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Outline of Presentation

 Introduction: Motivation, Problem Statement, Relevant Background

– Autonomous, In-Water Ship Hull Inspection

– Why is Sampling-Based Coverage Planning Needed?

 Analysis of Sampling-Based, Feasible Coverage Path Planning

– Solved in two phases, view planning and multi-goal planning

– Detailed look at probabilistic completeness of sampling-based 
view planning

 Improvement Algorithm for Shortening Feasible Routes

– Theoretical Guarantees and Computational Results 
 Experimental Implementation of Algorithms

– Execution of Planned Inspection on US Coast Guard Cutter
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Hovering Autonomous Underwater Vehicle
(HAUV)

 Free-floating, fully actuated (in 6 D.O.F.), hover-capable robot
 Goal: Autonomous in-water ship hull inspection to detect mines
 Joint effort by MIT Sea Grant and Bluefin Robotics, beginning 2002
 Now produced by Bluefin, 15 ordered by US Navy for inspections
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“Non-Complex Areas” (~80% of ship)

 HAUV navigates relative to the hull, DIDSON collects 2D images

A Full-Coverage Hull Inspection: Forward Hull

Ongoing efforts to achieve accurate localization over long time scales 

Back-and-forth 
sweeping covers the 

forward sections
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A Full-Coverage Hull Inspection: Stern

“Complex Areas” (~20% of ship)

 HAUV navigates relative to the seafloor, DIDSON collects range scans

How should we pursue full 
coverage at the stern?
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Propeller 
(7m diameter)

Shaft
(1.5m diameter)

Aviation Logistics Vessel SS Curtiss 
shown as a motivating example: 



  

A Full-Coverage Hull Inspection: Stern
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Improved Resolution at Reduced Range

View of a 7m diameter propeller Viewing range halved

 Sensor tradeoff: shorter range, higher-resolution scans
 Desirable to inspect stern at short range to support mine detection
 Must cover an expansive structure with a small field-of-view sensor
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Assumptions on Robot

Introduction Feasible Planning Improvement Algorithm Experiments

 While stationary, HAUV pitches sensor 180o, collects volumetric sample
 Four degrees of freedom: HAUV currently not capable of aggressive            
 roll/pitch maneuvers, will plan in x, y, z, and yaw

 Every scan has 30o aperture, we will typically assume 1-3m range

View collected at 1-3m sensing range

USCGC Seneca



  

Problem Statement

View collected at 1-3m sensing range

 Input: mesh model of structure, mesh model of robot, geometry of the   
 sensor field of view

 Output: a collision-free inspection tour that observes every vertex in     
 the structure model (other primitives can be specified)

 Key Assumptions: a model-based, geometric path planning problem   
 with sensing at discrete locations

– Model-Based: use CAD or data-derived model, must cover an
expansive structure with a limited field-of-view, slow moving robot

– Geometric: HAUV dominated by drag, feasible positioning &
observation of occluded areas are the key challenges

– Discrete: robot stabilizes and sweeps sensor at each individual
waypoint, easier to implement in the presence of disturbances 
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An Example of Desired Output
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Contributions
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 The first probabilistic completeness analysis applied to robot              
 coverage path planning

– Analysis tools from collision-free path planning augmented to 
accommodate coverage constraints

– We bound the convergence of sampling-based routines using 
decaying exponential functions

 An improvement algorithm that iteratively shortens coverage routes

– Compatible with RRT* path planning algorithm; retains its 
optimality properties in the solution of a local sub-problem

– Computational proof-of-concept: significant improvements made 
to feasible coverage routes

– A planned inspection route has been executed at the stern of a 
US Coast Guard Cutter 
   



  

Path Planning for
Continuous Coverage

Cell Decomposition

(Zelinsky et al. 1993)
(Choset & Pignon 1997)
(Choset 2001 – Survey)
(Gabriely & Rimon 2001)

(Huang et al. 2001)
(Acar et al. 2002)

(Mannadiar & Rekleitis 2010)

Generalized Voronoi Graphs

(Acar et al. 2006)
(Easton & Burdick 2005)
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Floor coverage and 
boundary coverage 
addressed using 
different techniques

Prior Work in Coverage Planning: 2D Structures
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View Planning for
Discrete Coverage

“Art Gallery” Combinatorial Algs.

(Shermer 1992 - Survey)
(Kazazakis & Argyros 2002)

Integer Programming

(Erdem & Sclaroff 2006)

Genetic Algorithms

(Yao et al. 2002)

Random Sampling

(Gonzalez-Baños & Latombe 2001)
(Hörster & Lienhart 2006)

Prior Work in Coverage Planning: 2D Structures



  

Continuous Coverage

Cross-Sectional Loop Paths

(Atkar et al. 2001)
(Cheng et al. 2008)

Generalized Vornonoi Graphs

(Choset et al. 1999)

Segmentation of Large Structures

(Atkar et al. 2005) 

Introduction Feasible Planning Improvement Algorithm Experiments

Prior Work in Coverage Planning: 3D Structures
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Discrete Coverage
2D View Planning for 

3D Structures 

(Gonzalez-Baños & Latombe 1998)
(Blaer & Allen 2009)

“Turntable” Coverage of 
Small Objects

(Tarabanis 1995 – Survey)
(Trucco et al. 1997)
(Chen & Li 2004)

(Scott 2009)

Sampling-Based, 
Global 3D Coverage

(Danner and Kavraki 2000)
(Englot and Hover 2011)

Suitable for inspecting a 
complex, expansive 3D 

structure by a mobile robot in 
a disturbance-filled environment 

Prior Work in Coverage Planning: 3D Structures



  

Why Are Other Algorithms Unsuitable?

● Low Clearance – feasible solutions 
may not be found if we enforce a 
single “slicing” direction or reliance on 
sweep-based primitives 

● Expansive Structure, High D.O.F. – 
hard to catalog full coverage topology 
& solve to optimality over thousands 
of polygonal faces

● For sampling-based algorithms, we 
can often establish strong guarantees 
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of completeness, meaning
feasible solution will be found by algorithm eventually, if one exists



  

A Two-Stage Sampling-Based Approach

● Stage 1 (Coverage Sampling): Sample at random a full-coverage set 
of sensor views, approximate min-cardinality set cover 

● Stage 2 (Multigoal Planning): Connect views into a contiguous route 
using a traveling salesman problem (TSP) approximation to select the 
ordering, and using view-to-view path planning to find feasible paths
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(Danner and Kavraki, 2000) (Englot and Hover, 2011)

Redundant Roadmap AlgorithmWatchman Route Algorithm



  

Sampling the Structure Boundary

● Choose a location on the structure boundary, sample from local 
C-Space region that maps to views of the boundary location

(Gonzalez-Baños & 
Latombe 1998, 2001)

Dual Sampling
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Illustrating the Two-Stage Approach



  

1. Kavraki et al. 1998 2. Isler et al. 2004

Algorithm Analysis Concepts

● Path planning algorithms: analysis of random samples landing in the 
worst-case regions needed to join a and b into a feasible path

● Sensor network algorithms: number of samples needed for 
continuous coverage of a structure with high probability 

● We adapt these tools to show coverage of discrete primitives, less 
geometry-dependent, more widely applicable
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Robot C-Space/Workspace as a Set System 
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Discrete
Geometric
Primitives
(Points) in
Euclidean
Workspace

Set of Points
in Euclidean Workspace

Robot 
configurations in
multi-D.O.F. C-Space

Set of 
configurations in 
multi-D.O.F. C-Space

Workspace

C-Space

Primal Set System

Dual Set System
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A Definition and Theorem for Coverage Sampling

Def. Probabilistic Completeness. For a dual set system            , let 
                                                 represent the volume fraction of the 
smallest set              .  If, when            , the probability that at least k 
samples have landed in every                approaches one as the number 
of samples of        approaches infinity, then the proposed coverage 
sampling algorithm is probabilistically complete.  

Thm. Probabilistic Completeness.  Any coverage sampling algorithm 
that samples uniformly at random from an infinite subset
such that                                                                  is probabilistically 
complete.  The probability that a feasible solution has not been found 
after m samples is bounded such that:

Where         is the number geometric primitives              . 
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Proof of Theorem

Techniques adapted from: 
(Kavraki et al. 1998), 
(LaValle and Kuffner 2001)

1)

2)

3)

4)

Probability of  < k 
successes for at 
least one 

Binomial 
random variable

Assume 
Poisson, use 
Chernoff 
bound 



  

Implications of Theorem
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● Watchman route algorithm and redundant roadmap algorithm are 
probabilistically complete, as long as ε > 0 whenever δ  > 0

● For these algorithms,                is a set containing all areas where the 
robot sensor footprint intersects at least one geometric primitive, so 
this condition is always satisfied

● Sampling on a reduced-dimensional manifold (a series of 2D slices 
in a 2.5D algorithm, for example) may yield a case in which

                                  even though
   

● Gives more appealing convergence than the geometry-theoretic 
alternative: for 1 million primitives, ε > 0.001, k = 10, probability of 
failure plunges from large to infinitesimally small between 104 and 
105 samples  



  

Overall Outcome of Analysis

● View planning routines of watchman route algorithm and redundant 
roadmap algorithm are probabilistically complete

● Multi-goal planning routines of both algorithms also probabilistically 
complete

● In all cases, convergence bounded by decaying exponential in 
number of samples drawn

● Full, integrated algorithms fail to converge only when a “prison cell” 
is present 
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An Initial Feasible Inspection 
Route: Room For Improvement
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An Initial Feasible Inspection 
Route: Room For Improvement
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q
j

q
j+1

q
j-1

Adjust the position of a view configuration relative to its two neighbors 



  

● Ship hulls are expansive, contiguous structures, and the HAUV has a 
small FOV: view configurations are densely packed

● Attempt to connect view configurations using straight-line paths, and 
project them to the frontier of (local) optimal cost

● If views cannot be bridged by straight-line paths, a parallel 
implementation of the RRT* algorithm (Karaman & Frazzoli 2011) can 
be used instead to find paths optimal in length in the limit
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Procedures for Local Smoothing



  

Algorithm Performance over Two Hours
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● Performed on Dell Precision w/ 3.20 GHz Processor, 24 GB RAM
● The two ships achieved different worst-case quantities of samples 

over the allotted computation time, mean of 25 trials is represented



  

Zooming In: The First 10,000 Samples
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● The first 1-2 minutes of sampling were highly productive



  

USCGC Seneca Inspection Route

246m, 192 configurations
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USCGC Seneca Inspection Route

157m, 169 configurations
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SS Curtiss Inspection Route

176m, 121 configurations
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SS Curtiss Inspection Route

102m,  97 configurations
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Field Deployment of HAUV

USCGC Seneca Feb. 2012, executed path planned using a priori model
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Data Collected from Planned Sensor Views
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Improved-Resolution Mesh Obtained from 
Planned Inspection
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Conclusions

 We have proposed a comprehensive methodology for the sampling-   
 based design and analysis of geometric inspection routes

 The first probabilistic completeness analysis applied to robot coverage 
 path planning

– Unites concepts in path planning and sensor placement methods
– Discrete coverage perspective broadens applicability of analysis     

tools
 New improvement algorithm that iteratively shortens feasible coverage 
 routes

 Recent Experimental Field Implementation of Algorithm
 Future work: Anytime algorithms in an adaptive in-water inspection,
 integrated localization, mapping, and planning, and extension to multi- 
 agent inspection scenarios for colossal structures 
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Questions?
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