A Planning Based Framework for Controlling Hybrid Systems

Machife: bright

Albert-Ludwigs-Universität Freiburg

Johannes Löhr

Patrick Eyerich

Thomas Keller

Bernhard Nebel

{loehr, eyerich, tkeller, nebel}@informatik.uni-freiburg.de

Outline

Motivation

From Continuous Dynamics...

... to a Domain Model Domain Predictive Control

Exemplary Simulation

Discussion

Outlook

Motivation

Lunar Lander ExoMars

Motivation

Motivation

Key Aspects

Hybrid Systems

Continuous Dynamics Boolean State Variables

Autonomy

Reduction of Computational Effort Quick Decision Generation

Exogenous Events

Obstacles Reactivity

Outline

Motivation

From Continuous Dynamics...

... to a Domain Model Domain Predictive Control

Discussion

Exemplary Simulations

Outlook

From a Hybrid System...

$$\dot{\boldsymbol{x}}_n(t) = A(\boldsymbol{x}_l) \, \boldsymbol{x}_n(t) + B(\boldsymbol{x}_l) \, \boldsymbol{u}(t)$$

Planning Task

Find u(t), $t \in [t_a, t_b]$ such that:

$$\mathbf{x}_n(t_a) \longrightarrow \mathbf{x}_n(t_b)$$

Initial State

Desired State

...to a Planning Action...

solve the differential equations

 $oldsymbol{1}$. Anticipate some input fragments $oldsymbol{u}_i(t), t \in [0, \delta_i]$

3. Generate planning action

2. Solve the differential equations (preprocessing step)

$$\Phi = e^{A(\mathbf{x}_l) \, \delta_i}$$

$$\Psi = \int_{t_0}^{t_0 + \delta_i} e^{A(\mathbf{x}_l) \cdot (t_0 + \delta_i - \tau)} \, B(\mathbf{x}_l) \, \mathbf{u}(\tau) \, d\tau$$

$$E_{\dashv}: \quad \mathbf{x}_n(t_0 + \delta_i) = \Phi_i \, \mathbf{x}_n(t_0) + \Psi_i$$

... to the Domain Model

Outline

Motivation

From Continuous Dynamics...

.. to a Domain Model **Domain Predictive Control**

Discussion

Exemplary Simulations

Outlook

Remember the Key Aspects

Key Aspects

Hybrid Systems
Continuous Dynamics
Boolean State Variables

Autonomy

Reduction of Computational Effort Quick Decision Generation

Exogenous EventsObstacles Reactivity

Key Aspects

Continuous Dynamics
Boolean State Variables

Autonomy

Reduction of Computational Effort Quick Decision Generation

Exogenous Events

Obstacles Reactivity

Domain Predictive Control Arcitecture

Outline

Exemplary Simulations

Discussion

Outlook

Exemplary Simulation

100	
	C
	Z
	34
	58

action 0	$\alpha_y = 0^{\circ}$	$\alpha_x = 0^{\circ}$
action 1	$\alpha_y = 0^{\circ}$	$\alpha_x = 2.92^{\circ}$
action 2	$\alpha_y = 0^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 3	$\alpha_y = 2.92^{\circ}$	$\alpha_x = 0^{\circ}$
action 4	$\alpha_y = -2.92^{\circ}$	$\alpha_x = 0^{\circ}$
action 5	$\alpha_y = 2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 6	$\alpha_y = 2,92^{\circ}$	$\alpha_x = 2.92^{\circ}$
action 7	$\alpha_y = 2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 8	$\alpha_y = -2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$

$$\delta_i = 0.5 \text{ s}, \forall i \in [0.8]$$

$$p_{\vdash}$$
 =

$$[(x > 8) \lor (x < 2) \lor (y > 3) \lor (y < 2)] \land$$

$$[(x > 6) \lor (x < 4) \lor (y > 6) \lor (y < 4)] \land$$

$$[(x > 4) \lor (x < 0) \lor (y > 6) \lor (y < 4)] \land$$

$$[(x > 10) \lor (x < 6) \lor (y > 6) \lor (y < 4)] \land$$

$$[(x > 8) \lor (x < 2) \lor (y > 8) \lor (y < 7)] \land$$

$$[(x > 0) \land (x < 10) \land (y > 0) \land (y < 10)]$$

Exemplary Simulation

Outline

Motivation

From Continuous Dynamics...

... to a Domain Mode

Discussion

Outlook

Discussion

Summary and Conclusion

Pros	Cons
general problem formulation	anticipated input fragments
changing system configurations	discrete system dynamics
restricted state space	computational effort
failure tolerance	currently: linear systems only

Outline

Motivation

From Continuous Dynamics...

... to a Domain Mode

Outlook

Outlook

REIBURG

Planning Based Framework for Controlling Hybrid Systems

Albert-Ludwigs-Universität Freiburg

Johannes Löhr loehr@informatik.uni-freiburg.de

Heuristic

Error State Heuristic

$$\boldsymbol{x}_1$$

$$h = \|\boldsymbol{e}_{\boldsymbol{p}} + \boldsymbol{e}_{\boldsymbol{v}}\|_1$$

Open Heuristic Issues:

- Weighting of numerical variables
- 2. Weighting between numerical and logical variables

Stable Dynamics

Homogeneous Solution of Stable Dynamics

$$\dot{\boldsymbol{x}}_n(t) = A_{cl} \boldsymbol{x}_n(t) + B \boldsymbol{u}_n(t)$$

 A_{cl} state feedback controlled $u_n(t) = -K x_n(t)$

closed loop dynamics $A_{cl} = A - BK$

choose controller K such that Re(eig|A - BK|) < 0

Stable Dynamics

Homogeneous Solution of Stable Dynamics

$$\dot{\boldsymbol{x}}_n(t) = A_{cl} \boldsymbol{x}_n(t) + B \boldsymbol{u}_n(t)$$

 A_{cl} state feedback controlled $u_n(t) = -K x_n(t)$

closed loop dynamics $A_{cl} = A - BK$

choose controller K such that Re(eig|A - BK|) < 0

 \boldsymbol{r}_1

 \boldsymbol{x}_1

Homogeneous Solution Φ_1

+ Inhomogeneous Solution Ψ

 \boldsymbol{x}_1

Homogeneous Solution Φ_2 of Changed Dynamics

The Domain Model A Piecewise Affine System?

action A

action B

action C

action D

$$\Omega_i \cap \Omega_j = \mathcal{X}, \quad \forall i \neq j$$

 \mathcal{X} : is not necessarily empty, we explicitly allow for overlaps of Ω_i Depicts the state space we can

choose between actions

$$\mathbf{x}_{n}(k+1) = \Phi_{i} \mathbf{x}_{n}(k) + \Psi_{i} \mathbf{x}_{n} \in \Omega_{i}$$

$$\Omega_{i} \cap \Omega_{i} = \emptyset, \quad \forall i \neq j$$

Time Discretization

