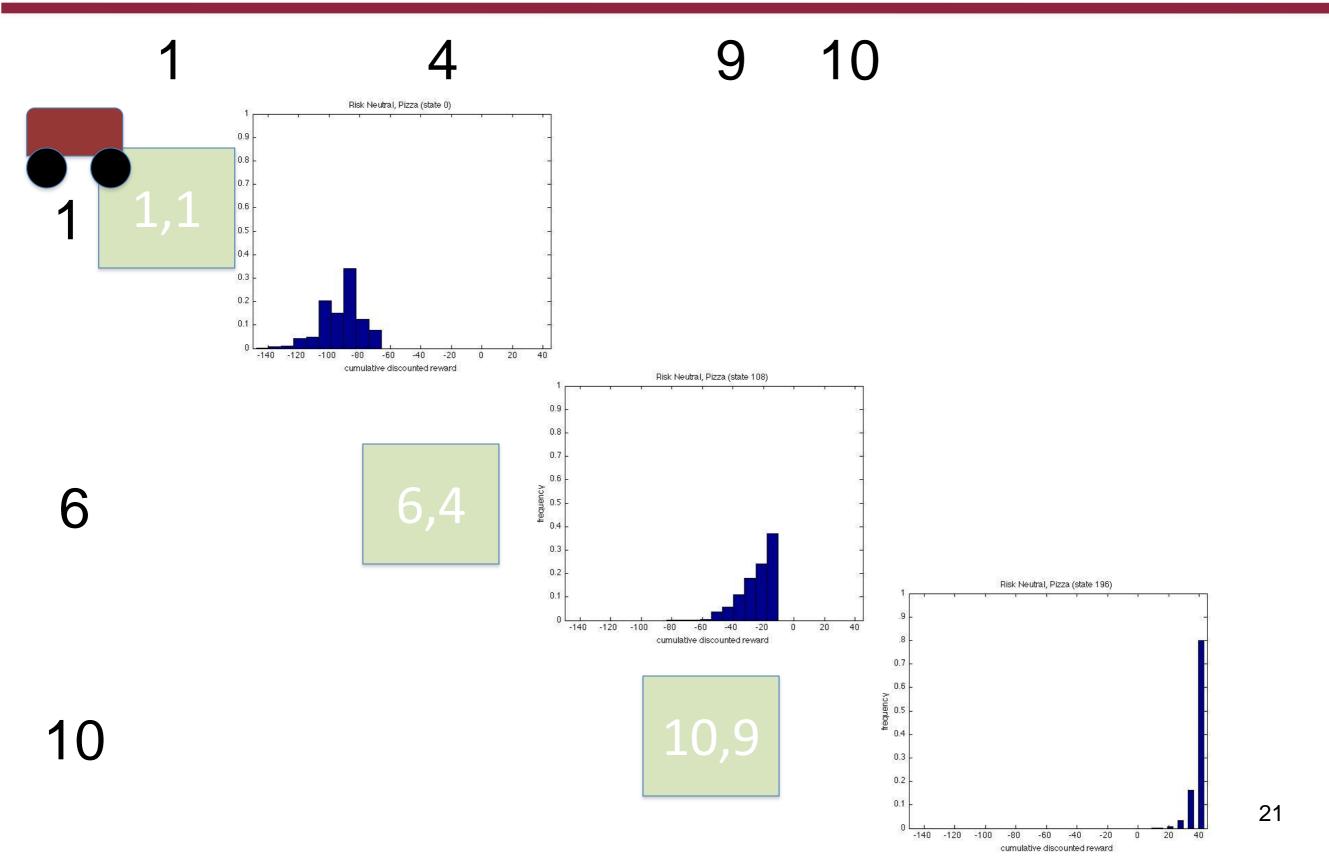
 Switch between policies: Calculate the maximum probability of being over a threshold at each time step based on the current cumulative (discounted) reward.

Estimating the Reward Distribution

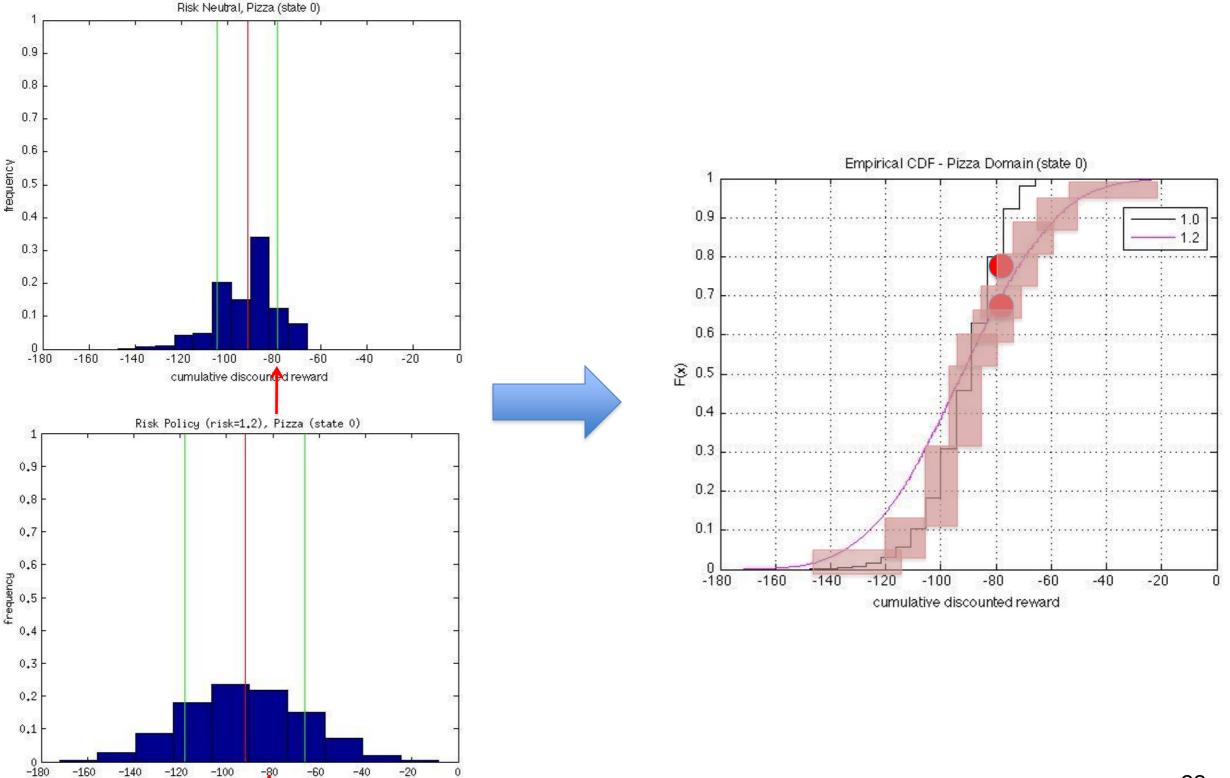
This work reasons about the **complete** nonparametric reward distribution including the distribution tails.



Distributions Vary Based on State



Example Distributions for Different Risk Attitudes



cumulative discounted reward

Approach

Offline

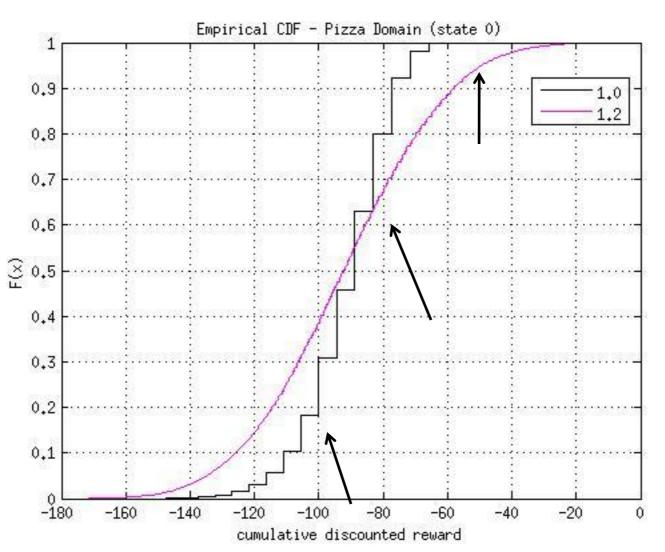
- Generate different policies: policies of varying risk attitude.
- Estimate the reward distributions.

Online

 Switch between policies: Calculate the maximum probability of being over a threshold at each time step based on the current cumulative (discounted) reward.

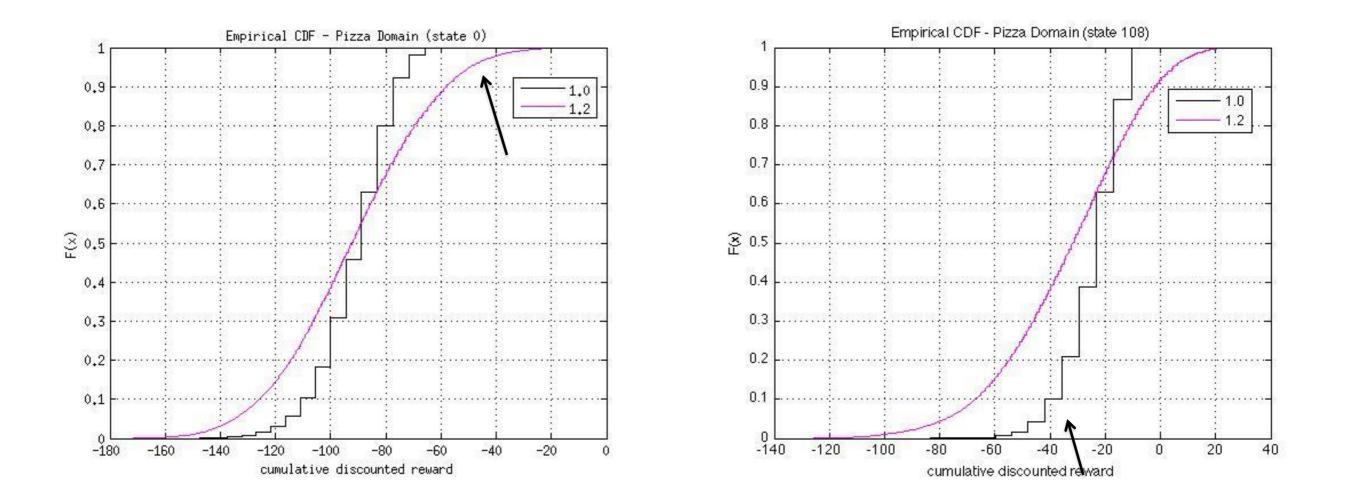
Switching Criteria

• Use the CDF to know the probability of being greater than the threshold. $1-F(x) = \int f(t)dt = P(V > x)$



Switching Criteria

At each time-step, for that state $s_1 -> a_1 -> s_2 -> a_2$



Results

Switching Shows Improvement, Pizza Domain

- Execute 10,000 runs in original MDP
 - Same start state every time.
 - Risk-neutral vs switching (with risky policy δ =1.2).

Threshold = -100;

Fails to Exceed the Threshold		
Risk Neutral Fails:	3120	
Switching Fails:	2166	

Fails 9.5% less using switching strategy; Reduces losses by 30.6% Threshold = -70;

Fails to Exceed the Threshold		
Risk Neutral Fails:	8026	
Switching Fails:	5790	

Fails 22.4% less using switching strategy; Reduces losses by 27.9%

Augmented State - Pizza Domain

- Add cumulative reward to the state, no discounting.
 - States go from 200 ->30,200

Augmented State	Risk-Variant Switching
Offline Time per policy	
Solve policy: 18 hours	Solve policy: < 1min
	Gen rew dist: 5-10 min
	Constr CDF: 1 min
Total: 18 hours	Total: 12 min * 2 policies
	= 24 min
Execution Time	
.015s	Eval Switch : .02s

Pros: Performs better, closer to optimal.

CONS: Large planning time, and must re-generate the policy per threshold.

Comparing Augmented State to Switching

- Execute 10,000 runs in original MDP
 - Same start state every time.
 - Augmented Larger State Space vs switching (with risky policy δ =1.2).

Threshold = -70;

Fails to Exceed the Threshold		
Risk Neutral Fails:	7946	
Switching Fails:	6945	
Augmented State Fails:	6256	

Augmented state fails 16.9% less than risk neutral; Reduces losses by 21.2% Augmented state fails 6.8% less than switching; Reduces losses by 9.9%

Application to a Mario Domair

Switching Shows Improvement, Mario Domain

- Execute 1,000 runs using learned MDP for dynamics
 - Same start state every time

Threshold = 100

Fails to Exceed the Threshold		
Risk Neutral Fails:	919	
Switching Fails:	738	

- Execute 1,000 runs using Infinite Mario Simulator
 - 1,000 different worlds
 - Switching based on discounting of macro actions

Threshold = 30

Fails to Exceed the Threshold		
Risk Neutral Fails:	838	
Switching Fails:	821	

Fails 18.1% less using switching strategy; Reduces losses by 19.7% Fails 1.7% less using switching strategy;Reduces losses by 2%32

Future Work

- Expand to also switch with conservative policies.
- Implement in real robot domains
 - Multiple service robots
- Extend to more robustly handle situations where the model does not reflect reality.

Conclusion

- Demonstrated a general algorithm that allows an agent to switch between risk-sensitive policies to exceed a threshold.
 - Reason about complete reward distribution
 - Algorithm saves on planning time.
- Showed improved performance over risk-neutral policies.
- Good for domains where want to take risks, resulting in a higher cost of losing, for the increased chance of winning.

Takeaway

- General Algorithm:
 - Accepts any collection of different policies for an agent to employ.
 - Switching strategy that chooses the next 'best policy' based on some criteria.

Tradeoff some computation and somewhat less optimality for significant savings in planning time.

Questions?

Acknowledgements

- Advisor: Reid Simmons
- AFOSR grant #FA2386-10-1-4138
- Sven Koenig and Yaxin Liu (risky policy transformations)
- John Laird and Shiwali Mohan (Super Mario domain simulator)