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Abstract

In this paper, we discuss knowledge engineering within
a software composition framework, MARIO, that uses
Al Planning for enabling end-users to compose software
components into data analysis flows in a goal-driven
manner. A data flow is as a directed graph that de-
scribes how data is obtained from one or more sources,
processed by one or more software components, and
finally sent to one or more sinks. Such flows are of-
ten used by domain experts in different domains, on
different platforms, to distill raw data into useful in-
telligence. In many organizations, there are two roles
who are involved in developing and deploying analy-
sis flows. Developers develop one or more flows and
end-users pick among the available flows, and parame-
terize and deploy them to obtain relevant intelligence.
MARIO uses a language called Cascade for describing
the planning domain, including commonly used anal-
ysis flow patterns. The patterns cover different possi-
ble variations of the flows, including variations in the
structure of the flow, the software components in the
flow and the possible parameterizations of these com-
ponents. Developers describe the planning domain us-
ing the Cascade language, a tag-based knowledge rep-
resentation model, and Eclipse-based tools. For end-
users, who specify composition goals, MARIO includes
a web-based interface to the planner, where end-users
can specify planning goals, view the automatically com-
posed flows, parameterize them and deploy them on one
or more platforms.

Introduction

A data processing flow obtains data from different sources,
aggregates or integrates them in different manners, applies
different kinds of analyses on the data and finally, visual-
izes or handles the end-results in different ways. We view
a data processing flow as a directed graph of black-box
software components (including data sources) connected by
data flow links. A flow is an intuitive abstraction that helps
decouple the low-level details of information processing
from the high-level view of the application. Flows are used
to describe information processing applications on differ-
ent platforms including Service Oriented Systems, Event-
Driven Systems, Data Mashups, Stream Processing Sys-
tems, Extract-Transform-Load systems and the Grid.

Such flows are often used by experts in different do-
mains, on different platforms, to obtain customized infor-
mation. However, a key challenge in the use of data process-
ing flows, especially by domain experts and other end-users,
who are not skilled programmers, is flow assembly. Assem-
bly is complex since there may be a very large number of
components available, and the users may not be aware of
the syntactic and the semantic constraints as well as the best
practices in assembling components into complex flows.

Several visual programming tools have been developed to
help end-users construct flows in different domains. Tools
like Yahoo Pipes (Yahoo, Inc.) and IBM Mashup Center
(IBM Mashup Center) have become fairly popular among
casual programmers, with hundreds of thousands of flows
having been created on them already. In the enterprise do-
main, the IBM WebSphere Message Broker Toolkit (IBM
WebSphere Message Broker) allows creating flows for the
Enterprise Service Bus. LabView (National Instruments) is
another popular graphical programming tool for creating
dataflows.

However, in our experience, domain experts still find it
very difficult to create flows using visual composition tools
to meet their customized data processing needs. There are
a few reasons for this. First, even though visual program-
ming environments like Yahoo Pipes make mashup con-
struction more approachable for non-programmers, it still
requires careful manual assembly of the flows by the end
user. These end-users may not be aware of composition con-
straints of different components, and may also not be aware
of the best practices in creating flows for their problems.
Second, visual programming environments become increas-
ingly difficult to use as the number of available components
increases and/or the size of the composed flows increases.
For example, in practice end-users can compose in a goal-
driven manner flows containing many tens, even hundreds
of components, which are very difficult to compose quickly
using visual tools. Finally, most visual programming envi-
ronments just support a fixed set of components. They do
not work very well when the set of components is extensible
and evolves with time.

Al Planning is a good candidate for tackling the challenge
of flow assembly. In previous works (Riabov & Liu 2006),
we had described planning approaches for composing flows
in stream processing, complex-event processing, web ser-



vices and other flow-based systems. The key idea is to model
each component as a planning action, model any constraints
on the inputs and outputs of the component as precondi-
tions and effects of the planning action, and finally, model
the properties of the information to be produced by the as-
sembled flow as a planning goal. Over the last few years,
we have experimented with several approaches for repre-
senting the input and output constraints, for representing the
goals and for composing individual components into flows.
Lately, though, we have settled on a tag-based knowledge-
representation model and a pattern-based approach for de-
scribing the space of available flows. We believe that these
offer a good trade-off of expressiveness versus simplicity.

In a number of domains (such as financial services, man-
ufacturing, security, etc.), end-users are reliant on an IT de-
velopment team to support them in different data analysis
tasks. The IT team may create a set of flows for use by
the experts (often using the enterprise-side assembly tools
like WebSphere Message Broker and LabView). If the ex-
pert wants to change the structure of the flow or parameter-
ize it differently, she may actually have to change the under-
lying flow script in the language supported by the system.
This may not be practical for most domain experts. Hence,
most often domain experts must refer back to the developer
to change the flows to meet new needs. This lack of flexibil-
ity is a big problem when the experts need to respond rapidly
to a certain situation and there is no pre-built flow that meets
their current needs.

In this paper, we propose an approach to simplify the con-
struction, parameterization and deployment of flows by end-
users, especially domain experts. We make use of the obser-
vation that in many domains, the set of useful flows for end-
users (domain experts) often follow certain patterns. Hence,
in our approach, flow developers can specify not just inde-
pendent flows, but patterns of flows. A flow pattern describes
a space of possible flows that are structurally similar and per-
form similar tasks. Flow patterns are similar to regular ex-
pressions, in the sense that just as regular expressions define
a set of satisfying strings, a pattern defines a set of satisfy-
ing flows. Combined with tag taxonomies, input constraints,
and output descriptions, the patterns describe the planning
domain for goals specified by end-users.

Different platforms have their own flow languages, e.g.
BPEL (Alves, A. et al 2006) for service-oriented systems,
SPADE (Gedik et al. 2008), used in IBM’s System S Stream
Processing Platform (IBM InfoSphere Streams), Pig Latin
used in (Apache Pig), etc. In addition, we often see data pro-
cessing being performed using a set of shell or batch scripts.
We have previously introduced Cascade (Ranganathan, Ri-
abov, & Udrea 2009), our language for specifying patterns
of flows. Cascade is platform and domain independent, i.e.
it can be used to describe flows on any platform. It allows
components to be described recursively, where a compo-
nent is either a primitive component or a composite com-
ponent, which internally defines a flow of components. A
primitive component can embed code snippets from any
platform-specific flow-based language (like BPEL, SPADE,
shell scripts, etc). Some of the other key features of Cascade
are an inheritance model for components, a number of ways

for parameterizing components and the ability to define dif-
ferent structural variations for flows.

End-users (domain experts) explore the set of flows en-
capsulated within a flow pattern and select one that meets
their data processing needs. For this, we make use of a
tool called MARIO (Bouillet ef al. 2008), which provides a
tag-based, faceted navigation user interface where users can
specify their needs (or goals) as a set of tags. MARIO then
returns all satisfying flows to the end-user, ranked accord-
ing to a pre-defined measure of cost. The composed flows
can then be translated into a flow-script in a target platform
(such as BPEL or SPADE), using the code snippets em-
bedded within the primitive components. MARIO uses an
Al planner for composing the flows dynamically given end-
user goals. In order to compose the flows using MARIO, we
have developed a Pattern Compiler that generates the plan-
ning domain corresponding to Cascade patterns. The plan-
ning domain includes input and output constraints that can
be used by the MARIO planner to compose flows.

Patterns provide several advantages over free-form,
bottom-up composition that we have presented in previous
work (Bouillet et al. 2008). They offer a top-down, struc-
tured approach to defining allowable flows rather than rely-
ing on independent descriptions of individual components.
In this way, they help restrict the search space of the plan-
ner to a smaller set of useful flows. They also help capture
reusable design patterns for information processing in a cer-
tain domain.

In this paper, we focus on the knowledge engineering
challenges that the developer faces in describing planning
domains for flow assembly in such a manner that an end-
user can assemble the right flow for his need. We believe that
tags offer a convenient and concise way for developers to de-
scribe what kind of information a certain flow produces. A
taxonomy of tags offers a common, extensible and flexible
lingua franca for a team of developers and end-users. The
main advantage is its simplicity compared to other repre-
sentation schemes like OWL. We also describe Cascade and
tools available to the developer for annotating components
and patterns of flows with tags and the typical development
process involved in creating a Cascade pattern and tag anno-
tations for a given problem domain. These annotations are
used by the Al Planner in MARIO for composing flows in
response to user goals. We also describe our experiences in a
case study at a client’s site, where the Cascade language and
associated tools were used by developers to “deliver” flows
for use by domain experts.

Composition Tools and Plan Execution

Before discussing our tools for planning domains in follow-
ing sections, in this section we introduce the cross-platform
application flows, into which the plans are translated in our
architecture, and outline the required infrastructure for goal
specification and plan execution.

Cross-Platform Flow-Based Applications

In developing our composition framework we were primar-
ily focusing on enabling automated composition of stream
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Figure 1: MARIO Architecture.

processing applications, such as those deployed in IBM’s
InfoSphere Streams middleware platform. However, as we
have further observed, the techniques we developed for com-
position of stream processing applications easily extend to
other platforms, and specifically the platforms where com-
posable applications can be viewed, at some level of abstrac-
tion, as data flows. We have implemented composer proto-
types that work with three different stream processing lan-
guages, certain types of Web Services domains, Enterprise
Service Bus message flows, SQL queries, Apache Pig appli-
cations on Hadoop, IBM’s DAMIA and WebSphere sMash
middleware, and others.

This observation led us to develop MARIO, a cross-
platform flow composer, which could be used to compose
and deploy applications across multiple information pro-
cessing platforms. MARIO generates high-level platform-
independent flows, and then invokes platform-specific back-
end plug-ins to generate and deploy platform-specific im-
plementations of these flows. This extensible approach lets
MARIO, using a single planning domain, create and deploy
flows that run on multiple platforms in separation, or have
different components of one flow deployed in several differ-
ent platforms.

MARIO represents information processing applications
as flows, or, equivalently, flow graphs, comprised of compo-
nents connected by communication links. In our current im-
plementation the graphs assembled by MARIO are acyclic.

The cross-platform flow graph is a set of components con-
nected by communication links sending data between the
ports of components, where each component includes:

e zero or more input ports;
® ZEro or more parameters;
e one or more output ports;

Financial Trends Calculator

Figure 2: MARIO Composer for End-Users.

e platform type for this component;
e platform bindings information.

Platform bindings information, represented as a multi-line
string, is required by the backend plug-in to generate the
code corresponding to the component, and can have any for-
mat, as long as it can be processed by the backend.

Goal Specification and Plan Execution

Our composition and deployment architecture, shown
graphically in Figure 1, is designed to support multiple plat-
forms, for example (IBM InfoSphere Streams) and Hadoop
with (Apache Pig), as well as a built-in web-based visu-
alization server WebViz. New platforms are integrated by
adding backend plug-ins. The plug-ins are responsible for
translating subgraphs into generated platform-specific code,
and adding bridges to generated code in order to establish
data transfers between platforms. The plug-ins also control
the lifecycle of the application within each platform by start-
ing and stopping corresponding subgraphs of the generated
applications.

End-users interact with MARIO via a web based interface
shown on Figure 2. The interface allows end-users to spec-
ify goals by entering tags (e.g., FilteredTrade, Bylndustry),
refine goals by adding new tags, and view composed flows,
as well as the results of flow execution. Many elements of
the interface, including result visualization, titles, prompts,
and tag groups can be customized by the developers.

The Tag-Based Planner component of MARIO is re-
sponsible for finding the best flow for the specified goal.
In MARIO, Cascade description of the planning domain,
tag taxonomies, and the tags of the user-specified goal are
translated into domain description in SPPL description lan-
guage, and processed by a specialized planner (Riabov &
Liu 2006). The SPPL descriptions are internal to the Tag-
Based Planner, and are not visible to end-users or develop-
ers.

Cascade — Flow Pattern Description Language

In this section we discuss Cascade, the language we have
developed for describing planning domains for data flow
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Figure 3: Cascade flow pattern example.

composition. A more complete overview of Cascade can be
found in (Ranganathan, Riabov, & Udrea 2009).

Our language improves on existing planning domain de-
scription languages, when used in software composition ap-
plications, in three main areas:

e Cascade improves performance of the planning algorithm
by allowing the algorithm to take advantage of explicitly
stated composition constraints;

e (Cascade uses hierarchical and modular composition pat-
terns, allowing the developers to partition the domain
description and work on different sub-patterns indepen-
dently;

e Cascade includes semantic reasoning based on a tag tax-
onomy, allowing the end users to specify their composi-
tion requirements generally, if needed, by selecting tags
from higher levels of tag hierarchies.

Cascade Graph Patterns

At the core of Cascade is the language for describing graph
patterns. The patterns serve as composition constraints re-
stricting the flow graph structure. To enforce this, we use
generated preconditions and effects in the generated plan-
ning domain.

Graph pattern description consists of a few simple con-
structs shown graphically using the example in Figure 3:

e Concrete components, associated with a specific platform
type and a binding.

e Composites, such as “TradeOperations”, i.e., components
whose implementation is a subgraph comprised of a graph
other components, composites, or choice nodes.

e Choice nodes: optional components, “Or” alternatives
and abstract components. The optional components may
be removed from the flow graph during composition. The
“Or” alternatives allow the planner to choose one of the
listed concrete components or composites. The abstract
components can be replaced by concrete components or
composites implementing the abstract.

o And finally, parameters, which represent an external input
variable requested from the end-user when plan execution

is initiated.

An example of a Cascade pattern in text form is shown
in the editor window in Figure 5. It includes the definition
of a composite BIComputationCore, two concrete compo-
nents BIComp_Simple and BIComp_Complex, and an ab-
stract component BIComp that in our text example corre-
sponds to the Calculate Bargain Index concrete component
in the figure.

Semantic Annotations of Components and Flows

Semantic descriptions in MARIO are sets of tags, i.e., key-
words representing business-relevant terms that end-users
understand. In MARIO tags are assigned to flows in part by
developers, and in part automatically: the planner uses tag
annotations of components assigned by developers to auto-
matically compute annotations of generated flows. For valid
flows, the generated description of the output of the flow
contains all tags of the user-specified composition goal.

Developers annotate Cascade components by associating
a set of tags with each output port. For example, the output
of BIComp_Simple is annotated with tags Simple, Bargain-
Index, LinearIndex. The planner uses these tags to compute
the set of tags associated with the output of the composed
flow, recursively, by taking the union of tags on input links
of each component, and associating the result with each out-
put, after adding tags specified by developers on that output.
Developers can also specify tags that should be removed,
and associate tags with inputs. Tags associated with inputs
of a component describe composition constraints: in valid
flows annotations of links connected to such inputs must in-
clude all tags from the input annotation.

Other Annotations Allowed in Cascade

Cascade allows developers to add hard and soft security con-
straints controlling the composition. MARIO can then make
use of end user’s credentials to tailor compositions to con-
form with user’s access permissions.

To explore the tradeoffs between costs and benefits of al-
ternative flows matching the same goal, MARIO planner can



analyze multiple metrics associated with flows, including
cost and quality vectors. For this, the developers can asso-
ciate cost and quality metrics with individual components.

Language Design Considerations

We have designed Cascade as an intermediate language that
is automatically compiled into a planning domain repre-
sented in a planning domain description language, SPPL
(Riabov & Liu 2006), which is an extension of PDDL. This
has allowed our planning technology to be used by a broader
community of developers. In addition to the language itself,
we had to develop a set of tools, which we will discuss in the
next section. However, the language itself is an important
tool that makes planning usable for software composition.

We had to address a number of challenges specific to
knowledge engineering for planners when designing Cas-
cade. Cascade had to be expressive enough to create new
non-trivial flows for the end users. It had to enable efficient
planning algorithms that find optimal plans in seconds (Ri-
abov & Liu 2006). Finally, Cascade had to support an ef-
fective development environment for domain descriptions,
such that it could be easily adopted by software developers
without requiring extensive training in logic, functional pro-
gramming, or knowledge representation.

MARIO IDE

The MARIO IDE is a set of Eclipse (Eclipse Foundation)
plugins that helps developers create planning domain de-
scriptions by describing tag taxonomies and Cascade pat-
terns, and manage and deploy them in MARIO. In this sec-
tion, we describe the practical requirements for the design
of the tools comprising the IDE, and their functionality. The
MARIO IDE consists of a set of editors, views and wizards
brought together in an Eclipse perspective that cover the life-
cycle of developing, testing and “executing” a Cascade de-
scription of a planning domain. Broadly, the IDE tools can
be categorized as:

e Editor for the Cascade description of the planning domain

e Editors for associated artifacts: (i) the tag taxonomy that
models relations between tags used as component anno-
tations and (ii) the application manifest that permits cus-
tomization of the end-user interface.

o Testing of Cascade patterns.

e Cascade application compilation, deployment and man-
agement of MARIO servers.

We structure the rest of the section to follow the develop-
ment steps outlined in Figure 4. Developers start with creat-
ing a new project, followed by the definition of the Cascade
pattern and components. The development stages conclude
with the engineering of a tag taxonomy and an application
manifest. Developers typically proceed by testing Cascade
patterns.Development concludes by preparing the Cascade
description of the planning domain for a production deploy-
ment in MARIO.

Typically, the developer experience starts with the cre-
ation of a new MARIO project through a customized New
Project wizard. Newly generated projects contain a few sam-
ple components and a sample Cascade pattern. The com-

ponents contain very simple platform-specific code, from
a backend platform chosen by the developer that is sup-
ported by the MARIO server (e.g., IBM InfoSphere Stream’s
Stream Processing Language (SPL) (IBM)). The typical
project structure consists of:

o A set of Cascade pattern files. Although there are no strict
requirements on how a set of patterns should be divided
into multiple files, we will discuss guidelines for structur-
ing pattern files that prove useful in practice.

e A project configuration file — this is a simple proper-
ties file (key-value format) where developers can specify
server-side properties that override the default server con-
figuration for this project.

e A tag taxonomy and an application file, both in XML for-
mat, for which there are special editors.

e Optionally, folders for optional resources to be used in the
end-user interface (e.g., images) and for required toolk-
its that Cascade components depend on (e.g., InfoSphere
Streams toolkits).

The developer(s) then begin crafting the Cascade pat-
terns for their domain of interest. Cascade patterns are ex-
pressed in a domain-specific textual language inspired by
IBM’s Stream Processing Language (SPL). Although there
are different ways in which notional Cascade patterns could
be realized — for instance, drag-and-drop editors, description
languages supporting graphs (GraphML, even RDF) —, the
choice of syntax was motivated by the fact that many Cas-
cade developers were already familiar with SPL, therefore
making the transition to the Cascade pattern language easy.
The MARIO IDE contains a syntax-highlighting editor for
Cascade depicted in Figure 5, also featuring code comple-
tion, an outline and a framework for refactoring. The editor
was implemented on top of the Xtext (Itemis) framework for
domain-specific languages.

The syntax of a Cascade component consists of a set
of annotations (contained between special markers /#* and
*#/), the header and body. The special annotations are of the
type @annotation-name annotation-arguments. These are
typically the description (title) of the component, the plat-
form on which the component’s code is intended to run (e.g.,
@type “spl”, but only for concrete components, which have
platform bindings) and the tag annotations on the input and
output ports of the component (e.g., @tag oport CSV). The
header consists of the name of the component and the input
and output ports and, for certain components the designation
abstract or inheritance statements. The structure of the body
consists of a list of formal parameter names (if any), plat-
form bindings enclosed between /$ and $/ for concrete com-
ponents with specified @type, flow graph pattern descrip-
tions for composite components, or empty body for abstract
components.

In practice, we have seen two ways of developing Cascade
patterns for an application domain. In the first development
mode, the architect and developers start with already exist-
ing custom applications that solve a similar problem. They
then uplift the elements of these applications (e.g., opera-
tors, subgraphs, etc.) into Cascade components. To aid the
creation of such components we have provided import wiz-
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ards from platform languages typically used with MARIO.
The import wizard for SPADE (the language for IBM In-
foSphere Streams 1.2, a predecessor of SPL (Gedik et al.
2008)) is shown in Figure 6(a). Finally, in step 3, the archi-
tect and developers will generalize their custom applications
into a design patterns describing the space of solutions (an-
alytic flows) for the domain. This description, in the form
of the Cascade pattern, is then compiled into a planning do-
main description and used by MARIO to enable end-users
to create analytic flows on the fly for their situational needs.

In the second mode of development — which typically oc-
curs very soon (sometimes even the second application de-
veloped) after the development team becomes proficient in
Cascade and the use of MARIO —, the application architect
designs the space of solutions for the domain in the form
of a Cascade pattern, typically using abstract components to
denote functionality which must be implemented or refined
further. The use of abstract components serves multiple pur-
poses during this mode of development:

e The simplest use of abstracts is as a placeholder for prim-

itive components that must be implemented in the future.

e A more complex use is to abstract away entire subgraphs
of the pattern that can be delegated or detailed in a later
stage (i.e., have a composite defined that “implements”
the abstract).

o A third widespread use is to divide functionality in hierar-
chies (for a very specific example, consider an abstract
Classifier component, from which inherit children ab-
stracts such as ClusteringClassifier, SVMClassifier, De-
cisionTreeClassifier; in turn, concrete clustering, SVM or
decision tree implementations will inherit from the sec-
ond level abstracts).

In this mode of development, we have observed that devel-
opers organize work in separate pattern files under the Cas-
cade project structure. Each file contains either a refinement
of a subgraph of the pattern or related concrete implementa-
tions of an abstract component.

During the process of creating primitive components and
composites, part of the development team or the architect
can begin creating the tag taxonomy using the editor de-
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picted in Figure 6(b). The tag taxonomy consists of parent-
child relationships between tags that annotate the input and
output ports of Cascade components. The tag taxonomy en-
ables reasoning over the space of constraints declared by
components, as well as over the space of equivalent plans
for under-specified goals (for which there is more than one
plan). The tags used in the Cascade patterns are typically sets
of business terms that end-users understand; with this use in
mind, the MARIO IDE also features a wizard that allows
tags to be imported and synchronized with an instance of
the IBM Business Glossary (IBM Business Glossary), a tool
that permits enterprise users to define and manage business
terms and even associate them with data sources. When the
tag tagsonomy is relatively stable, the application manifest
editor (Figure 7(a)) allows the customization of the end-user
interface, including the grouping and ordering of tags into
facets and the customization of the application front page.

After the completion of the Cascade pattern and associ-
ated taxonomy and application manifest, the developers can
use the Cascade testing framework to fest their pattern. Since
any Cascade pattern can result in a myriad of analytic flows
being planed and composed based on end-users goal, there
is no easy to way to test that all the compositions described
by the pattern result in valid (i.e., compilable) applications.
Using the method described in (Winbladh & Ranganathan
2011), developers can generate a small number of test plans
and applications embodying these plans that have been em-
pirically shown to catch the vast majority of common errors.
The interface for the testing framework (Figure 7(b)) is in-
spired after the JUnit interface, with the important difference
that developers choose a testing methodology and parame-
ters. Tests are automatically generated and compiled (poten-
tially on a remote machine) by the IDE. The developers can
retrieve generated code; the IDE places markers where com-
pilation errors have been reported.

Finally, after testing, the developers have the option of
field-testing their Cascade patterns on a MARIO server.
MARIO projects are by default compiled into a planning
domain specification on every save (if enabled in Eclipse);
errors are displayed in the usual way, using the Problems
view, as well as markers in the Cascade editor. The MARIO
Servers view (Figure 8(a)) allows developers to define the
location of MARIO installations, potentially on remote ma-
chines, and also change some common configuration ele-
ments for the servers (e.g., the HTTP port numbers). The
IDE communicates with the MARIO servers via ssh and scp
using private—public key authentication. After a server loca-
tion has been defined, developers will be prompted to choose
the MARIO application they want to run when starting the
server. The application will then be recompiled and the gen-
erated planning domain specification and associated taxon-
omy, manifest and other artifacts (configuration, libraries)
uploaded to the server. Server log messages are displayed
in a separate Console view. The developers can double-click
the running server to bring up the MARIO user interface in
a stand-alone browser window; they can also drill down and
look at any the application source code generate by the plan-
ner as a result of end-user goals and bring that source code
back to the MARIO IDE machine for inspection. Servers
support one-click restarts when any element of the MARIO
project is changed by the developers. After field-testing the
application, the developers can export a compiled MARIO
project (Figure 8(b)) to a zip file or directory on a local or
remote machine. The exported file or directory can be used
to start production MARIO servers for the application.

Discussion

We have implemented an automated composer, MARIO,
and Cascade, a language for describing flow-based software
composition domains, and a full set of development tools for
Cascade, including an Eclipse-based IDE. These tools have
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Edit MARIO Project Server configuration

o ) %

J

Configuration name: [MyMarioconfig

Username: [myuser
Server host machine: |a02b01e1
MARIO software install path: [~/mano/mstau

Location of bin, conf, ext, lib, home,
[] Override server home parent directory?

[ Override GUI client access port?

[] Override Visualizer port?

[7] Test this connection when closing this dialog

@ cancel

When multiple servers are to run on the same host machine, define unique GUI client and Viualiz

[4] Clean the server on restart? If this is checked, previous results will not be available after resta

| cencel [ ox ]

[ Y
Export MARIO Composable Application Kit

This wizard exports the MARIO Composable Application Kit to the
filesystem or a web server.

Exporting project com.ibm.saferplanet.cyber. pattern
© Export as 'registry. zip' to afolder

© Exportto afolder
© Exportto azip file
© Exportto aweb server (HTTP POST)

© Secure Copy (SCP) to a remote machine

Username: |anon

Host: | someremote host

Path:

Note: You must be able to login to this host without a password

[~Ihome/apps/mario|

[] Export as 'registry. zip® over SCP

@ e | [canet ]

()

(b)

Figure 8: (a) MARIO server management from IDE; (b) Export wizard

been used in pilot deployments since 2009, and we have
made modifications and improvements based on experience
and feedback from these deployments.

Installing the tools requires a target deployment environ-
ment supported by the tools. For the main branch of our tools
we require Hadoop or IBM’s InfoSphere Streams, although
we had built experimental prototypes for other platforms.

The tools have reached the level of robustness required to
be applied in real-world applications.

These tools have been applied in a data analysis domain,
where a total of 5 developers (also referred to as technical
analysts) developed flow patterns for use by a total of 20
domain experts (also referred to as business analysts). In this
case study, all composed flows were converted to the SPADE
language, and were deployed on IBM InfoSphere Streams.

In one case study 4 different applications were developed.

Each application targeted a certain data processing problem
and consisted of a set of patterns. Each application was de-

veloped by a small team of developers and was delivered for
use by a team of domain experts, as follows:

Application 1 had 2 Developers and 2 Business Analysts
Application 2 had 2 Developers and 8 Business Analysts
Application 3 had 3 Developers and 6 Business Analysts
Application 4 had 3 Developers and 8 Business Analysts

Some key high-level statistics on the usage of patterns are:

Number of Cascade patterns : 16

Number of Cascade components : 186

Total number of assemble-able flows : 1200+

Number of applications imported from existing flows : 2
Number of applications built from ground up : 2

We also received feedback from three of the developers
about some properties of the patterns they created. Table 1
summarizes this feedback.

While the statistics we have collected so far are from a
relatively small sample set of developers, they give us some



Developer 1 Developer 2 Developer 3
Number of patterns developed 8 2 4
Number of components in patterns Max: 20, Avg: 10 | 26 in one pattern, | Max: 20

20 in the other

Max depth of composite-containment hierarchy | 4 4 3
(i.e. composites containing other components)
Max depth of component-inheritance hierarchy 3 2 2
Max branching factor in enumerations 7 4 5
Max number of flows in a pattern 1084 36 25

How were the patterns created

Generalized
Existing Flows

From scratch From scratch

Table 1: Feedback from 3 Cascade developers

hints on the usage of patterns. Firstly, developers are com-
fortable in terms of partitioning a flow in a native flow lan-
guage into different Cascade components and organizing
these components hierarchically in high level composites.
The also made use of different features of the language, in-
cluding the component-inheritance and specifying structural
variations. While one the developers always started by first
creating a SPADE flow and then generalizing it into a pat-
tern, the others started coding the flows and the patterns to-
gether (i.e. they had the space of possible flows in mind from
the very beginning).

We also asked the developers about the reasons for cre-
ating the patterns. The main reason was to support different
kinds of custom processing and alerting requested by do-
main experts. They said that with the delivery of the patterns,
the number of individual requests from the domain experts
for small modifications to the pattern had significantly de-
creased. The domain experts were more self-sufficient with
the use of the patterns and the end-user interface. There was
still some communication between developers and the do-
main experts, which mainly involved getting requirements
and feedback; however the frequency of this interaction had
decreased since they started using patterns.

The developer tools aided the development of patterns.
For example, Developer 1 said that the first pattern took him
4 hours to develop (he was generalizing an existing SPADE
flow). However, he was able to develop subsequent patterns
much more rapidly.

Overall the feedback we received from developers was
positive and encouraging. At the same time automated com-
position brings new challenges to developers. One notable
example of the new class of development challenges are
challenges originating from the use of code generation in
MARIO. Debugging automatically generated code on vari-
ous platforms and tracing back problems to Cascade source
was not always easy. To address this, at deployment time,
MARIO saves generated code to make external debugging
possible, and includes comments in generated code referring
to the original Cascade components. And at development
time, the testing framework included with the IDE helps
identify problems by automatically composing and testing
multiple instantiations of the patterns.
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