
Chonhyon Park and Jia Pan and Dinesh Manocha
University of North Carolina at Chapel Hill

Find a continuous, collision-free motion

 trajectory from an initial pose to a goal pose

An important problem in many robotics, virtual
prototyping, gaming, CAD/CAM, etc.

Increasing use of robots in human-like environments &

 real-world scenarios

Hard to make assumptions about the motion of

 obstacles

Need real-time approaches that can adapt to the

 environment

Need to compute smooth paths and satisfy (dynamics)

 constraints

Motion planning reduces to path computation in

 configuration spaces (C-space)

For a robot with k DOFs, C-space is a

 k-dimensional space

Find a collision-free path from an initial point to a

goal point, which lies in the same connected

component in C-space

Random sampling-based
algorithms

Optimization-based

 algorithms

Random sampling-based algorithms
PRM based methods [Kavraki et al. 1996]

RRT based methods [Kuffner and LaValle 2000]

Widely used in many real applications

Involves preprocessing or limited dynamic scenes

Optimization-based Planning Algorithms
Based on earlier techniques based on potential field
methods

Can handle dynamic obstacles (in low dimensions)

Generate smooth trajectories

Gradient Optimization [Ratliff et al. 2009]
Discretize the trajectory to waypoints

Compute costs of each waypoint

Use gradient to move waypoints to minimize total cost

Repeat iteration until find a solution

Stochastic Optimization[Kalakrishnan et al. 2011]
Use stochastic gradient

Any value can be a cost factor

Torque, orientation constraints, etc.

Velocity obstacles
[Fiorini and Shiller 1998]

[Wilkie, van den Berg, and Manocha 2009]

Inevitable collision states
[Petti and Fraichard 2005]

Real-time replanning
[Bekris and Kavraki 2007]

[Hauser 2011]

Objective function for optimization

 : Cost for each waypoint

Collision cost for static obstacles : computed by the

 distance field

 : Cost for the smoothness of trajectory

 Represents the sum of squared accelerations

Previous algorithms assume static environments
Distance fields for collision avoidance

Uses precomputation methods

Lookup is fast, but dynamic updates are slow

Planning before execution
Can lead to long delays in movement

Not safe in uncertain dynamic environments

Pros
Smooth trajectory computation

Other constraints (dynamics) can be handled

Cons
Environments – Assumes static environment

Performance – Slow!

Quality – Local minima may prevent planner to find
a collision-free or good solution

Interleave planning with execution
Handle dynamic environments

A general scheme for collision avoidance and

 smooth path computation

Improves Safety

Parallelize trajectory optimization
Reduces cost computation time

Improves the search: larger coverage of C-space

Better Performance & Quality

Future motions of obstacles are unknown

Use local estimates based on recent position of

 the obstacles

Planner cannot estimate exact motions
Recent position data from sensor has noise

Obstacles may change their trajectory during planning

 computation

Interleave planning with execution
Compute partial plan for the next execution step

Improve the trajectory while execution

Use the latest information about the dynamic

 environment

PLANNING

EXECUTION

PLANNING

EXECUTION

PLANNING

EXEC

PLANNING

EXECUTION

step 0 step 1 step 2 step n-1 step n

time

Overall Pipeline: Dynamic Environments

 Motion Planner

Robot

Controller
Sensor Data

Scheduling

Module

Goal

Setting Ready

Monitor

Finish

Modified objective function

 : Costs for static obstacles use precomputed

distance fields

 : Costs for dynamic obstacles use the collision
detection between the robot and obstacles

• Compute motion bounds on the local trajectories of

 dynamic obstacles

• Use bounding volumes and hierarchies for fast

 collision checking

• Hierarchies are computed/updated incrementally

Use conservative bounds
The predicted position of

 obstacles may not be accurate

Use conservative bounds on

 obstacles for collision checking

Limitations of optimization-based algorithms
Performance – slow

Quality – Local optima may prevent planner to find a

 collision-free solution

In real-time replanning, the performance is critical
Limited time to perform planning computations

Parallel optimization of multiple trajectories
Use Multiple threads

Start from different initial trajectories

Trajectories are generated by quasi-random sampling

Exploits the multiple CPU cores (multi-cores) or GPU-
based cores (many-cores)

Commodity Tera-Flop Processor (peak performance)

AMD Radeon 7970 NVIDIA GTX 680

3.79 Single Tflops 3.09 Single Tflops
947 Double Gflops 1.1 Double Tflops
2048 Stream Cores 1536 CUDA Cores

Parallelization improves the performance
Reduce the iteration time of the single optimization

Parallel optimization of multiple trajectories reduces t
he time to compute the first collision-free solution

Performance improvement with number of cores

Parallelization also improves the success rate

Each local minima is constrained to a subset of

 C-space

With more trajectories, the algorithm can explore a
larger subset of C-space

Acceleration in varying environments

• Assumes the time costs to compute a solution f
ollow normal distribution.

• Large 𝜇 : the environment is challenging
• Large 𝜎2 : the solver is sensitive to the initial va

lues
• → Acceleration is large when the solver is more

sensitive to the initial values.

Implemented in ROS simulator
Willow Garage’s PR2 robot model (two 7-DOF arms)

LIDAR sensor accuracy : 30mm

Update on dynamic obstacles (position and velocity):
every 200ms

Increase the sensor error in our simulation

Planning with varying obstacles speed

Does not account for all sources of uncertainty

Bounds on dynamic trajectory tend to be

 conservative

• Can’t guarantee global optimal solutions
• Sensitive to the choice of initial seed values

Optimization-based motion planning algorithm

 for dynamic environments
General approach to compute smooth paths

No assumptions on obstacle motion

Real-time collision avoidance

Parallelization on multiple cores

Improved performance and path quality

Army Research Office

National Science Foundation

Willow Garage

