ON COMPUTING CONFORMANT PLANS USING CLASSICAL PLANNERS: A GENERATE AND COMPLETE APPROACH

Khoi Nguyen, Vien Tran, Tran Cao Son and Enrico Pontelli New Mexico State University

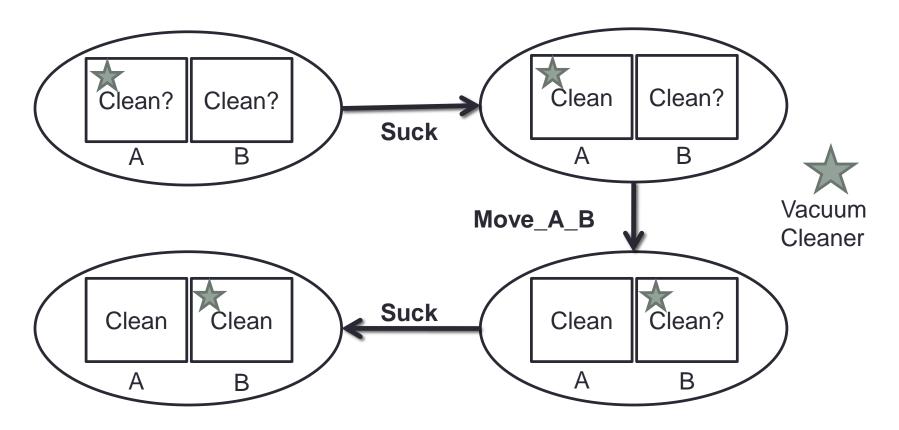
Take Home Message

- A novel approach to conformant planning
 - Simple
 - Coverage: 93% solved instances compared to 58% of state-of-the-art planners.

Outline

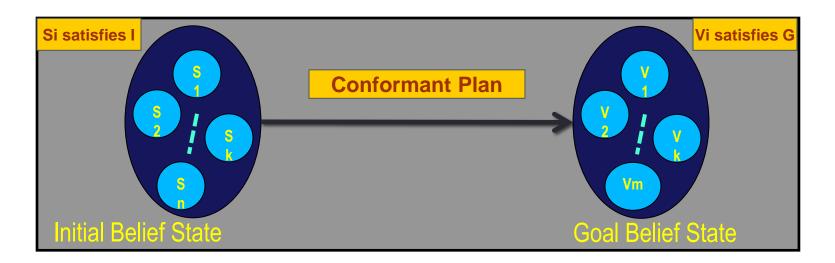
- Conformant Planning Problem
- Intuition
- Generate-and-Complete Approach
- Result
- Conclusion

Conformant Planning Problem


- Planning under uncertainty and no observation
 - Incomplete initial state
 - Conformant plan: a sequential plan that achieves goal from all possible initial states of the world

Conformant Planning Problem

- * Given: planning problem $P = \langle F, O, I, G \rangle$ where
 - > F is a set of propositions
 - O is a set of operators
 - > I is the incomplete initial state
 - > G is the goal
- Problem: Computing a plan that achieves G from all possible initial states of the world satisfying I


Vacuum Cleaner World

```
F = {at(A), at(B), clean(A), clean(B)}
O = {Move_A_B, Move_B_A, Suck}
I = {at(A), one_of(clean(A), not clean(A)), one_of(clean(B), not clean(B))}
G = {clean(A), clean(B)}
```


Conformant Planning Problem

 Conformant Planning Problem could be viewed as belief state space search (State-of-the-art approach).

Belief state = Set of states = Set of possible worlds

Previous works

- Belief state space search: CFF, POND, DNF, CNF
- Approximation state space search: CpA
- Translation to classical planning: t0
- Other approaches
 - Generate and test approach: C_PLAN
 - Fragment approach: FRAG_PLAN

Challenge

- Consider a planning problem with n fluents.
 - Classical planning (0 unknown fluents):
 - Number of possible initial worlds is 1.
 - Size of states space 2ⁿ.
 - Conformant planning (k unknown fluents):
 - Number of possible initial worlds is 2^k.
 - Size of belief states space 2^{2ⁿ} (HUGE!).

Intuition

- Alternative approach to belief state search approach?
 - Generate and test approach (C_PLAN)
 - Fragment approach (FRAG_PLAN)

The number of possible worlds is huge

View the conformant planning problem as a set of classical planning problems.

How to exploit the interaction between possible worlds?

Intuition

- Four possible worlds:
 - s_0 : Both squares are clean \rightarrow []
 - s_1 : Only A is dirty \rightarrow [Suck]
 - s₂: Only B is dirty → [Suck, move_A_B, Suck]
 - s₃: Both squares are dirty → [Suck, move_A_B, Suck]
- Conformant plan: [Suck, move_A_B, Suck]

Our Approach (1)

View the conformant planning problem as a set of classical planning problems.

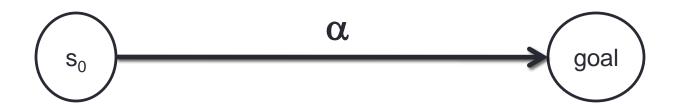
The number of possible worlds is huge

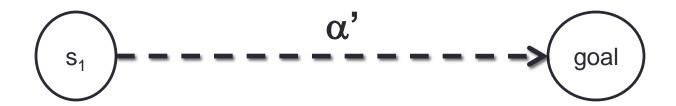
How to exploit the interaction between possible worlds efficiently?

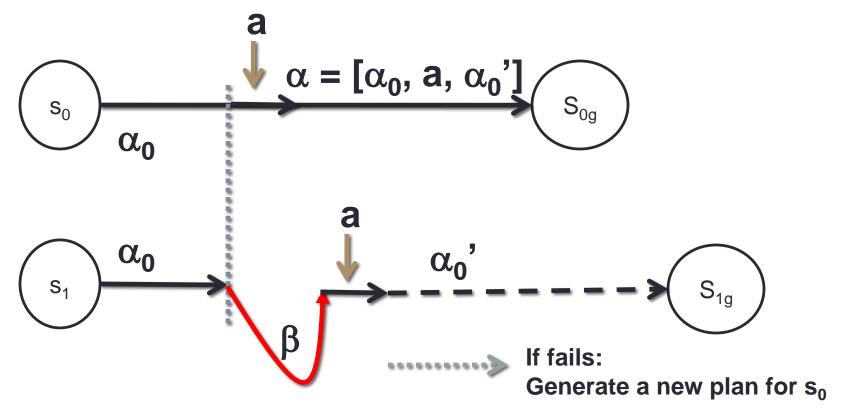
Reduction the Size of Initial Belief State

- One-of reduction technique (CpAh 2008) could be used to reduce the number of possible worlds.
- In the vacuum cleaner world:
 - Originally, 4 possible initial states
 - After one-of reduction, 2 possible initial states

Our Approach (2)

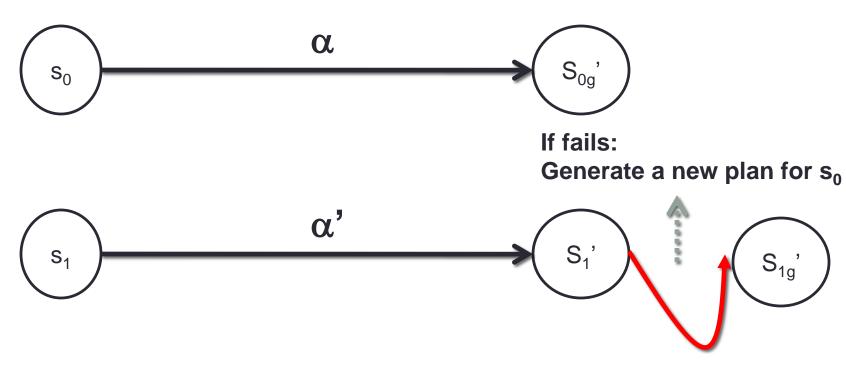

View the conformant planning problem as a set of classical planning problems.

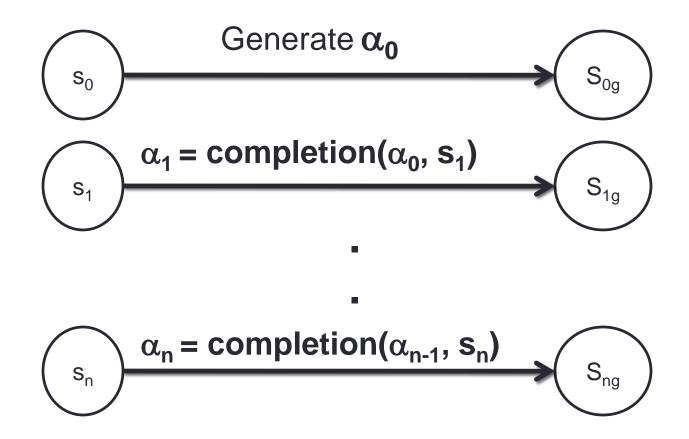

The number of possible worlds is huge


How to exploit the interaction between possible worlds efficiently?

Generate and Complete (Idea)

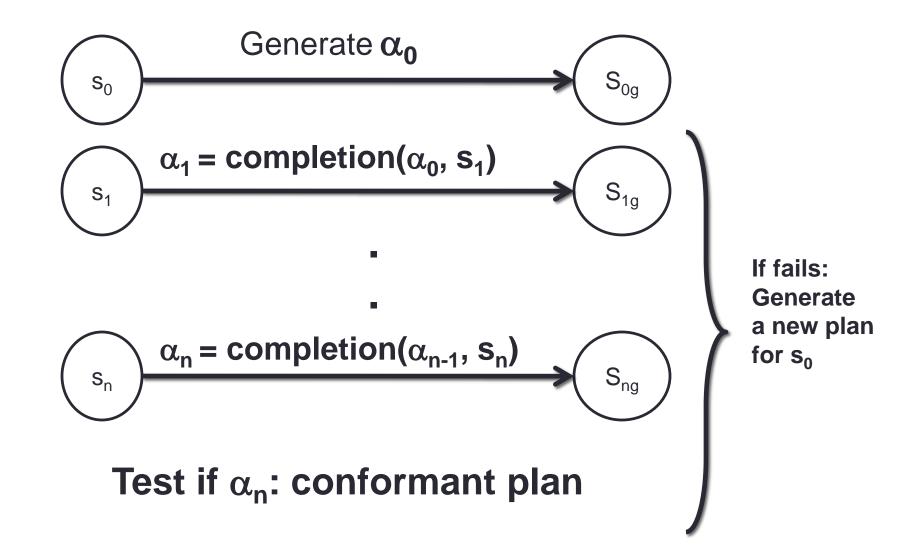
- Given a plan α for one possible world, how do we modify it to obtain a plan for another world?
- Insert actions into α to create a new plan α ' that
 - achieves the goal from the new possible world
 - has the following desirable properties:
 - α' is executable in the new possible world
 - α' maintains the same effect of each action in both worlds





Call to classical planner:

- _ β achieves precondition of a
- $_\beta$ maintains effects of a in both worlds



Call to classical planner to achieve goal

Test if α_n : conformant plan

Generate and complete approach

Generate and Complete Approach

Advantages:

- Searching in state space instead of belief state space.
- Divide conformant planning process into many classical planning phases.
- Exploit the advantage of classical planners.

Disadvantages:

- Incomplete method?
 - Classical planners only return subsets of all possible plans.
 - Weak complete.

Result

- We implemented our algorithm on top of the classical planner LAMA2008. Our planner is named GC[LAMA].
- Compare GC[LAMA] to state-of-the-art conformant planners:
 - CpAh: Winner 2008
 - t0: Winner 2006
 - DNF
- Benchmarks include 777 instances from:
 - IPCs 2006 and 2008.
 - CFF
 - t0
 - Finite-State-Controllers
- Time out: 30 minutes

Result

Coverage.

Planners	#Solved Instances/ #All Instances
GC[LAMA]	93%
DNF	58%
t0	50%
CpAh	46%

• GC[LAMA] solves many problems that no other planners were able to solve before.

Result (Overall)

Domain (#Instances)	GC[LAMA]	CpAh	t0	DNF
Blocks(4)	4	3	3	3
Coins(30)	30	20	20	20
Comm(25)	25	25	25	25
Sortnet(15)	15	15	9	15
Sortnum(30)	25	4	7	6
Uts(30)	30	30	30	30
Uts-cycle(30)	15	11	7	12
Raoskeys(30)	3	2	2	2
Forest(9)	9	2	8	2
Bomb(16)	16	15	16	15
Cube(35)	35	14	27	20

Result (IPC Domains) (Time/Length)

Instance	GC[LAMA]	CpAh	t0	DNF
Blw-03	1.3 /266	20.4/205	48.51/80	307/325
Blw-04	29.5 /1384	AB	AB	AB
Coins-10	0.037/36	0.03 /48	0.04/26	0.20/27
Coins-30	1.0 /1107	AB	AB	AB
Comm-15	0.1/97	2.29/95	0.092 /110	3.43/125
Comm-25	0.8 /294	1222/389	1.55/453	1797/501
Uts-cycle-03	0.04/3	0.01 /3	0.14/3	0.01/3
Uts-cycle-15	0.11 /12	AB	AB	AB
Raoskeys-02	0.05/38	0.26/32	0.02 /21	0.09/39
Raokeys-04	16.78 /163	AB	AB	AB
Forest-09	183.8 /963	AB	AB	AB

(Time in seconds, AB means aborted due to insufficient memory)

Results (Finite-State Controllers Domain)

Instance	GC[LAMA]	CpAh	t0	DNF
Hall-A-ui-q2-1x10	0.01/46	39/77	1.09/56	0.29/58
Hall-A-ui-q2-1x20	0.04 /86	AB	7.2/116	0.7/118
Hall-A-ui-q4-3x2	0.05 /19	AB	ТО	AB
Hall-A-ui-q4-4x2	0.04 /42	AB	TO	AB
Hall-R-ui-q1-1x10	0.01 /138	828/93	0.42/109	680/91
Hall-R-ui-q1-2x2	0.0/24	AB	TO	124/25
Hall-R-ui-q1-3x3	0.01/63	AB	ТО	AB
Hall-R-ui-q1-4x4	0.01 /110	AB	TO	AB
Marker-enc1-q2-5x4	0.37 /25	AB	ТО	124/25
Marker-enc1-q2-7x5	11.1 /31	AB	TO	AB
Marker-enc1-q2-8x5	11.5 /39	AB	ТО	AB
Marker-enc1-q2-9x5	0.02 /45	AB	ТО	AB

(AB: abort, TO: timeout)


Conclusion

- We develop a novel approach to conformant planning:
 - Simple.
 - Exploit classical planners.
- We develop a conformant planner GC[LAMA]:
 - Very good coverage.
 - Excellent performance.

Future work

- Apply conformant planning to solve other problems:
 - Cellular automata
 - Contingent planning
- Investigate the ordering of possible initial worlds
- Completeness

Thank you for listening

