
Planning-Based Composition of Stream Processing Applications

Mark D. Feblowitz, Anand Ranganathan, Anton V. Riabov, and Octavian Udrea
IBM T. J. Watson Research Center

PO Box 704, Yorktown Heights, NY 10598, USA

Abstract

In this demonstration we present our planning-based
tools for software composition, and in particular, for
composition of distributed stream processing applica-
tions. The applications composed by our tools are de-
ployed on IBM InfoSphere Streams distributed stream
processing middleware. The applications are used to
process large data volumes in real time on large clus-
ters of commodity servers. Our tools include MARIO,
the goal-driven planning-based application composition
tool for business users, and an Eclipse-based integrated
development environment (IDE) for developing plan-
ning domain descriptions.

Overview
Distributed stream processing middleware, such as IBM In-
foSphere Streams (IBM InfoSphere Streams), allows soft-
ware developers to apply the full computational power of
numerous commodity servers toward large-scale real-time
analysis of streaming data. Recently, applications that place
high demands on the rate and volume of input data have
emerged in telecommunications, finance, health care, and
other industries. Stream processing applications are devel-
oped by specifying, in a programming language, the data
flows between inputs and outputs of stream processing op-
erators.

To significantly shorten the development cycle and make
applications more flexible and responsive to changing busi-
ness needs, we have developed a planning-based approach
that gives business users the ability to assemble stream pro-
cessing applications for their needs on the fly, without pro-
gramming or using drag-and-drop interfaces. Similarly to
planning-based approaches that were proposed for Web Ser-
vice composition, e.g. (Traverso and Pistore 2004), we have
extended AI planning formulations and techniques to ad-
dress the problem of composing stream processing applica-
tions.

To further simplify the goal-driven composition process,
we have developed an iterative goal refinement approach
that gives business users the ability to express their goals
and explore alternative compositions by choosing from a set
of business-relevant terms. The built-in optimization engine

helps assemble the best match even for ambiguous goals
given by the end users. Developers, on the other hand, can
easily describe and publish new operators and data sources
for use in new compositions. Our tools, including the web-
based goal-driven application composition tool (MARIO),
and the planning domain development environment (IDE),
have been used in a customer pilot since 2009.

MARIO: A Goal-Driven Application
Composition Tool

We have developed MARIO (Bouillet et al. 2008) as a
framework for automated composition of analysis flows,
with the primary motivation to compose stream processing
applications. We have further generalized MARIO to com-
pose and deploy analysis flows on a variety of other plat-
forms, including Web Services, Enterprise Service Bus, and
others. MARIO can be extended to support new platforms
by adding new plug-ins that generate code and deploy com-
posed flows.

An overview of MARIO and its interactions with business
users and other systems is shown graphically in Figure 1.
MARIO interacts with the business users via a Web-based
interface to receive and refine goals, generates and deploys
application code for user-specified goals, and presents the
results of execution back to the user.

In MARIO, composition goals are specified as sets of
business-relevant keywords (i.e., tags). For example, a finan-
cial analyst may request an application that identifies stocks
sold below volume-weighted average price (VWAP), and
therefore constituting a bargain, by selecting tags “VWAP,
BargainIndex” as a goal.

A unique feature of MARIO is interactive goal refine-
ment. Possible refinements of the specified goal are gener-
ated by the MARIO planner together with the optimal plan,
based on the analysis of alternative plans. For example, the
planner may suggest LinearIndex and ExponentialIndex as
possible refinements of “VWAP, BargainIndex”, if there are
alternative plans matching to those tags. The users are al-
lowed to specify ambigous goals, allowing the planner to
make remaining decisions based on its optimality criteria.
On the other hand, the users can also refine goals until there
are no more refinements.



Figure 1: MARIO Overview

In general, goal tags match tags used by the developers in
describing inputs and outputs of stream processing operators
and data sources. The developers can define sub-tag relation-
ships between tags, allowing MARIO to use reasoning dur-
ing planning, and match specific annotation tags to general
goal tags. For example, tags LinearIndex and ExponentialIn-
dex can be declared to be sub-tags of BargainIndex, and, as
a result, the plans that match either tag will also match any
goal that includes BargainIndex.

In addition to composing applications, which we consider
its primary functionality, MARIO Web server includes sup-
porting functions. For business users, it is the primary con-
sole for managing and deploying stream processing applica-
tions, providing the user interface and server-side function-
ality for managing long-running applications in a multi-user
environment.

Planning Approach
To respond to composition requests efficiently, MARIO
relies on a fast special-purpose optimizing planner that
solves planning problems described in SPPL domain de-
scription language (Riabov and Liu 2006). SPPL descrip-
tions are automatically generated from user-specified goals
and developer-defined application composition domains.

In MARIO, tags are used for describing the semantics
of analytics and data sources, as well as for specifying the
goals. In the past we have implemented a more general
OWL-based model (Liu, Ranganathan, and Riabov 2007).

However, the OWL-based model was difficult to use in
practice, since few stream processing application develop-
ers were familiar with OWL. Our current tag-based model is
designed to be easier to understand and use, while preserv-
ing a few basic reasoning capabilities, such as the sub-tag
relationship.

The developers use the Cascade language (Ranganathan,
Riabov, and Udrea 2009) to describe application composi-
tion domains. For example, the output of a stream processing
operator computing exponential index can be tagged with
ExponentialIndex, and the operator itself can be placed, as
one of the possible choices, within a Cascade composition
pattern flow graph.

The goals specified by the business users as tags are au-
tomatically translated to SPPL problem descriptions. Since
goal refinement is the only method for specifying goals, only
valid goals can be specified, and only known tags can be
included in goals, making this translation simple. Cascade
composition patterns and tag relationships are also compiled
into SPPL domain descriptions for planning.

MARIO finds an optimal plan and analyzes alternatives
every time a user adds or removes a goal tag. This allows
users to explore the space of possible plans. However, to
make goal refinement process truly interactive, and to serve
multiple users simultaneously, planning must be efficient.
Our SPPL planner (Riabov and Liu 2006) implements multi-
ple performance optimizations, and achieves planning times
of a few seconds for most practical applications.



Goal Tags Planning Time (seconds)
∅ 0.11
VWAP 0.16
VWAP, BargainIndex 0.09
VWAP, BargainIndex, ExponentialIndex 0.10
VWAP, BargainIndex, ExponentialIndex, TableView 0.09
VWAP, BargainIndex, ExponentialIndex, TableView, TcpSource 0.09
TcpSource 0.12
TcpSource, TableView 0.08

Table 1: SPPL planner response times, for a sample domain.

Table 1 illustrates the performance of our SPPL planner
in MARIO domains. We have measured planning times for
several selected goals within a sample application domain
(i.e., stock price analysis). Typically, the users will refine
goals by selecting one tag a time from possible refinements,
starting with an empty goal. In Table 1 we show planning
times for two refinement sessions. The SPPL planner was
running on a 64-bit Linux node with a quad-core 2.93Ghz
Intel Xeon processor with 32GB RAM, however only a sin-
gle core was used, and the memory usage was below 2GB.

Cascade IDE: A Development Environment
for Composition Domains

Cascade IDE is a set of Eclipse (Eclipse Foundation) plug-
ins that developers can use to create and maintain Cas-
cade descriptions of application composition domains for
MARIO. The IDE can also import existing stream process-
ing code and generate Cascade descriptions. For example, a
stream processing operator invocation implementing expo-
nential bargain index computation can be imported, and its
output can be annotated with ExponentialIndex tag.

The integration with Eclipse has made it possible to de-
velop a full-featured Cascade editor with syntax highlight-
ing, auto-completion and refactoring. Refactoring allows,
for example, to rename a tag, In addition to the editor for
Cascade, the IDE includes editors for Web UI configuration
and tag relationships.

The planning domains described in Cascade can be de-
ployed directly from the IDE to a MARIO server. Then,
double-clicking on a server entry in the IDE launches a
browser showing the Web interface. This automation signifi-
cantly reduces the time spent on routine tasks during the de-
velopment and testing of application composition domains.

Among many challenges associated with making auto-
mated software composition practical, perhaps the most sig-
nificant is the need to create tools that help developers si-
multaneously debug a large family of applications gener-
ated from a single Cascade project. To address this prob-
lem, we have integrated automated test generation and ex-
ecution techniques with our Cascade IDE (Winbladh and
Ranganathan 2011).

Conclusion
We have developed MARIO, a goal-driven tool for auto-
mated composition of stream processing applications. This
tool allows business users to create applications for their

goals without programming. We have also built an Eclipse-
based IDE for developers, which allows to describe com-
posable components, such as stream processing operators
and data sources, as well as composition patterns, and to
make these components and patterns available for applica-
tion composition by the business users. Our tools have been
used in a customer pilot since 2009, and are currently be-
ing extended to support other target platforms in addition to
IBM InfoSphere Streams.

Acknowledgements and Credits
This work, which has begun eight years ago, would not be
possible without the support of our customers, and the con-
tributions from our colleagues and interns at IBM Research.
Our former colleagues and team members Zhen Liu, Eric
Bouillet, and Hanhua Feng have each contributed to MARIO
very significantly. The authors also thank Kristina Winbladh,
Shirin Sohrabi and Genady Grabarnik for their contribu-
tions. We thank Nagui Halim for continued discussions and
valuable feedback. Finally, we thank the anonymous review-
ers of our papers who helped improve our work.

References
Bouillet, E.; Feblowitz, M.; Liu, Z.; Ranganathan, A.; and
Riabov, A. 2008. A tag-based approach for the design
and composition of information processing applications. In
OOPSLA, 585–602.
Eclipse Foundation. Eclipse Project. http://eclipse.org.
IBM InfoSphere Streams. http://www.ibm.com
/software/data/infosphere/streams/.

Liu, Z.; Ranganathan, A.; and Riabov, A. 2007. A planning
approach for message-oriented semantic web service com-
position. In AAAI, 1389–1394.
Ranganathan, A.; Riabov, A.; and Udrea, O. 2009. Mashup-
based information retrieval for domain experts. In CIKM,
711–720.
Riabov, A., and Liu, Z. 2006. Scalable planning for dis-
tributed stream processing systems. In ICAPS.
Traverso, P., and Pistore, M. 2004. Automated composi-
tion of semantic web services into executable processes. In
ISWC04.
Winbladh, K., and Ranganathan, A. 2011. Evaluating test
selection strategies for end-user specified flow-based appli-
cations. In ASE, 400–403.


