Incremental Lower Bounds for Additive Cost Planning Problems

P@trik Haslum

ICAPS 2012

NICTA Funding and Supporting Members and Partners

Elevators domain, IPC 2008

ParcPrinter domain, IPC 2008

Genome Edit Distance

- Optimal planners do not scale.
- Non-optimal planners fall far short of achievable plan quality.
- Lack of sufficiently strong lower bounds.

Admissible Heuristics & Search

- If h is **admissible**, $h(s_0)$ is a lower bound.
- Strengthening via search (look-ahead):

- $f_{\min} = \min_{s \in F} (\text{cost}(s_0, s) + h(s))$ is also a lower bound.
- Many admissible heuristics for plan cost.

Strengthening via De-Relaxation

- A general idea...
 - 1. Solve a relaxation of the problem, optimally.
- 2. If the relaxed solution is also a real solution, it is optimal.
- Else, use hints from the failure of the relaxed solution to strengthen the relaxation, and repeat from 1.
- ...with many instances:
 - Incremental generation of valid cuts in MIP.
 - Counterexample-guided abtraction refinement.
 - Here: Delete relaxation of planning problem.

The Delete Relaxation

- The delete relaxation, P^+ , of a planning problem P is exactly like P except $del(a) = \emptyset$ for each a.
- Relaxation: any plan for P is also valid for P^+ .
 - Actions (and goal) require atoms to be true.
 - $h^+(s) = h^*(P^+, s) \le h^*(P, s)$.
- Cost-optimal delete relaxed planning is "only" NP-hard (and often feasible in practice).
- No negative interactions in P⁺:
 - Combining plans for separate goals always yields a valid plan for their conjunction.
 - This is not true in P.

The Delete Relaxation (example)

A B C	
(on-table A) (on-table B) (on-table C) (on A B) (on A C) (on B A) (on B C) (on C A) (on C B) (clear A) (clear B) (clear C)	
(MoveFrom) pre: (on-tab (clear I add: (on B (ole B), B), (clear C)

A B C	
(on-table A) (on-table B) (on-table C) (on A B) (on A C) (on B A) (on B C) (on C A) (on C B) (clear A) (clear B) (clear C) Goal: (on A B)	, .

Strengthening the Relaxation

- The P^C construction:
 - Represent $c = \{p_1, \dots, p_k\}$ with a new atom π_c
 - Modify problem so π_c is true iff c.
- Theorem: $h^*(P^C) = h^*(P)$.
- **Theorem**: Let S be an optimal plan for P^+ . If S is not valid for P, there is an (efficiently findable) $C = \{c_1, \ldots, c_n\}$ such that S is not valid for $(P^C)^+$.
- Corollary: $h^+(P^C) = h^*(P)$ for large enough C.

The P^C Construction

- Let C be a set of sets of atoms (conjunctions).
- Atoms in P^C : atoms in P and $\{\pi_c \mid c \in C\}$.
- Notation:

```
x^C = x \cup \{\pi_c \mid c \subseteq x\}.
C^t(a) = \{c \in C \mid c \subseteq (\operatorname{add}(a) \cup \operatorname{pre}(a)) - \operatorname{del}(a)\};
C^f(a) = \{c \in C \mid c \cap \operatorname{del}(a) \neq \emptyset\};
C^p(a) = \{c \in C - C^t(a) \mid c \cap \operatorname{add}(a) \neq \emptyset, c \cap \operatorname{del}(a) = \emptyset\};
C^n(a) = \text{the rest.}
```

- Initial state: s_0^C
- Goal: G^C

The P^C Construction (cont'd)

• Actions in P^C : $\alpha_{a,X}$ with

$$\operatorname{pre}(lpha_{a,X}) = \left(\operatorname{pre}(a) \cup \bigcup_{c \in X} (c - \operatorname{add}(a))\right)^C$$
 $\operatorname{add}(lpha_{a,X}) = \operatorname{add}(a) \cup \{\pi_c \mid c \in C^t(a) \cup X\}$
 $\operatorname{del}(lpha_{a,X}) = \operatorname{del}(a) \cup \{\pi_c \mid c \in C^t(a)\}$
 $\operatorname{cost}(lpha_{a,X}) = \operatorname{cost}(a)$

for each action a and each $X \subseteq C^p(a)$ (downward closed).

• $|P^C|$ can be exponential in |C|.

The P^C Construction (example)

- $c_1 = \{ (\text{on A B}), (\text{on B C}) \}, c_2 = \{ (\text{clear B}), (\text{on B C}) \}$
- $C = \{c_1, c_2\}$
- $\alpha_{(MoveFromT\ A\ B),\emptyset} \equiv (MoveFromT\ A\ B) + del: \pi_{c_2}$
- α (MoveFromT A B), $\{c_1\}$:
 - pre: (on-table A), (clear A), (clear B),
 (on B C), π_{c2}
 - add: (on A B), π_{c_1}
 - del: (on-table A), (clear B), π_c

- S is a valid plan for P^+ .
- RPDG(*S*):
 - Graph over $\{n_a \mid a \in S\} \cup \{n_G\};$
 - $n_a \stackrel{l}{\longrightarrow} n'$ iff $I = \operatorname{pre}(n') R^+(S \{a\}) \neq \emptyset$.
 - Transitively reduced.
- Example:

- S is not a valid plan for P:
 - Some $p \in \text{pre}(n_f)$ fails to hold for some n_f .
 - p must have been deleted by some action (associated with n_d) before n_f.
- Example:

- A simple dependency path from n to n' in RPDG(S) is a path with one (arbitrarily chosen) atom p from each edge label.
- A dependency closure D from n to n' in RPDG(S) is a minimal (w.r.t. ⊂) union of paths such that:
 - D contains a simple dependency path from n to n'.
 - For all $n_a \xrightarrow{q} \in D$ and $b \in S$ such that $b \neq a$ and $q \in add(b)$, D contains a simple dependency path from n to n_b .

- Case 1: Path in RPDG(S) from n_d to n_f .
 - Let *D* be a dependency closure from n_d to n_f .
 - $C = \{ \{p, q\} \mid q \text{ labels an edge in } D \}.$
- Case 2: No path in RPDG(S) from n_d to n_f.
 - Let n_c be the first-in-S common descendant of n_d and n_f.
 - Let D_{n_d} , D_{n_f} be dependency closures from n_d to n_c and n_f to n_c .
 - $C = \{ \{q, q'\} \mid q \text{ labels an edge in } D_{n_d},$ $q' = p \text{ or } q' \text{ labels an edge in } D_{n_f} \}.$

Sase 1:
$$n_d \xrightarrow{q_1} n_1 \xrightarrow{q_2} \cdots \xrightarrow{q_{m-1}} n_{m-1} \xrightarrow{q_m} n_f$$

Case 2:
$$\begin{array}{c}
n_d \xrightarrow{q_1} n_1 \xrightarrow{q_2} \cdots \xrightarrow{q_{m-1}} n_{m-1} & q_m \\
\longrightarrow & n_f \xrightarrow{q'_1} n'_1 \xrightarrow{q'_2} \cdots & m'_{l-1} & q'_l
\end{array}$$

Why It Works

Case 1:

$$n_d \xrightarrow{q_1} n_1 \xrightarrow{q_2} \cdots \xrightarrow{q_{m-1}} n_{m-1} \xrightarrow{q_m} n_{f}$$

$$\neg \pi_{\{p,q_1\}} \quad \neg \pi_{\{p,q_2\}} \quad \neg \pi_{\{p,q_{m-1}\}} \qquad \neg \pi_{\{p,q_m\}} \quad n_f$$

- No representative of a_d adds $\pi_{\{p,q_1\}}$ because $p \in del(a_d)$.
- Any representative of a_i that adds $\pi_{\{p,q_i\}}$ requires $\pi_{\{p,q_{i-1}\}}$.
- $\pi_{\{p,q_m\}} \in \operatorname{pre}(n_f)$ cannot hold.

h⁺⁺

- 1. Compute an optimal plan S for P^+ .
- 2. If *S* is valid for *P*, done (optimal plan).
- 3. If S is not valid for P, find C as above, set $P := P^C$ and repeat from 1.
 - How to compute S?
 - Iterative landmark-based algorithm.
 - Advantage: Anytime lower bound on h⁺.
 - Reduction to weighted MaxSAT.
 - Specialisations of (heuristic) search.

Elevators domain, IPC 2008

ParcPrinter domain, IPC 2008

Power Network Alarm Processing domain

Pathways Domain, IPC 2006

Conclusions

- Finding good plans and proving good lower bounds are different problems – and should be attacked with different methods.
- The gap remains.
 - Current & future work: Finding better plans.
 - Apply iterative strengthening to abstractions.
- Planning can learn from other areas of optimisation.