
Inspect, Edit and Debug PDDL Documents:
Simply and Efficiently with PDDL Studio

Tomas Plch1, Miroslav Chomut2, Cyril Brom3, Roman Barták4

Faculty of Mathematics and Physics, Charles University in Prague
1tomas.plch@gmail.com 2chmirko@gmail. com 3brom@ksvi.mff.cuni.cz 4bartak@ktiml.mff.cuni.cz

Abstract
The Planning Domain Definition Language (PDDL)
represents a standard for definitions of planning domains 
and problems. Researchers and designers often make
semantic and syntax errors due to the language’s
complexity. At the same time, it is hard to read and work
with larger documents in PDDL. We have developed a tool
called PDDL Studio, which is aimed at aiding in creation
and inspection of PDDL documents. The editor’s main
features are: 1) PDDL parser capable of localizing syntax
and semantic errors, 2) PDDL syntax highlighting, 3)
context sensitive code completion and hints - similar to
Microsoft’s IntelliSense for declarative languages, 4) code
collapsing, 5) PDDL document management, and 6) planner 
integration. Our PDDL Editor also features a PDDL Parser
tool, which can be used as a standalone parser for other 
projects.

Introduction
The Planning Domain Definition Language (PDDL)
(McDermott et al. 1998) represents a standard for creating
definitions of planning domains and problems and is
utilized as input for various planners e.g. JSHOP, JSHOP2
(Nau et al. 1999), BlackBox (Kautz and Selman 1998),
Metric-FF (Hoffman 2003). 

The current practice is to create PDDL documents either
by hand via simple editing tools e.g. Notepad++, or via
tools and languages for domain knowledge and
characteristics specification (i.e. knowledge engineering).
To name a few of such tools: itSimple (Vaquero et al.
2009) utilizes the combination of graphical UML
specification and XML, GIPO IV (Simpson 2007) uses
custom diagram notation, and ViTAPlan (Vrakas and
Vlahavas 2003) for domain and problem visualization. An
extensive study of the various tools and approaches can be 
found in (Vaquero et al. 2011). It is noteworthy that there
is a multitude of tools aimed at verification of PDDL like
the VAL tool (Howey et al. 2004) or PDver (Raimondi et
al. 2009).

At some point during the process of knowledge
engineering for planning and scheduling, the need for
directly inspecting and editing of PDDL documents often
occurs. Regardless of whether these documents are created
automatically or manually, they often are large and
complex, thus being hard to inspect.

The imperative programming language community (i.e.
utilizing languages like C++ and Java) has a wide range of
Integrated Development Environments (IDEs) e.g. Visual
Studio 2010 (VS10), NetBeans, and Eclipse. Various
functionalities (e.g. syntax highlighting, on the fly syntax
checking, code completion and contextual hints), help
programmers to develop in a faster and more convenient
manner. The planning community lacks such an integrated
tool (i.e. editor) for PDDL. With this motivation in mind,
we created our PDDL Studio application, which is aimed at
bringing the imperative programming culture of editing
source code to the planning community. In this paper we
overview main features of PDDL Studio.

PDDL Studio
Our project, PDDL Studio (Figure 1), is focused on
providing a simple editing IDE. The application itself is
written in C++ and is designed with portability in mind,
utilizing portable technologies like the Flex Lexical Parser
(Paxson 2008), Bison parser generator (GNU 2011) and
the Qt framework (Qt Project 1992) for visual
representation.

We identified a broad range of necessary capabilities, 
which are present in most of applications like VS10,
NetBeans, Eclipse and can be applied to the PDDL
language: 
• Project management – creation and management of

documents
• Syntax error detection – interactive localization and

identification of PDDL syntax errors
• Syntax highlighting – coloration of language elements



• Semantic error detection – detection of simple semantic
errors

• Context sensitive code completion – providing hints to
the user what to write based on the current context in the
document’s input 

• Code collapsing – portions of the code can be collapsed
to provide better readability

• XML import/export – creating an XML variant of the
PDDL document

• Planner integration – the ability to execute a planner
with the PDDL documents as input

• Common Editor Features – line numbering and bracket
matching

Figure 1: PDDL Editor window with Editing Window (A)
having highlighted syntax, Interactive Error Report (C) and
Project Manager (B) with additional information about file 
status (number of errors, save status etc.)

The remainder of this section is focused on describing
the realization of the outlined capabilities in PDDL Studio.
The main aim of the realization is to provide intuitive and
easy to use features that would facilitate the task of
creating PDDL encodings. 

Project management
Presently, the Project Management in PDDL Studio is
rather simplistic, providing only the capability to create
projects, add and remove files from the project. The 
Project Manager also provides additional information on
project files (e.g. present error counts, change status etc.).

Syntax error detection
Syntax error detection is one of the most important features
of the PDDL Studio. We created our own dedicated PDDL
parser build upon Flex and Bison (presently supporting
PDDL 1.7), making the project more portable. The parser
is designed to be used independently from the PDDL
Studio’s code as a library or C++ code. The parsing
process creates a tree-like representation of the PDDL

document’s elements. Our testing domains of 1000 lines
can be parsed below 100 ms on a standard Dual Core
notebook processor at 1.8GHz utilizing one core.

The error detection mechanism is executed on the fly
during editing of the PDDL document. If the user only
views the file, the detection mechanism is suspended. If the
user inserts or removes text, the detection mechanism is
prepared for execution after a predefined period of
inactivity – i.e. the user stopped typing. The parsing
mechanism can be further suspended if the user resumes
typing. This allows providing smoother error detection,
avoid over-consuming resources, and avoid bothering the
user with false positives on syntax errors.

The error detection module provides a list of errors
presented as an interactive error table and underlines the
found errors in the document. It can be seen in Figure 1
(C). When accessed (e.g. double click on an error’s row), 
the editor points directly to the detected error. In respect to
the PDDL specification, we can localize misspelled or
missing keywords. When a mandatory keyword is missing,
we also identify which keyword is missing, thus providing
a hint to the user.

Syntax Highlighting
Based on our experience with various programming IDEs,
we perceive the syntax highlighting as one of the most
important aids when inspecting any code. It is a key feature
included in every usable IDE tool since colored fonts were
available. It vastly improves the ability for the developer to
read code and distinguish language elements – i.e.
variables, types, functions, predicates.

We use the tree-like structure provided by our parser to
identify language elements and assign colors to the
resulting editable text. The result can be seen in
Figure 1 (A). The user can set his preferred colors for the
edited text and the following language constructs:
• problem and domain names
• variable names 
• detected errors – these are underlined for better display

and this color overrides the color of any other element
• PDDL keywords – e.g. requirements, predicates etc.
• predicate names
• type names
• highlighted brackets – pairs of brackets are highlighted

when the user points the editing cursor at one of them

Semantic error detection
The PDDL Studio is also capable of detecting semantic
errors in respect to the language specification and the
provided requirements (e.g. Disjunctive-Preconditions).
The parsed tree-like structure is used to determine where
these errors are located in the PDDL documents and what



their nature is. This information is provided within the
error table (Figure 1(C)). We can detect the following
semantic errors: 
• Use of non-existent types – when the user misspells a

type which is not present in the type declaration. This is
checked based on the typed requirement.

• Use of non-existent predicates – when a predicate is
misspelled or not defined correctly.

• Inconsistent use of predicates parameters – when a
predicate is used with wrong parameter types.

• Inconsistent use in respect to domain requirements.

Context sensitive code completion
Code completion is an important feature currently included
in every major IDE. The basic idea is to provide the user
with hints based on the current scope (e.g. available
functions, keywords etc.) while editing the document. This
feature takes the burden of the user to avoid errors i.e.
typing errors and syntactic and semantic errors. It also
provides a speed-up for development.

Our code completion is context sensitive – based on the
current edited portion of the PDDL document as can be
seen in Figure 2.

Figure 2: Context sensitive auto completion – a hint is
given for a subsection of the Action element

We can provide completion hints in the following areas:
• language keywords – basic PDDL language elements
• domain specification for problems on known domains in

the project
• predicates for problem initialization on known

predicates in the project
• content for the requirements specification
• defined variables and parameters
• defined predicates

Code collapsing
The code collapsing feature is important for better code 
readability. Parts of the code – code blocks – can be
hidden, because the reader does not need to read them at
the moment.

Our project provides possibility to collapse
automatically detected portions of code (e.g. actions,
predicates etc.). The PDDL language is based on Lisp
notation, therefore is full of code blocks. We presently
support only high level code collapsing (Figure 3) – i.e. at 
the level of whole actions, predicates etc. We are working
on a method to specify how deep the code collapsing
should be allowed to maintain readability and limit the
amount of collapse points. This context sensitive code 
collapsing feature is currently under development.

Figure 3: Code collapsing of an action pick-up block. The
‘-’ sign is used to indicate collapse points, the ‘+’ sign is
used to indicate expansion points.

XML export and import
On one hand the PDDL language is hard to read and on the
other hand it is hard to parse. We created our XML
equivalent of the PDDL Language notation. The
PDDL Studio can export and import this format for use by
other applications or for better readability by other
developers.

Planner integration
PDDL Studio provides the capability to integrate any
planner which can be executed from a system command
line – i.e. console prompt. We provide the user with our
execution console which allows for project specific simple
scripts (Figure 4).

These scripts are parsed and the result is executed via
the system console. Various parameters can be used, e.g.
current project directory, file names of PDDL files etc.



Figure 4: Planner integration using simple scripts executed
in trough the system command line 

Common Editor Features
The PDDL Editor also incorporates common editor
features like line numbering and bracket matching. Line
numbering is represented in the left portion of the screen.
Bracket matching is used to identify bracket pairs by
coloring them. It allows the user to detect missing brackets.

Conclusion and Future work
The PDDL Studio is a simple but powerful tool for
creation and management of PDDL projects. We created it 
to mimic the behavior of the commonly and widely utilized
IDEs like Visual Studio 2010 or Eclipse (in respect to code
editing). The main features of this tool are the capability to
locate and identify syntax and semantic errors in the PDDL
document and provide semantic hints on code completion. 
The tool also provides features like syntax highlighting and
code collapsing, which allow the user to read and inspect
the code easily.

In the next version, we intend to integrate a more
complex and capable project management system similar
to the one present in VS10. We intend to extend our PDDL
parser to be used with the newest version of PDDL. We
also work on extending our semantic error detection and
work on integrating our tool with a plan visualization and
inspection tool and our own planner.

We also intend to provide the user with the capability to
create custom templates for various purposes – e.g. action
skeletons filled based on given or guessed parameters. We 
also want to provide automated on the fly indentation of
documents. The user might request a view-only custom
indentation of the displayed documents to suit his
reading/writing style. We also want to incorporate a simple
mechanism to invoke various actions (e.g. commenting of
selected text portions, inserting custom text templates etc.)
via user defined key combinations (e.g. Ctrl + Shift + F1).

Acknowledgement: This work was partially supported by 
a student grant GA UK No. 0449/2010/A-INF/MFF, by
project P103/10/1287 (GA ČR) and GA UK No. 
655012/2012/A-INF/MFF.

The application can be downloaded at: 
http://amis.mff.cuni.cz/PDDLStudio.

References 
GNU Project. 2001. GNU Bison.
http://www.gnu.org/software/bison (ver. 2.5 2011).

Hoffmann, J. 2003. The Metric-FF Planning System: Translating
''Ignoring Delete Lists'' to Numeric State Variables. Journal of
Artificial Intelligence Research, Volume 20, pages 291 - 341.

Howey, R., Long, D., Fox, M. 2004. VAL: Automatic Plan
Validation, Continuous Effects and Mixed Initiative Planning
using PDDL. Tools with Artificial Intelligence, ICTAI 2004

Kautz, H., Selman, B. 1998. BLACKBOX: A New Approach to
the Application of Theorem Proving to Problem Solving.
Working notes of the Workshop on Planning as Combinatorial 
Search, held in conjunction with AIPS-98, Pittsburgh, PA.

McDermott D., Ghallab M., Howe A., Knoblock C., Ram A.,
Veloso M.; Weld D., Wilkins D. 1998. PDDL – The Planning
Domain Definition Language. Technical Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational Vision
and Control, New Haven, CT.

Nau, D., Cao, Y., Lotem, A., Muñoz-Avila, H. 1999. SHOP: 
Simple Hierarchical Ordered Planner. In IJCAI-99, pp. 968-973.

Paxson, V. 1987. Flex Lexical Analyzer.
http://flex.sourceforge.net (ver. 2.5.35 2008).

Qt Project. 1992. Qt. http://www.qt-project.org (ver. 4.8.0 2011).

Raimondi, F., Pecheur, C., Brat , G. 2009. PDVer, a tool to verify 
PDDL planning domains. In Proceedings of ICAPS’09
Verification and Validation of Planning and Scheduling Systems.

Simpson, R. M. 2007. Structural Domain Definition using GIPO 
IV. In Proceedings of the Second International Competition on
Knowledge Engineering for Planning and Scheduling

Vaquero, T., S., Silva, J., R., Beck, J., C. 2011. A Brief Review of 
Tools and Methods for Knowledge Engineering for Planning &
Scheduling. In: Proceedings of the Knowledge Engineering for 
Planning and Scheduling (KEPS) workshop. The 21th
International Conference on Automated Planning & Scheduling
(ICAPS 2011). Freiburg. Germany.

Vaquero, T. S., Silva, J. R., Ferreira, M., Tonidandel, F., Beck, J. 
C. 2009. From Requirements and Analysis to PDDL in
itSIMPLE3.0. In Proceedings of the Third International
Competition on Knowledge Engineering for Planning and
Scheduling, ICAPS 2009, 54–61.

Vrakas, D. and Vlahavas, I. 2003. ViTAPlan: A Visual Tool for 
Adaptive Planning, In Proceedings of the 9th Panhellenic
Conference on Informatics, Thessaloniki, Greece, pp. 167-177.


