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Abstract

Our demonstration consists of a poster, videos and inter-
active simulations of real-time heuristic search algorithms
for goal-directed navigation on a priori completely or par-
tially unknown grids. It provides a brief introduction to
real-time heuristic search by describing LSS-LRTA* and
RTAA*. It then illustrates a performance issue of LSS-
LRTA* and RTAA* due to depressions in the h-value surface.
It describes the real-time heuristic search algorithms al.SS-
LRTA*, daLSS-LRTA*, aRTAA*, and daRTAA*—which
address this issue—and summarizes their properties. Our
demonstration also illustrates a performance issue of LSS-
LRTA* and RTAA* due to performing repeated A* searches
around the current cells of the agent. It describes RTBA*
and TBAA*, two real-time heuristic search algorithms that
address this issue, and summarizes their properties.

Motivation

Many applications require agents to act quickly in a priori
completely or partially unknown environments. Examples
range from autonomous cars to video games, where compa-
nies impose time limits on the order of 1 millisecond (ms)
for path planning (Bulitko et al. 2011). Such time limits
are insufficient for finding complete paths, and an agent thus
needs to move before it has found a complete path. We use
goal-directed navigation on a priori completely or partially
unknown grids with blocked and unblocked cells as running
example. The agent always observes the blockage status of
its eight neighboring cells and has to move from a given
start cell to a given goal cell by repeatedly moving to an un-
blocked neighboring cell. Performance is measured by the
number of moves before the agent reaches the goal cell. We
study an agent that uses real-time heuristic search algorithms
(Korf 1990) to determine its moves. Real-time heuristic
search algorithms interleave A* searches (Hart, Nilsson, and
Raphael 1968) with moves. We assume that the reader is fa-
miliar with A* and the associated terminology and give two
examples of real-time heuristic search algorithms for goal-
directed navigation on a priori completely or partially un-
known grids in the following, both of which are variants of
LRTA* (Korf 1990):
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e LSS-LRTA* (Koenig and Sun 2009) assumes that cells
with unknown blockage status are unblocked (Zelinsky
1992; Koenig, Tovey, and Smirnov 2003). This free-space
assumption allows LSS-LRTA* to perform an A* search
from the current cell of the agent to the goal cell until the
goal cell is about to be expanded, the open list becomes
empty or a given number of cells have been expanded. If
the open list becomes empty, the agent stops unsuccess-
fully. The states in the closed list form the local search
space (LSS). LSS-LRTA* sets the h-values of all states in
the closed list to the largest possible h-values that main-
tain the consistency of all h-values. The agent then moves
along the shortest path from its current cell to a cell with
the smallest f-value found by the A* search and remem-
bers all blocked cells that it observes. If it reaches the goal
cell, it stops successfully. If it observes a blocked cell on
the current path or reaches the end of the path, it repeats
the process.

e RTAA* (Koenig and Likhachev 2006b) is almost identi-
cal to LSS-LRTA*; the difference is that it updates the
h-values faster than LSS-LRTA*. RTAA* often outper-
forms LSS-LRTA* even though the h-values of RTAA*
are typically not as informed as the ones of LSS-LRTA*.
However, this is often compensated for by RTAA* be-
ing able to expand more cells within a given time limit
(Koenig and Likhachev 2006b; Hernindez and Baier
2012).

In the following, we discuss new developments in real-
time heuristic search that address two drawbacks of existing
real-time heuristic search algorithms such as LSS-LRTA*
and RTAA*, namely poor performance due to depressions
in the h-value surface and due to performing repeated A*
searches around the current cells of the agent. We explain
these problems, sketch new real-time heuristic search algo-
rithms that address them and describe their properties.

Heuristic Depressions

LSS-LRTA* and RTAA* have a performance issue due to
heuristic depressions, that is, valleys in the h-value surface
(Ishida 1992). We focus on cost-sensitive heuristic depres-
sions (Herndandez and Baier 2012), that is, connected cells in
a set D that are completely and immediately surrounded by
cells in a set F' such that h(s) < d(s, s") + h(s’) for all cells
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Figure 1: Evaluation of aLSS-LRTA*/daLLSS-LRTA* and aRTAA*/daRTAA* on A Priori Completely Unknown Grids

s € Dand s € F, where d(s, s) is the distance from s to
s’ and h(s) and h(s’) are the h-values of s and s', respec-
tively. When an agent enters such a heuristic depression,
it often executes many moves before it leaves the heuristic
depression again. We describe real-time heuristic search al-
gorithms for goal-directed navigation in a priori completely
or partially unknown grids that address this issue by mov-
ing the agent to avoid heuristic depressions, namely alLSS-
LRTA*, daLSS-LRTA*, aRTAA* and daRTAA*:

e daLLSS-LRTA* (Hernandez and Baier 2012) is almost
identical to LSS-LRTA* and daRTAA* (Hernandez and
Baier 2012) is almost identical to RTAA*; the only differ-
ence is that daLSS-LRTA* and daRTAA* find a shortest
path from the current cell of the agent to a cell with the
smallest f-value among all cells for which the h-values
have changed the least (rather than to a cell with the small-
est f-value). This moves the agent to avoid heuristic de-
pressions for the following reason: Let A(s) be the dif-
ference between the length of the shortest path from cell
s to the goal cell and the initial h-value of s. If s is a cell
close to the border of depression D and s’ is a cell more
in the interior of D, A(s") > A(s).

aLLSS-LRTA* (Hernandez and Baier 2012) is almost iden-
tical to LSS-LRTA* and aRTAA* (Hernandez and Baier
2012) is almost identical to RTAA*; the only difference is
that aLSS-LRTA* and aRTAA* find a shortest path from
the current cell of the agent to a cell with the smallest
f-value among all cells for which the h-values have not
changed. If such cells do not exist, aLSS-LRTA* and
aRTAA* find a shortest path from the current cell of the
agent to a cell with the smallest f-value, like LSS-LRTA*
and RTAA*. This is a simpler way of moving the agent to
avoid heuristic depressions.

We compared alLSS-LRTA*, dalLSS-LRTA*, aRTAA*
and daRTAA* with the real-time search algorithms LSS-
LRTA* and RTAA*. Our results, shown in Figure 1, indicate
that daLSS-LRTA* and daRTAA* outperform LSS-LRTA*

and RTAA¥*, respectively, by one order of magnitude when
the time per planning episode is small. Details are given in
(Hernandez and Baier 2012).

Local Searches

LSS-LRTA* and RTAA* have a performance issue due to
performing local searches, that is, repeated A* searches
around the current cells of the agent. We describe RTBA*
and TBAA¥*, two real-time heuristic search algorithms for
goal-directed navigation in a priori completely or partially
unknown grids that address this issue in the context of the
game time model. The game time model partitions time into
time intervals of a given length of time. During each time in-
terval, the agent is allowed to search for the given length of
time and then execute a single move (or pass on the move).
Performance is measured by the number of time intervals
before the agent reaches the goal cell. This performance
measure is more realistic for video games than the number
of moves before the agent reaches the goal cell since agents
in video games are not allowed to execute moves at arbitrar-
ily high speeds.

TBA* (Bjornsson, Bulitko, and Sturtevant 2009) is a real-
time heuristic search algorithm for goal-directed navigation
on a priori known grids that performs one global search, that
is, an A* search around the start cell. It performs an A*
search from the start cell to the goal cell until the goal cell
is about to be expanded or the open list becomes empty. If
the open list becomes empty, the agent stops unsuccessfully.
At the end of each time interval, the agent makes one move
along a path from its current cell to the cell with the small-
est f-value found by the A* search, by either following the
shortest path from the start cell to a cell with the smallest
f-value (if its current cell is on this path) or by moving to the
parent of its current cell in the A* search tree. If it reaches
the goal cell, it stops successfully. TBA* often outperforms
LSS-LRTA* and RTAA* since a global search increases the
chances that the agent follows a short path from the start
cell to the goal cell (Herndndez et al. 2012). We describe



RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite
Length of Time | # Time |# Moves | # Time |# Moves| # Time |# Moves| # Time |# Moves | # Time |# Moves| # Time |# Moves| # Time |# Moves
Intervals (ms) |Intervals Intervals Intervals Intervals Intervals Intervals Intervals
0.3 3245 | 3244 | 2879 | 2,878 | 4,613 | 4,604 | 2290 | 2,286 | 7,155 | 2,004 | 3,230 | 2,010 | 2,203 2,027
0.6 2,598 | 2,597 | 2472 | 2,471 3,368 | 3,360 | 2,147 | 2,144 | 4,487 | 2,004 | 2,572 | 2,010 | 2,090 2,027
0.9 2,451 2,450 | 2418 | 2417 | 2918 | 2910 | 2,101 2,099 | 3,611 2,004 | 2,361 2,010 | 2,062 2,027
1.2 2,310 | 2,309 | 2,305 | 2,304 | 2,695 | 2,688 | 2,086 | 2,083 | 3,178 | 2,004 | 2,260 | 2,010 | 2,051 2,027
1.5 2,281 2,280 | 2,272 | 2,271 2,560 | 2,553 | 2,070 | 2,068 | 2,920 | 2,004 | 2,202 | 2,010 | 2,045 2,027
Table 1: Evaluation of RTBA* and TBAA* on A Priori Completely Unknown Grids
RTAA* daRTAA* RTBA* TBAA* Repeated A* Adaptive A* D* Lite
Length of Time | # Time |# Moves| # Time |# Moves| # Time |# Moves| # Time |# Moves| # Time |# Moves| # Time |# Moves| # Time |# Moves
Intervals (ms) |Intervals Intervals Intervals Intervals Intervals Intervals Intervals
0.3 2,694 | 2,693 | 2460 | 2459 | 2,734 | 2,730 | 1,505 1,504 | 6,324 1,409 | 2430 1,399 1,659 1,418
0.6 2,039 | 2,038 1,863 1,862 | 2,037 | 2,034 | 1,442 1,441 3,812 1,409 1,875 1,399 1,532 1,418
0.9 1,840 1,839 1,779 1,778 1,860 1,857 | 1,431 1,430 | 2,979 1,409 1,695 1,399 1,490 1,418
1.2 1,707 1,706 1,643 1,642 1,726 1,724 | 1,421 1,420 | 2,564 1,409 1,608 1,399 1,470 1,418
1.5 1,620 1,619 1,642 1,641 1,668 1,666 | 1,415 1,414 | 2,316 1,409 1,556 1,399 1,458 1,418

Table 2: Evaluation of RTBA* and TBAA* on A Priori Partially Unknown Grids

two variants of TBA* for goal-directed navigation on a pri-
ori completely or partially unknown grids:

e RTBA* (Hernandez et al. 2012) is almost identical to
TBA¥*, the only difference is that, if the agent observes
a blocked cell on the path from its current cell to the cell
with the smallest f-value, RTBA* starts a new A* search
from the current cell of the agent to the goal cell.

e TBAA* (Hernandez et al. 2012) is almost identical to
RTBA¥*, the only difference is that, like RTAA¥*, it sets
the h-values of all states in the closed list to the largest
possible h-values that maintain the consistency of all h-
values before it starts a new A* search. To be precise,
it actually defers an h-value update until the time when
the h-value is needed during a future A* search to avoid
computing those h-values that are not needed later. The h-
value updates make the h-values more informed and thus
focus future A* searches better.

We compared RTBA* and TBAA* with the real-time
heuristic search algorithms RTAA* and daRTAA* as well
as the heuristic search algorithms Repeated A*, Adaptive
A* and D* Lite (using a different experimental setup from
the previous section). Repeated A* performs a complete A*
search from the current cell of the agent to the goal cell
until the goal cell is about to be expanded or the open list
becomes empty. If the open list becomes empty, the agent
stops unsuccessfully. The agent then moves along the short-
est path from its current cell to the goal cell and remembers
all blocked cells that it observes. If it reaches the goal cell, it
stops successfully. If it observes a blocked cell on the path, it
repeats the process. Incremental heuristic search algorithms,
such as Adaptive A* (Koenig and Likhachev 2006a) and D*
Lite (Koenig and Likhachev 2002), are almost identical to
Repeated A*, the difference is that they speed up the A*
searches by using their experience with prior A* searches to
speed up future ones. Adaptive A* performs A* searches
from the current cell of the agent to the goal cell, while D*
Lite performs searches in the opposite direction. Our results,

shown in Tables 1 and 2, indicate that TBAA* has a slight
performance advantage over D* Lite in a priori partially un-
known grids and vice versa in a priori completely unknown
grids, although the differences might not be statistically sig-
nificant. In both cases, TBAA* has the advantage over D*
Lite that the agent starts to move right away. Details are
given in (Herndndez et al. 2012).

Objectives of the Demonstration

Our demonstration consists of a poster, videos and interac-
tive simulations of real-time heuristic search algorithms. It
has the following objectives:

1. Our demonstration provides a brief introduction to real-
time heuristic search by describing LSS-LRTA* and
RTAA*.

2. Our demonstration illustrates a performance issue of LSS-

LRTA* and RTAA* due to depressions in the h-value sur-
face. It describes aLSS-LRTA*, daLSS-LRTA*, two real-
time heuristic search algorithms that address this issue,

and summarizes their properties described in (Herndndez
and Baier 2012).

3. Our demonstration illustrates a performance issue of

LSS-LRTA* and RTAA* due to performing repeated A*
searches around the current cells of the agent. It describes
real-time heuristic search algorithms that address this is-
sue, namely RTBA* and TBAA¥*, and summarizes their
properties described in (Herndndez et al. 2012).

Acknowledgments

This material is based upon research supported by NSF
(while Sven Koenig was serving at NSF). It is also
based upon research supported by ARL/ARO under con-
tract/grant number W911NF-08-1-0468 and ONR in form
of a MURI under contract/grant number N0O0014-09-1-1031.
Jorge Baier was partly funded by Fondecyt grant number



11110321. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted
as representing the official policies, either expressed or im-
plied, of the sponsoring organizations, agencies or the U.S.
government.

References

Bjornsson, Y.; Bulitko, V.; and Sturtevant, N. 2009. TBA*:
Time-bounded A*. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence (IJCAI), 431—
436.

Bulitko, V.; Bjornsson, Y.; Sturtevant, N.; and Lawrence,
R. 2011. Real-time Heuristic Search for Game Pathfind-
ing. Applied Research in Artificial Intelligence for Com-
puter Games. Springer.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimal cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2).

Hernéndez, C., and Baier, J. A. 2012. Avoiding and es-
caping depressions in real-time heuristic search. Journal of
Artificial Intelligence Research 43:523-570.

Hernandez, C.; Baier, J. A.; Uras, T.; and Koenig, S. 2012.
Time-Bounded Adaptive A*. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).

Ishida, T. 1992. Moving target search with intelligence. In
Proceedings of the 10th National Conference on Artificial
Intelligence (AAAI), 525-532.

Koenig, S., and Likhachev, M. 2002. D* Lite. In Pro-
ceedings of the 18th National Conference on Artificial Intel-
ligence (AAAI), 476-483.

Koenig, S., and Likhachev, M. 2006a. A new principle
for incremental heuristic search: Theoretical results. In Pro-
ceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), 402—405.

Koenig, S., and Likhachev, M. 2006b. Real-Time Adaptive
A*. In Proceedings of the 5th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
281-288.

Koenig, S., and Sun, X. 2009. Comparing real-time and in-
cremental heuristic search for real-time situated agents. Au-
tonomous Agents and Multi-Agent Systems 18(3):313-341.

Koenig, S.; Tovey, C.; and Smirnov, Y. 2003. Performance
bounds for planning in unknown terrain. Artificial Intelli-
gence 147(1-2):253-279.

Korf, R. 1990. Real-time heuristic search. Artificial Intelli-
gence 42(2-3):189-211.

Zelinsky, A. 1992. A mobile robot exploration algorithm.

IEEE Transactions on Robotics and Automation 8(6):707—
717.



