EUROPA: A Platform for AI Planning, Scheduling, Constraint Programming, and Optimization

Javier Barreiro*, Matthew Boyce*, Minh Do*, Jeremy Frank†, Michael Iatauro*, Tatiana Kichkaylo‡, Paul Morris†, James Ong†, Emilio Remolina*, Tristan Smith*, David Smith†

*SGT Inc., NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035
†NASA Ames Research Center, Mail Stop 269-3, Moffett Field, CA 94035
‡Stottler Henke Associates, Inc., 951 Mariners Island Blvd., Suite 360, San Mateo, CA 94404
†Decision Systems, USC Information Sciences Institute, 4676 Admiralty Way, Marina del Rey, CA 90292

Abstract

EUROPA is a class library and tool set for building and analyzing planners within a Constraint-based Temporal Planning paradigm. This paradigm has been successfully applied in a wide range of practical planning problems and has a legacy of success in NASA applications. EUROPA offers capabilities in 3 key areas of problem solving: (1) Representation; (2) Reasoning; and (3) Search. EUROPA is a means to integrate advanced planning, scheduling and constraint reasoning into an end-user application and is designed to be open and extendable to accommodate diverse and highly specialized problem solving techniques within a common design framework and around a common technology core. In this paper, we will outline the core capabilities of this open-source planning & scheduling framework. While EUROPA is the complete planning and scheduling software suite, we will pay special attention to the aspects that are relevant to knowledge engineering: modeling support, embedding a planner into an end-user application, and plan visualization and analysis.

1 Abstract reproduced from the paper submitted to ICKEPS.