
Incremental Lower Bounds for
Additive Cost Planning Problems

P@trik Haslum

ICAPS 2012
NICTA Funding and Supporting Members and Partners

The Plan Quality Gap

0 5 10 15 20 25 30

0
2
0
0

4
0
0

6
0
0

8
0
0

Problems

P
la

n
 c

o
s
t

**

Elevators
domain,
IPC 2008

2/26

The Plan Quality Gap

0 5 10 15 20 25 30

5
0
0
0
0
0

1
0
0
0
0
0
0

2
0
0
0
0
0
0

3
0
0
0
0
0
0

Problems

P
la

n
 c

o
s
t

*

*

**

*

*

*

*
*

*

*
*
*
*

*

ParcPrinter
domain,
IPC 2008

3/26

The Plan Quality Gap

0 50 100 150

0
2
0

4
0

6
0

8
0

Problem (sorted)

E
d

it
 d

is
ta

n
c
e

Genome
Edit
Distance

4/26

The Plan Quality Gap

Optimal planners do not scale.
Non-optimal planners fall far short of achievable
plan quality.
Lack of sufficiently strong lower bounds.

5/26

Admissible Heuristics & Search

If h is admissible, h(s0) is a lower bound.
Strengthening via search (look-ahead):

s0

· · · · · · · · · · · ·· · ·· · · · · ·F = { }

fmin = mins∈F (cost(s0, s) + h(s)) is also a lower
bound.
Many admissible heuristics for plan cost.

6/26

Strengthening via De-Relaxation

A general idea...
1. Solve a relaxation of the problem, optimally.
2. If the relaxed solution is also a real solution, it

is optimal.
3. Else, use hints from the failure of the relaxed

solution to strengthen the relaxation, and
repeat from 1.

...with many instances:
Incremental generation of valid cuts in MIP.
Counterexample-guided abtraction refinement.
Here: Delete relaxation of planning problem.

7/26

The Delete Relaxation

The delete relaxation, P+, of a planning problem
P is exactly like P except del(a) = ∅ for each a.
Relaxation: any plan for P is also valid for P+.

Actions (and goal) require atoms to be true.
h+(s) = h?(P+, s) ≤ h?(P, s).

Cost-optimal delete relaxed planning is “only”
NP-hard (and often feasible in practice).
No negative interactions in P+:

Combining plans for separate goals always
yields a valid plan for their conjunction.
This is not true in P.

8/26

The Delete Relaxation (example)

B

A

C

(on-table A)
(on-table B)
(on-table C)
(on A B)
(on A C)
(on B A)
(on B C)
(on C A)
(on C B)
(clear A)
(clear B)
(clear C)

(MoveToT+ A B)
pre: (on A B),

(clear A)
add: (on-table A),

(clear B)

A

A

B C

(on-table A)
(on-table B)
(on-table C)
(on A B)
(on A C)
(on B A)
(on B C)
(on C A)
(on C B)
(clear A)
(clear B)
(clear C)

(MoveFromT+ B C)
pre: (on-table B),

(clear B), (clear C)
add: (on B C)

A

B

A

A C

B

(on-table A)
(on-table B)
(on-table C)
(on A B)
(on A C)
(on B A)
(on B C)
(on C A)
(on C B)
(clear A)
(clear B)
(clear C)

Goal: (on A B),
(on B C)

9/26

Strengthening the Relaxation

The PC construction:
Represent c = {p1, . . . ,pk} with a new atom πc
Modify problem so πc is true iff c.

Theorem: h?(PC) = h?(P).
Theorem: Let S be an optimal plan for P+. If S
is not valid for P, there is an (efficiently findable)
C = {c1, . . . , cn} such that S is not valid for
(PC)+.
Corollary: h+(PC) = h?(P) for large enough C.

10/26

The PC Construction

Let C be a set of sets of atoms (conjunctions).
Atoms in PC: atoms in P and {πc | c ∈ C}.
Notation:

xC = x ∪ {πc | c ⊆ x}.
C t(a) = {c ∈ C | c ⊆ (add(a) ∪ pre(a))− del(a)};
C f (a) = {c ∈ C | c ∩ del(a) 6= ∅};
Cp(a) = {c ∈ C − C t(a) | c ∩ add(a) 6= ∅, c ∩ del(a) = ∅};
Cn(a) = the rest.

Initial state: sC
0

Goal: GC

11/26

The PC Construction (cont’d)

Actions in PC: αa,X with

pre(αa,X) =

(
pre(a) ∪

⋃
c∈X

(c − add(a))

)C

add(αa,X) =add(a) ∪ {πc | c ∈ C t(a) ∪ X}
del(αa,X) =del(a) ∪ {πc | c ∈ C f (a)}

cost(αa,X) = cost(a)

for each action a and each X ⊆ Cp(a)
(downward closed).
|PC| can be exponential in |C|.

12/26

The PC Construction (example)

c1 = {(on A B), (on B C)}, c2 = {(clear B), (on B C)}
C = {c1, c2}
α(MoveFromT A B),∅ ≡ (MoveFromT A B) + del: πc2

α(MoveFromT A B),{c1}:
pre: (on-table A), (clear A), (clear B),

(on B C), πc2

add: (on A B), πc1

del: (on-table A), (clear B), πc2

13/26

Conflict Extraction: What C?

S is a valid plan for P+.
RPDG(S):

Graph over {na |a ∈ S} ∪ {nG};
na

l−→ n′ iff l = pre(n′)− R+(S − {a}) 6= ∅.
Transitively reduced.

Example:

(MoveToT A B) (MoveFromT B C) G
(clear B) (on B C)

14/26

Conflict Extraction: What C?

S is not a valid plan for P:
Some p ∈ pre(nf) fails to hold for some nf .
p must have been deleted by some action
(associated with nd) before nf .

Example:

(MoveToT A B)

nd

(MoveFromT B C) G

nf
(clear B) (on B C)

¬(on A B) (on A B)

15/26

Conflict Extraction: What C?

A simple dependency path from n to n′ in
RPDG(S) is a path with one (arbitrarily chosen)
atom p from each edge label.
A dependency closure D from n to n′ in
RPDG(S) is a minimal (w.r.t. ⊂) union of paths
such that:

D contains a simple dependency path from n
to n′.
For all na

q−→∈ D and b ∈ S such that b 6= a
and q ∈ add(b), D contains a simple
dependency path from n to nb.

16/26

Conflict Extraction: What C?

Case 1: Path in RPDG(S) from nd to nf .
Let D be a dependency closure from nd to nf .
C = {{p,q} |q labels an edge in D}.

Case 2: No path in RPDG(S) from nd to nf .
Let nc be the first-in-S common descendant of
nd and nf .
Let Dnd , Dnf be dependency closures from nd
to nc and nf to nc.
C = {{q,q′} |q labels an edge in Dnd ,

q′ = p or q′ labels an edge in Dnf}.

17/26

Case 1:
nd n1q1

· · ·
q2

nm−1qm−1

nf

qm

p

Case 2:
nd n1q1

· · ·
q2

nm−1qm−1

nfp
n′1q′1

· · ·
q′2

n′l−1

nc

qm

q′l

18/26

Why It Works

Case 1:
nd n1q1

· · ·
q2

nm−1qm−1

nf

qm

p

¬π{p,q1} ¬π{p,q2} ¬π{p,qm−1} ¬π{p,qm}

No representative of ad adds π{p,q1} because
p ∈ del(ad).
Any representative of ai that adds π{p,qi}
requires π{p,qi−1}.
π{p,qm} ∈ pre(nf) cannot hold.

19/26

h++

1. Compute an optimal plan S for P+.
2. If S is valid for P, done (optimal plan).
3. If S is not valid for P, find C as above, set

P := PC and repeat from 1.

How to compute S?
Iterative landmark-based algorithm.

Advantage: Anytime lower bound on h+.
Reduction to weighted MaxSAT.
Specialisations of (heuristic) search.

20/26

Results

0 5 10 15 20 25 30

2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

Problems

P
la

n
 c

o
s
t

xx

Elevators
domain,
IPC 2008

21/26

Results

0 5 10 15 20 25 30

5
0
0
0
0
0

1
0
0
0
0
0
0

2
0
0
0
0
0
0

3
0
0
0
0
0
0

Problems

P
la

n
 c

o
s
t

x

x

xx

x

x

x

x
x

x

x

x
x

x

xxx

x

+

+

++

+

+
+

+

+

+

+

+
+

+

+++

+

+
+

+

+++

+

+

+ ParcPrinter
domain,
IPC 2008

22/26

Results

0 5 10 15 20 25 30 35

0
1
0

2
0

3
0

4
0

5
0

6
0

Problems

P
la

n
 c

o
s
t

xxx
xx

x
x

x

x

x
x

x x

+++
++

+
+

+

+

+

+

+

+

+
+

+
++ +

+
++

+

+

+
+

+

+

+ + Power
Network
Alarm
Processing
domain

23/26

Results

0 5 10 15 20 25 30

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Problems

P
la

n
 c

o
s
t

xxxx
x

++++

Pathways
Domain,
IPC 2006

24/26

Results

0 1 3 5 7 9 11 14 17 20 24 28 39 215

h++ < A*

h++ = A*

h++ > A*

h++ Iterations (<=)

C
o
u
n
t

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

25/26

Conclusions

Finding good plans and proving good lower
bounds are different problems – and should be
attacked with different methods.
The gap remains.

Current & future work: Finding better plans.
Apply iterative strengthening to abstractions.

Planning can learn from other areas of
optimisation.

26/26

