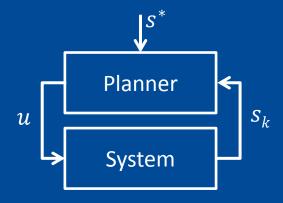
A Planning Based Framework for Controlling Hybrid Systems



Machife: bright

Albert-Ludwigs-Universität Freiburg

Johannes Löhr

Patrick Eyerich

Thomas Keller

Bernhard Nebel

{loehr, eyerich, tkeller, nebel}@informatik.uni-freiburg.de

Outline

Motivation

From Continuous Dynamics...

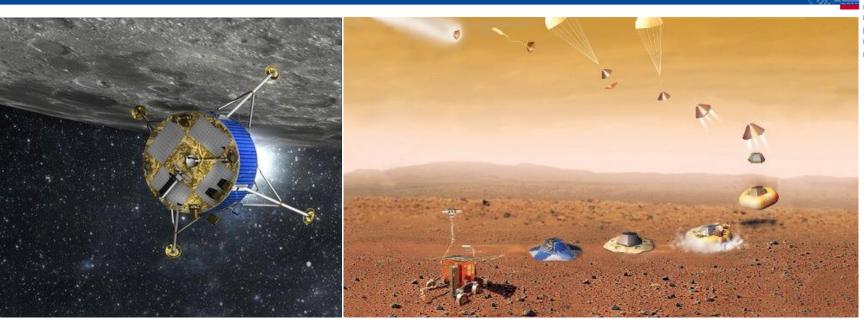
... to a Domain Model Domain Predictive Control

Exemplary Simulation

Discussion

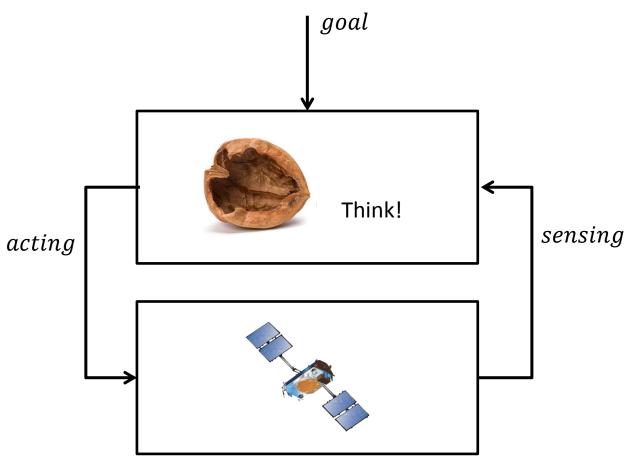
Outlook

Motivation



Lunar Lander ExoMars

Motivation



Motivation

Key Aspects

Hybrid Systems

Continuous Dynamics Boolean State Variables

Autonomy

Reduction of Computational Effort Quick Decision Generation

Exogenous Events

Obstacles Reactivity

Outline

Motivation

From Continuous Dynamics...

... to a Domain Model Domain Predictive Control

Discussion

Exemplary Simulations

Outlook

From a Hybrid System...

$$\dot{\boldsymbol{x}}_n(t) = A(\boldsymbol{x}_l) \, \boldsymbol{x}_n(t) + B(\boldsymbol{x}_l) \, \boldsymbol{u}(t)$$

Planning Task

Find u(t), $t \in [t_a, t_b]$ such that:

$$\mathbf{x}_n(t_a) \longrightarrow \mathbf{x}_n(t_b)$$

Initial State

Desired State

...to a Planning Action...

solve the differential equations

 $oldsymbol{1}$. Anticipate some input fragments $oldsymbol{u}_i(t), t \in [0, \delta_i]$

3. Generate planning action

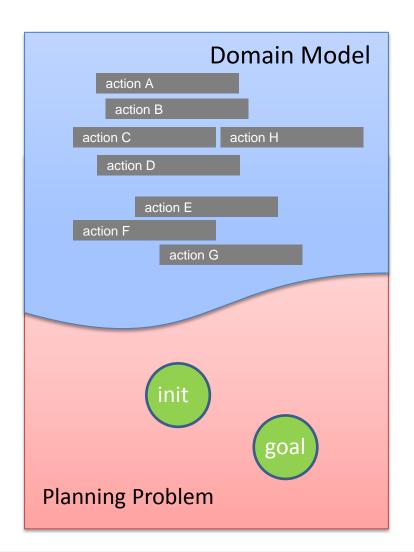
2. Solve the differential equations (preprocessing step)

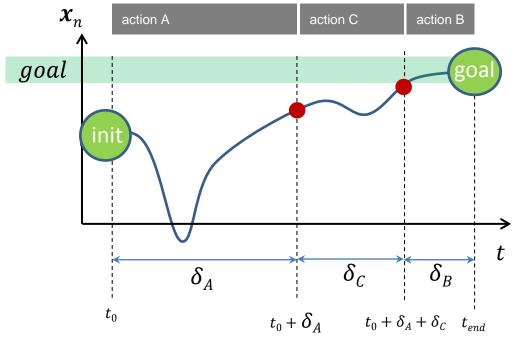
$$\Phi = e^{A(\mathbf{x}_l) \, \delta_i}$$

$$\Psi = \int_{t_0}^{t_0 + \delta_i} e^{A(\mathbf{x}_l) \cdot (t_0 + \delta_i - \tau)} \, B(\mathbf{x}_l) \, \mathbf{u}(\tau) \, d\tau$$

$$E_{\dashv}: \quad \mathbf{x}_n(t_0 + \delta_i) = \Phi_i \, \mathbf{x}_n(t_0) + \Psi_i$$

... to the Domain Model





Outline

Motivation

From Continuous Dynamics...

.. to a Domain Model **Domain Predictive Control**

Discussion

Exemplary Simulations

Outlook

Remember the Key Aspects

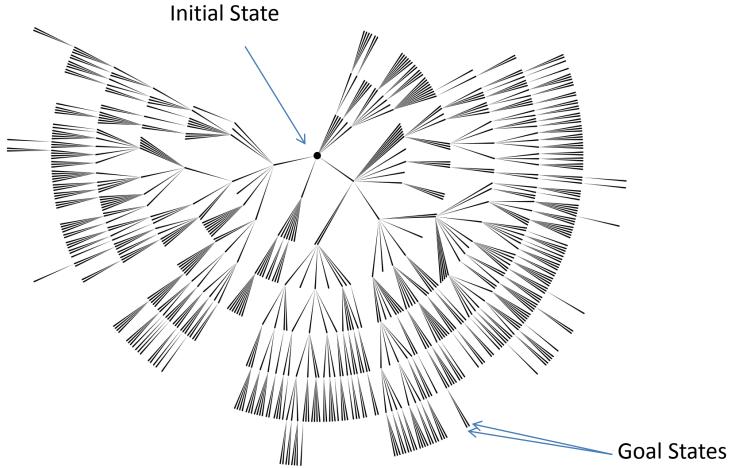
Key Aspects

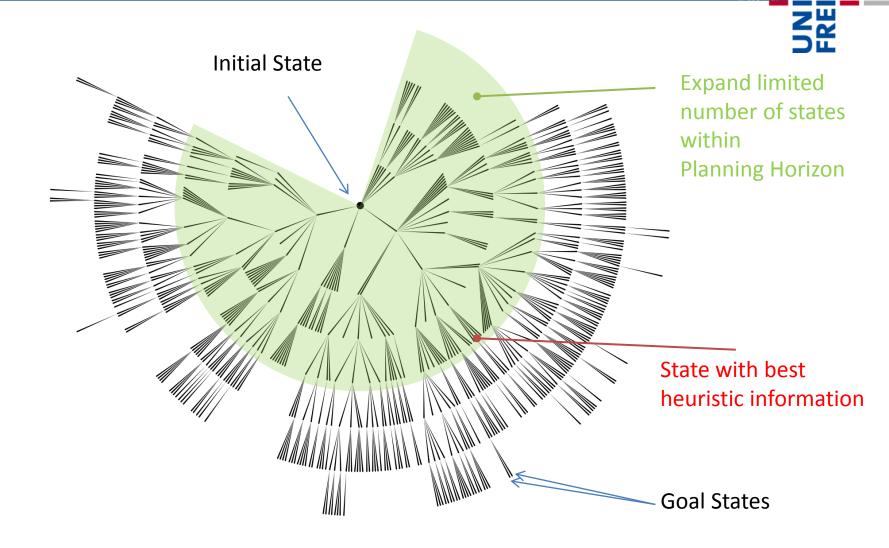
Hybrid Systems
Continuous Dynamics
Boolean State Variables

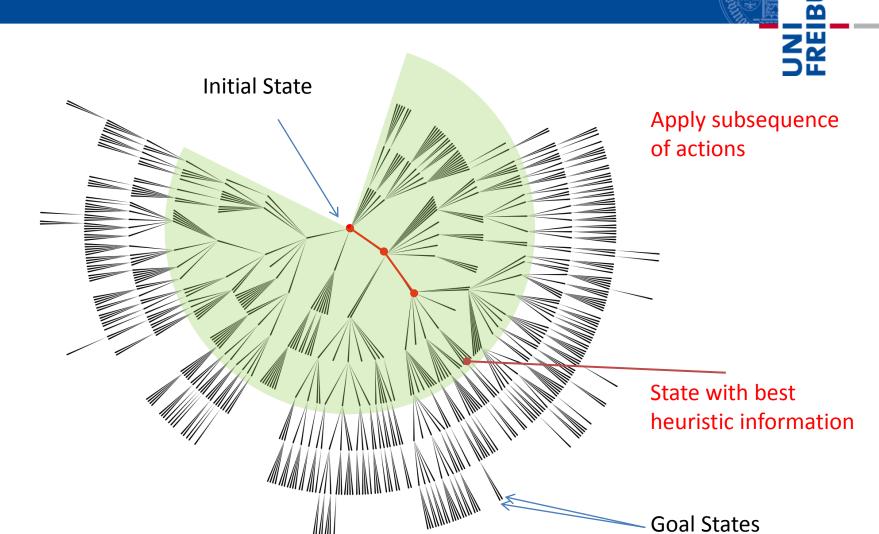
Autonomy

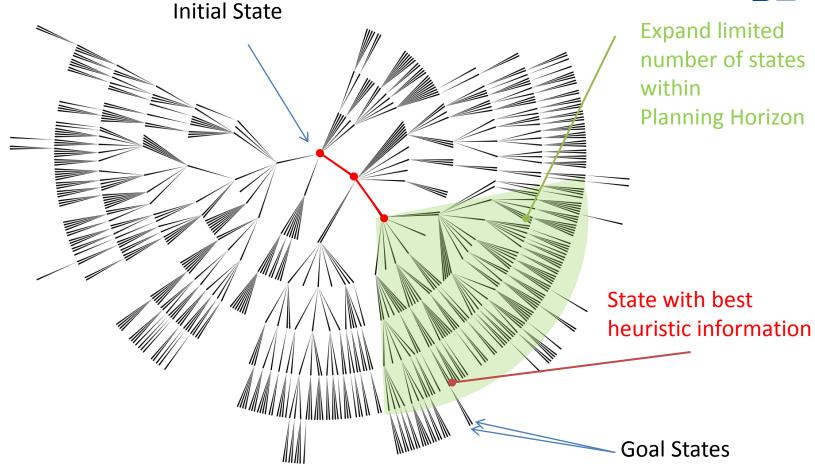
Reduction of Computational Effort Quick Decision Generation

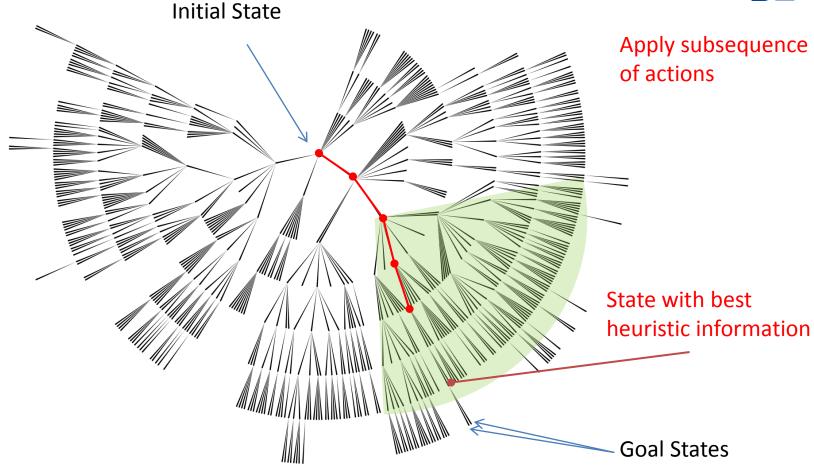
Exogenous EventsObstacles Reactivity

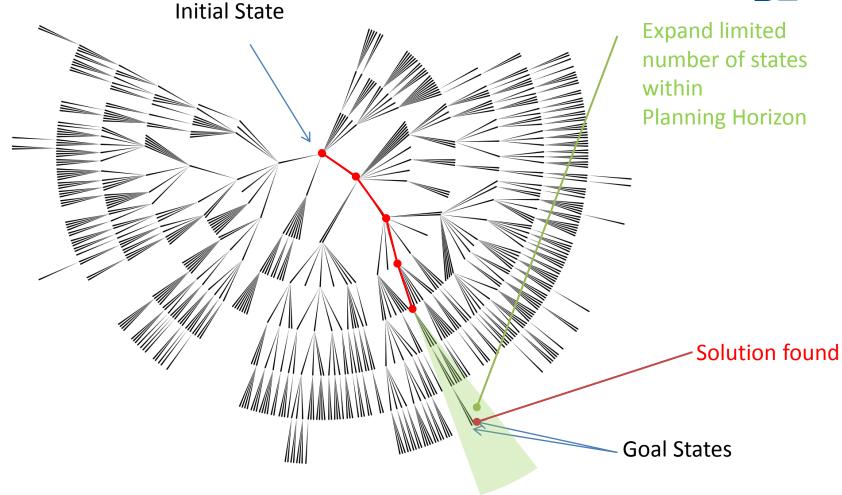












Key Aspects

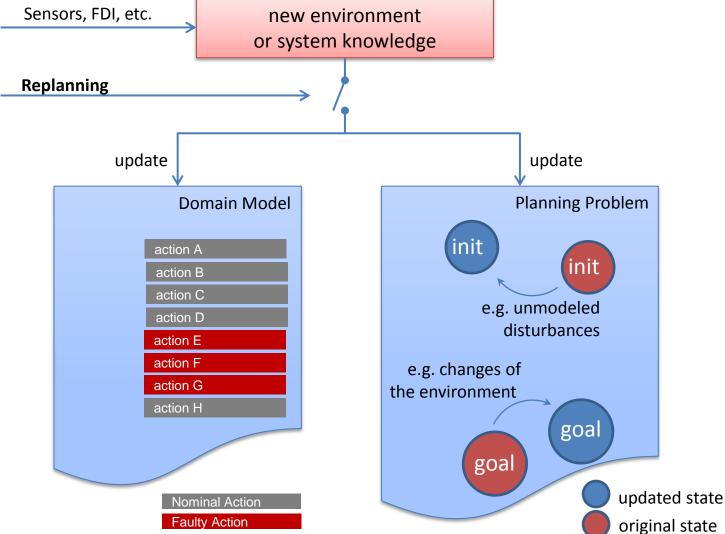
Continuous Dynamics
Boolean State Variables

Autonomy

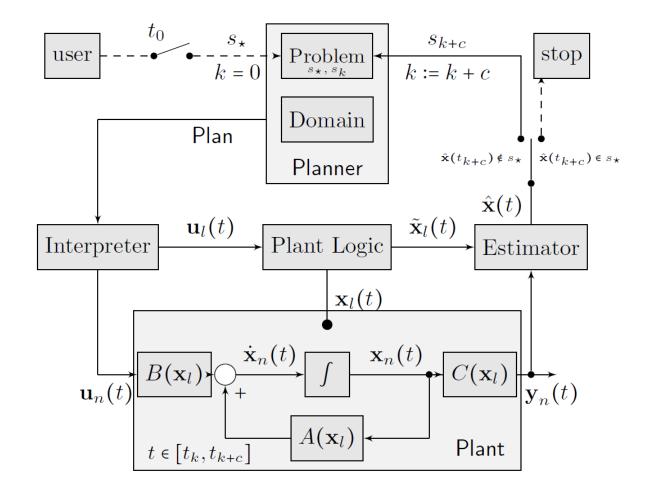
Reduction of Computational Effort Quick Decision Generation

Exogenous Events

Obstacles Reactivity



Domain Predictive Control Arcitecture



Outline

Exemplary Simulations

Discussion

Outlook

Exemplary Simulation

100	
	C
	Z
	34
	58

action 0	$\alpha_y = 0^{\circ}$	$\alpha_x = 0^{\circ}$
action 1	$\alpha_y = 0^{\circ}$	$\alpha_x = 2.92^{\circ}$
action 2	$\alpha_y = 0^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 3	$\alpha_y = 2.92^{\circ}$	$\alpha_x = 0^{\circ}$
action 4	$\alpha_y = -2.92^{\circ}$	$\alpha_x = 0^{\circ}$
action 5	$\alpha_y = 2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 6	$\alpha_y = 2,92^{\circ}$	$\alpha_x = 2.92^{\circ}$
action 7	$\alpha_y = 2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$
action 8	$\alpha_y = -2.92^{\circ}$	$\alpha_x = -2.92^{\circ}$

$$\delta_i = 0.5 \text{ s}, \forall i \in [0.8]$$

$$p_{\vdash}$$
 =

$$[(x > 8) \lor (x < 2) \lor (y > 3) \lor (y < 2)] \land$$

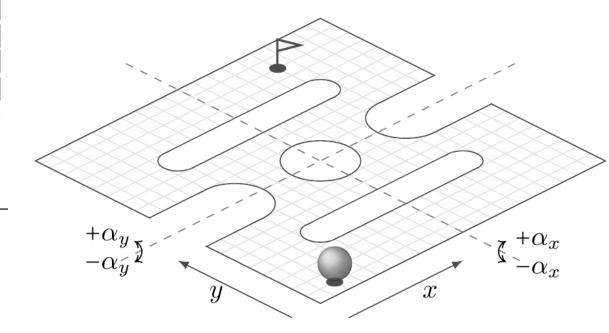
$$[(x > 6) \lor (x < 4) \lor (y > 6) \lor (y < 4)] \land$$

$$[(x > 4) \lor (x < 0) \lor (y > 6) \lor (y < 4)] \land$$

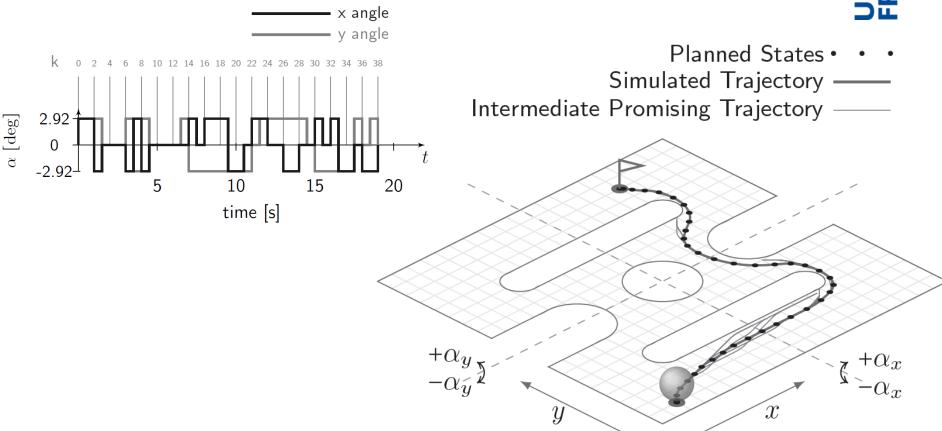
$$[(x > 10) \lor (x < 6) \lor (y > 6) \lor (y < 4)] \land$$

$$[(x > 8) \lor (x < 2) \lor (y > 8) \lor (y < 7)] \land$$

$$[(x > 0) \land (x < 10) \land (y > 0) \land (y < 10)]$$



Exemplary Simulation



Outline

Motivation

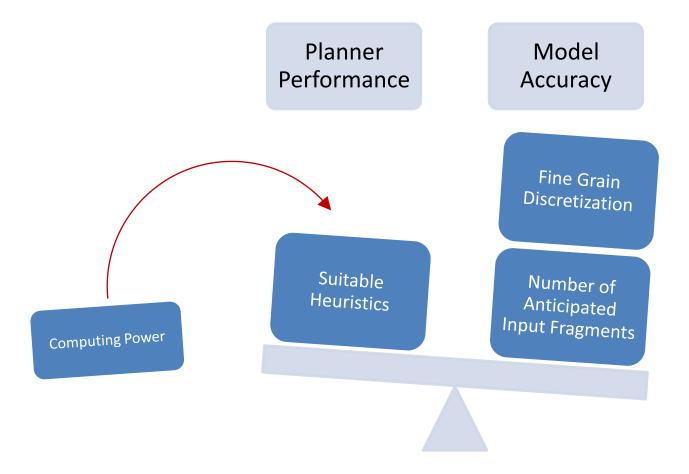
From Continuous Dynamics...

... to a Domain Mode

Discussion

Outlook

Discussion



Summary and Conclusion

Pros	Cons
general problem formulation	anticipated input fragments
changing system configurations	discrete system dynamics
restricted state space	computational effort
failure tolerance	currently: linear systems only

Outline

Motivation

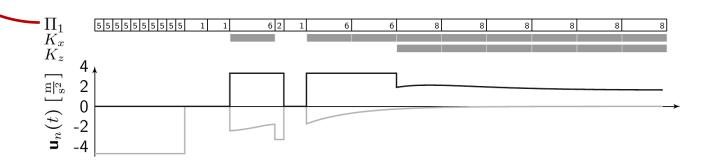
From Continuous Dynamics...

... to a Domain Mode

Outlook

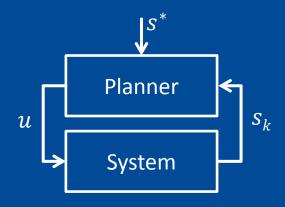
Outlook





REIBURG

Planning Based Framework for Controlling Hybrid Systems



Albert-Ludwigs-Universität Freiburg

Johannes Löhr loehr@informatik.uni-freiburg.de

Heuristic

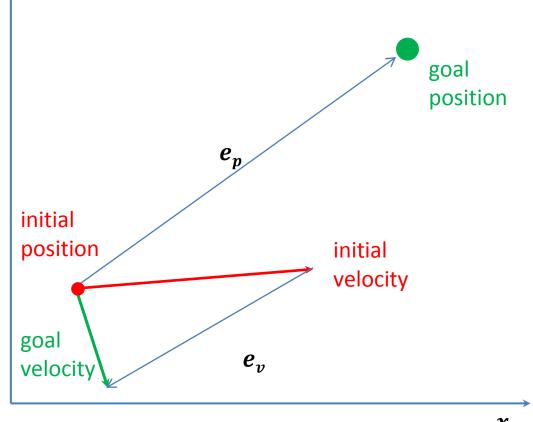
Error State Heuristic

$$\boldsymbol{x}_1$$

$$h = \|\boldsymbol{e}_{\boldsymbol{p}} + \boldsymbol{e}_{\boldsymbol{v}}\|_1$$

Open Heuristic Issues:

- Weighting of numerical variables
- 2. Weighting between numerical and logical variables



Stable Dynamics

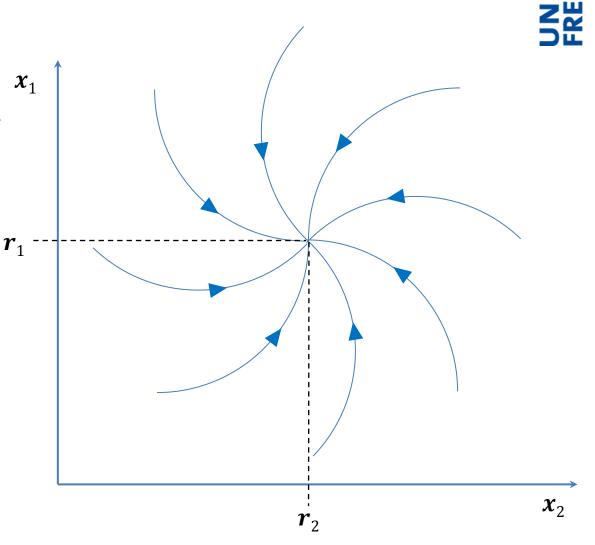
Homogeneous Solution of Stable Dynamics

$$\dot{\boldsymbol{x}}_n(t) = A_{cl} \boldsymbol{x}_n(t) + B \boldsymbol{u}_n(t)$$

 A_{cl} state feedback controlled $u_n(t) = -K x_n(t)$

closed loop dynamics $A_{cl} = A - BK$

choose controller K such that Re(eig|A - BK|) < 0



Stable Dynamics

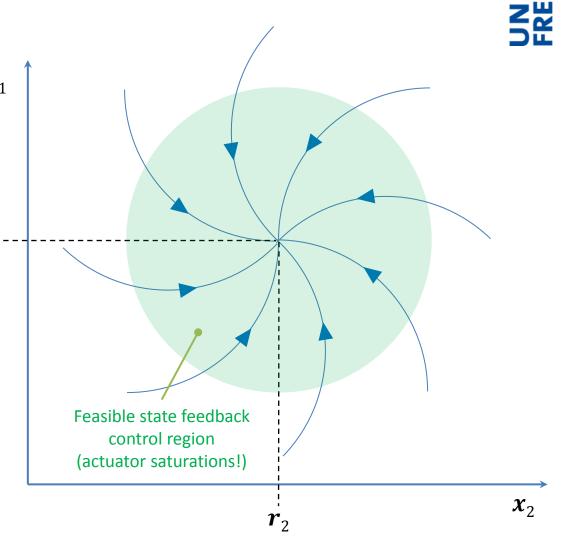
Homogeneous Solution of Stable Dynamics

$$\dot{\boldsymbol{x}}_n(t) = A_{cl} \boldsymbol{x}_n(t) + B \boldsymbol{u}_n(t)$$

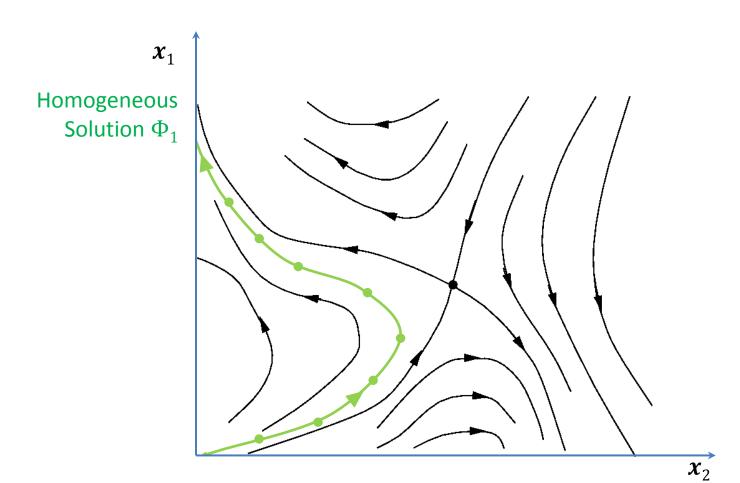
 A_{cl} state feedback controlled $u_n(t) = -K x_n(t)$

closed loop dynamics $A_{cl} = A - BK$

choose controller K such that Re(eig|A - BK|) < 0



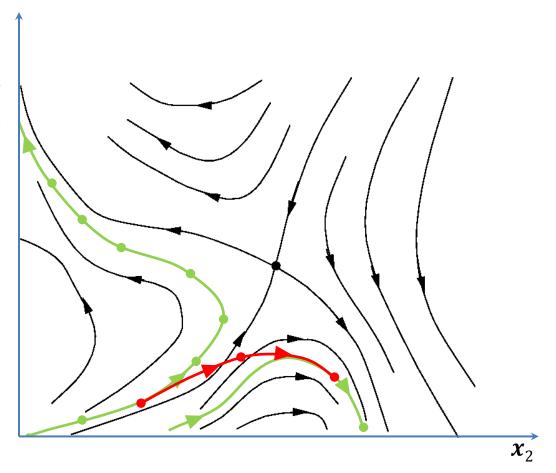
 \boldsymbol{r}_1



 \boldsymbol{x}_1

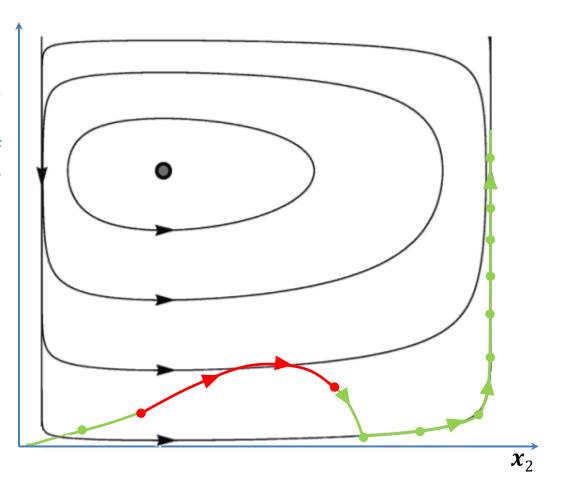
Homogeneous Solution Φ_1

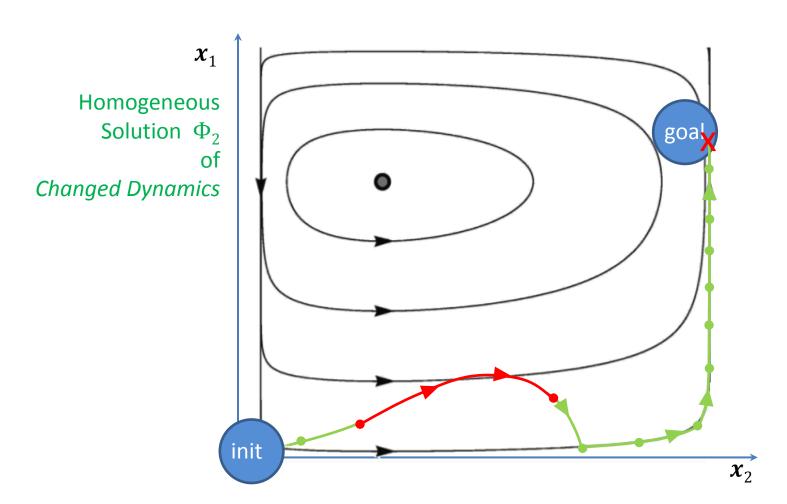
+ Inhomogeneous Solution Ψ



 \boldsymbol{x}_1

Homogeneous Solution Φ_2 of Changed Dynamics





The Domain Model A Piecewise Affine System?

action A

action B

action C

action D

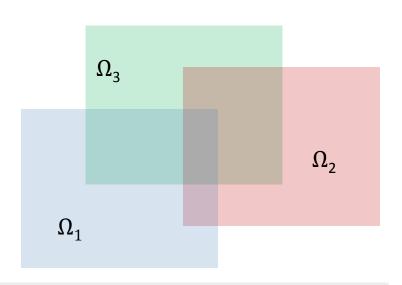
$$\Omega_i \cap \Omega_j = \mathcal{X}, \quad \forall i \neq j$$

 \mathcal{X} : is not necessarily empty, we explicitly allow for overlaps of Ω_i Depicts the state space we can

choose between actions

$$\mathbf{x}_{n}(k+1) = \Phi_{i} \mathbf{x}_{n}(k) + \Psi_{i} \mathbf{x}_{n} \in \Omega_{i}$$

$$\Omega_{i} \cap \Omega_{i} = \emptyset, \quad \forall i \neq j$$



Time Discretization

