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Motion Planning

@ Find a continuous, collision-free motion
trajectory from an initial pose to a goal pose

@ An important problem in many robotics, virtual
prototyping, gaming, CAD/CAM, etc.




Motion Planning in Dynamic Environments

9 |ncreasing use of robots in human-like environments &
real-world scenarios

@ Hard to make assumptions about the motion of
obstacles

“ Need real-time approaches that can adapt to the
environment

“ Need to compute smooth paths and satisfy (dynamics)
constraints



Configuration Space

@ Motion planning reduces to path computation in
configuration spaces (C-space)

@ For a robot with k DOFs, C-space is a

K-dimensional space

Waist rotation




Configuration Spaces

Find a collision-free path from an initial point to a
goal point, which lies in the same connected
component in C-space




Motion Planning Algorithms

@ Random sampling-based @ Optimization-based
algorithms algorithms




Motion Planning: Prior work

® Random sampling-based algorithms
© PRM based methods [Kavraki et al. 1996]
“ RRT based methods [Kuffner and LaValle 2000]
© Widely used in many real applications
“ Involves preprocessing or limited dynamic scenes



Motion Planning: Prior work

@ Optimization-based Planning Algorithms

@ Based on earlier techniques based on potential field
methods

“ Can handle dynamic obstacles (in low dimensions)
@ Generate smooth trajectories



Optimization-Based Planning: Recent work
@ Gradient Optimization [Ratliff et al. 2009]

9 Discretize the trajectory to waypoints

“ Compute costs of each waypoint

“ Use gradient to move waypoints to minimize total cost
¥ Repeat iteration until find a solution

@ Stochastic Optimization[Kalakrishnan et al. 2011]

“ Use stochastic gradient
“ Any value can be a cost factor
“ Torque, orientation constraints, etc.



Motion Planning in Dynamic Environments

“ Velocity obstacles
@ [Fiorini and Shiller 1998] ®°  vo.
@ [Wilkie, van den Berg, and Manocha 2009] 4

“ |nevitable collision states ey,
“ [Petti and Fraichard 2005]

© Real-time replanning
9 [Bekris and Kavraki 2007]
“ [Hauser 2011]



Optimization-based Planning Algorithm

@ Objective function for optimization
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9 c¢(q;) : Cost for each waypoint

“ Collision cost for static obstacles : computed by the
distance field

9 HAQH Cost for the smoothness of trajectory
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Dynamic Environments: Issues

@ Previous algorithms assume static environments

“ Distance fields for collision avoidance
@ Uses precomputation methods
9 Lookup is fast, but dynamic updates are slow

“ Planning before execution
“ Can lead to long delays in movement
“ Not safe in uncertain dynamic environments



Optimization-based Motion Planning

@ Pros

© Smooth trajectory computation
© Other constraints (dynamics) can be handled

@ Cons
“ Environments — Assumes static environment

@ Performance — Slow!

© Quality — Local minima may prevent planner to find
a collision-free or good solution



Our Approach

@ Interleave planning with execution
© Handle dynamic environments
“ A general scheme for collision avoidance and
smooth path computation
@ Improves Safety

@ Parallelize trajectory optimization
“ Reduces cost computation time
@ Improves the search: larger coverage of C-space
9@ Better Performance & Quality



Motion Planning in Dynamic Environments

@ Future motions of obstacles are unknown
@ Use local estimates based on recent position of
the obstacles

@ Planner cannot estimate exact motions
@ Recent position data from sensor has noise
© Obstacles may change their trajectory during planning
computation



Real-time Replanning
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@ Interleave planning with execution
“ Compute partial plan for the next execution step
“ Improve the trajectory while execution
@ Use the latest information about the dynamic
environment



Real-time Replanning

@ Overall Pipeline: Dynamic Environments

Scheduling

Module

Monitor

0

Finish \ Robot
Controller




Handling Dynamic Obstacles

@ Modified objective function
. 1
min } [Cs(qﬂ') + ca(qi) + §||AQ||2

@ ¢5(di) ; Costs for static obstacles use precomputed
distance fields

@ cq(q;) : Costs for dynamic obstacles use the collision
detection between the robot and obstacles



Dynamic Obstacles: Collision Checking

e Compute motion bounds on the local trajectories of
dynamic obstacles

 Use bounding volumes and hierarchies for fast
collision checking

* Hierarchies are computed/updated incrementally



Handling Dynamic Obstacles

) Use conservative bounds

9 The predicted position of

obstacles may not be accurate

@ Use conservative bounds on
obstacles for collision checking
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Parallel Trajectory Optimization

@ Limitations of optimization-based algorithms
@ Performance — slow
© Quality — Local optima may prevent planner to find a
collision-free solution

@ In real-time replanning, the performance is critical
“ Limited time to perform planning computations



Parallel Trajectory Optimization

@ Parallel optimization of multiple trajectories

@ Use Multiple threads

@ Start from different initial trajectories
9 Trajectories are generated by quasi-random sampling

“ Exploits the multiple CPU cores (multi-cores) or GPU-
based cores (many-cores)



Multi-Core CPUs
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NVIDIA & AMD GPU Compute Accelerators

AMD Radeon 7970 NVIDIA GTX 680

3.79 Single Tflops 3.09 Single Tflops
947 Double Gflops 1.1 Double Tflops
2048 Stream Cores 1536 CUDA Cores

Commodity Tera-Flop Processor (peak performance)




Parallel Trajectory Optimization

@ Parallelization improves the performance
@ Reduce the iteration time of the single optimization

“ Parallel optimization of multiple trajectories reduces t
he time to compute the first collision-free solution



Parallel Trajectory Optimization

Performance improvement with number of cores
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Parallel Trajectory Optimization

@ Parallelization also improves the success rate

“ Each local minima is constrained to a subset of
C-space

@ With more trajectories, the algorithm can explore a
larger subset of C-space
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Parallel Trajectory Optimization

@ Acceleration in varying environments
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Large u : the environment is challenging

Large o2 : the solver is sensitive to the initial va
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—> Acceleration is large when the solver is more
sensitive to the initial values.




Results

@ Implemented in ROS simulator
@ Willow Garage’s PR2 robot model (two 7-DOF arms)
© LIDAR sensor accuracy : 30mm

@ Update on dynamic obstacles (position and velocity):
every 200ms



Results: Varying Sensor error

@ |ncrease the sensor error in our simulation

100% -2
- 1.9

20% - 1.8
- 17

60% - 1.6

4 .
< - 1.5
A40% -?g—_ 1.4

- 1.3
20% 1.2
- 141
0% . : . 1
0 50 100 150
sensor error (mm)
=——=gliccess rate(%) ===trajectory cost




Varying the Obstacle Motion

@ Planning with varying obstacles speed
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Varying the Number of Obstacles
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Human-Like Environment: Simulation
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Limitations

@ Does not account for all sources of uncertainty
@ Bounds on dynamic trajectory tend to be
conservative

 Can’t guarantee global optimal solutions
e Sensitive to the choice of initial seed values



Conclusions

@ Optimization-based motion planning algorithm

for dynamic environments
@ General approach to compute smooth paths
“ No assumptions on obstacle motion
“ Real-time collision avoidance
“ Parallelization on multiple cores
@ Improved performance and path quality
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