A Planning Based Framework for Controlling Hybrid Systems

Johannes Löhr
Patrick Eyerich
Thomas Keller
Bernhard Nebel

{loehr, eyerich, tkeller, nebel}@informatik.uni-freiburg.de
Outline

Motivation

From Continuous Dynamics...

... to a Domain Model

Domain Predictive Control

Exemplary Simulation

Discussion

Outlook
Motivation

Lunar Lander ExoMars
Motivation

Think!

acting

goal

sensing

A Planning Based Framework for Controlling Hybrid Systems

Johannes Löhr

26.06.2012
Motivation

Key Aspects

Hybrid Systems
Continuous Dynamics
Boolean State Variables

Autonomy
Reduction of Computational Effort
Quick Decision Generation

Exogenous Events
Obstacles
Reactivity
Outline

Motivation

From Continuous Dynamics...

... to a Domain Model

Domain Predictive Control

Exemplary Simulations

Discussion

Outlook
From a Hybrid System...

Hybrid System

\[\dot{x}_n(t) = A(x_l) x_n(t) + B(x_l) u(t) \]

Planning Task

Find \(u(t), \ t \in [t_a, t_b] \) such that:

\[x_n(t_a) \rightarrow x_n(t_b) \]

Initial State \(\rightarrow \) Desired State
…to a Planning Action…

1. Anticipate some input fragments $u_i(t), t \in [0, \delta_i]

2. Solve the differential equations (preprocessing step)

$$\Phi = e^{A(x_i)} \delta_i$$
$$\Psi = \int_{t_0}^{t_0+\delta_i} e^{A(x_i)\cdot(t_0+\delta_i-\tau)} B(x_i) u(\tau) d\tau$$

3. Generate planning action

$$E \vdash x_n(t_0 + \delta_i) = \Phi_i x_n(t_0) + \Psi_i$$
… to the Domain Model

Domain Model

- **Action A**
- **Action B**
- **Action C**
- **Action D**
- **Action E**
- **Action F**
- **Action G**

Planning Problem

- **Init**
- **Goal**

Graphical representation:

- x_n
- δ_A
- δ_C
- δ_B
- t_0
- $t_0 + \delta_A$
- $t_0 + \delta_A + \delta_C$
- t_{end}

Goal

Init
Outline

Motivation

From Continuous Dynamics...

to a Domain Model

Domain Predictive Control

Exemplary Simulations

Discussion

Outlook
Remember the Key Aspects

- Key Aspects
 - Hybrid Systems
 - Continuous Dynamics
 - Boolean State Variables

- Autonomy
 - Reduction of Computational Effort
 - Quick Decision Generation

- Exogenous Events
 - Obstacles
 - Reactivity
Domain Predictive Control

Initial State

Goal States
Domain Predictive Control

Initial State

Expand limited number of states within Planning Horizon

State with best heuristic information

Goal States
Domain Predictive Control

Initial State

Apply subsequence of actions

State with best heuristic information

Goal States
Domain Predictive Control

Initial State

Expand limited number of states within Planning Horizon

State with best heuristic information

Goal States
Domain Predictive Control

Initial State

State with best heuristic information

Goal States

Apply subsequence of actions

26.06.2012

A Planning Based Framework for Controlling Hybrid Systems

Johannes Löhr
Domain Predictive Control

Initial State

Expand limited number of states within Planning Horizon

Solution found

Goal States
Domain Predictive Control

- **Key Aspects**
 - Hybrid Systems
 - Continuous Dynamics
 - Boolean State Variables
 - Autonomy
 - Reduction of Computational Effort
 - Quick Decision Generation

Exogenous Events
- Obstacles
- Reactivity
Domain Predictive Control

Sensors, FDI, etc. → new environment or system knowledge → Replanning

update

Domain Model

action A
action B
action C
action D
action E
action F
action G
action H

Nominal Action
Faulty Action

Planning Problem

init
e.g. unmodeled disturbances
e.g. changes of the environment

goal

updated state
original state
Domain Predictive Control Architecture

```
user --> s_0
\quad k = 0

Problem
\quad s_{k+1} = s_k

Domain

Planner

Plan

Interpreter

u_l(t) --> Plant Logic
\quad \dot{x}_l(t)

Estimator

\hat{x}(t)

Plan

\dot{x}_n(t) \rightarrow f
\quad x_n(t)

Plant

\dot{x}_n(t) \rightarrow B(x_l)
\quad u_n(t)

A(x_l)

C(x_l)

y_n(t)

\mathbf{t} \in [t_k, t_{k+c}]
```

26.06.2012
A Planning Based Framework for Controlling Hybrid Systems
Johannes Löhr
Outline

- Motivation
- From Continuous Dynamics...
- ...to a Domain Model
- Domain Predictive Control
- Exemplary Simulations
- Discussion
- Outlook

26.06.2012
A Planning Based Framework for Controlling Hybrid Systems
Johannes Löhr
Exemplary Simulation

<table>
<thead>
<tr>
<th>Action</th>
<th>α_y</th>
<th>α_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0°</td>
<td>0°</td>
</tr>
<tr>
<td>1</td>
<td>0°</td>
<td>2.92°</td>
</tr>
<tr>
<td>2</td>
<td>0°</td>
<td>−2.92°</td>
</tr>
<tr>
<td>3</td>
<td>2.92°</td>
<td>0°</td>
</tr>
<tr>
<td>4</td>
<td>−2.92°</td>
<td>0°</td>
</tr>
<tr>
<td>5</td>
<td>2.92°</td>
<td>−2.92°</td>
</tr>
<tr>
<td>6</td>
<td>2.92°</td>
<td>2.92°</td>
</tr>
<tr>
<td>7</td>
<td>2.92°</td>
<td>−2.92°</td>
</tr>
<tr>
<td>8</td>
<td>−2.92°</td>
<td>−2.92°</td>
</tr>
</tbody>
</table>

$\delta_i = 0.5 \, s, \forall \, i \in [0,8]$
Exemplary Simulation

Planned States
Simulated Trajectory
Intermediate Promising Trajectory
Outline

Motivation

From Continuous Dynamics...

... to a Domain Model

Domain Predictive Control

Exemplary Simulations

Discussion

Outlook
Discussion

Planner Performance

Model Accuracy

Suitable Heuristics

Fine Grain Discretization

Computing Power

Number of Anticipated Input Fragments
Summary and Conclusion

Pros
- **general** problem formulation
- **changing system configurations**
- restricted state space
- **failure tolerance**

Cons
- anticipated input fragments
- discrete system dynamics
- computational effort
- currently: linear systems only
Outline

Motivation
From Continuous Dynamics...
... to a Domain Model
Domain Predictive Control
Exemplary Simulations
Discussion
Outlook
Outlook

- American Institute of Aeronautics and Astronautics Astrodynamics Specialist Conference (August 2012)
 “Planning-based Autonomous Lander Control”
 J. Löhr, B. Nebel, and S. Winkler
Planning Based Framework for Controlling Hybrid Systems

Johannes Löhr
loehr@informatik.uni-freiburg.de
Heuristic

Error State Heuristic

\[h = \| e_p + e_v \|_1 \]

Open Heuristic Issues:
1. Weighting of numerical variables
2. Weighting between numerical and logical variables
Stable Dynamics

Homogeneous Solution of Stable Dynamics

\[\dot{x}_n(t) = A_{cl}x_n(t) + Bu_n(t) \]

\(A_{cl} \) state feedback controlled

\[u_n(t) = -Kx_n(t) \]

closed loop dynamics

\(A_{cl} = A - BK \)

choose controller \(K \) such that

\[Re(eig[A - BK]) < 0 \]
Stable Dynamics

Homogeneous Solution of Stable Dynamics

\[\dot{x}_n(t) = A_{cl} x_n(t) + B u_n(t) \]

\(A_{cl} \) state feedback controlled
\(u_n(t) = -K x_n(t) \)

closed loop dynamics
\(A_{cl} = A - BK \)

choose controller \(K \) such that
\(\text{Re}(\text{eig}|A - BK|) < 0 \)

Feasible state feedback control region (actuator saturations!)
Discretized Dynamics

x_1

Homogeneous Solution Φ_1

x_2
Discretized Dynamics

Homogeneous Solution Φ_1

+ Inhomogeneous Solution Ψ
Discretized Dynamics

Homogeneous Solution Φ_2 of Changed Dynamics
Discretized Dynamics

Homogeneous Solution Φ_2 of Changed Dynamics

$\begin{align*}
x_1 \\
x_2
\end{align*}$
The Domain Model
A Piecewise Affine System?

\[x_n(k + 1) = \Phi_i x_n(k) + \Psi_i , \quad x_n \in \Omega_i \]

\[\Omega_i \cap \Omega_j = \emptyset, \quad \forall \ i \neq j \]

\(\mathcal{X} : \) is not necessarily empty, we explicitly allow for overlaps of \(\Omega_i \) Depicts the state space we can choose between actions
Time Discretization

\[x_n \]

\[s^* \]

\[\text{obstacle} \]

\[\delta_A \]

\[\delta_C \]

\[\delta_B \]

\[t_0 \]

\[t_0 + \delta_A \]

\[t \]